
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

Automatic Generation of Programs

Ondřej Popelka and Jiří Štastný
Mendel University in Brno

Czech Republic

1. Introduction

Automatic generation of program is definitely an alluring problem. Over the years many
approaches emerged, which try to smooth away parts of programmers’ work. One approach
already widely used today is colloquially known as code generation (or code generators). This
approach includes many methods and tools, therefore many different terms are used to
describe this concept. The very basic tools are included in various available Integrated
Development Environments (IDE). These include templates, automatic code completion,
macros and other tools. On a higher level, code generation is performed by tools, which
create program source code from metadata or data. Again, there are thousands of such tools
available both commercial and open source. Generally available are programs for generating
source code from relational or object database schema, object or class diagrams, test cases,
XML schema, XSD schema, design patterns or various formalized descriptions of the
problem domain.
These tools mainly focus on the generation of a template or skeleton for an application or
application module, which is then filled with actual algorithms by a programmer. The great
advantage of such tools is that they lower the amount of tedious, repetitive and boring (thus
error-prone) work. Commonly the output is some form of data access layer (or data access
objects) or object relational mapping (ORM) or some kind of skeleton for an application - for
example interface for creating, reading, updating and deleting objects in database (CRUD
operations). Further, this approach leads to generative programming domain, which
includes concepts such as aspect-oriented programming (Gunter & Mitchell, 1994), generic
programming, meta-programming etc. (Czarnecki & Eisenecker, 2000). These concepts are now
available for general use – for example the AspectJ extension to Java programming language
is considered stable since at least 2003 (Ladad, 2009). However, they are not still mainstream
form of programming according to TIOBE Index (TIOBE, 2010).
A completely different approach to the problem is an actual generation of algorithms of the
program. This is a more complex then code generation as described above, since it involves
actual creation of algorithms and procedures. This requires either extremely complex tools
or artificial intelligence. The former can be probably represented by two most successful
(albeit completely different) projects – Lyee project (Poli, 2002) and Specware project (Smith,
1999). Unfortunately, the Lyee project was terminated in 2004 and the latest version of
Specware is from 2007.
As mentioned above, another option is to leverage artificial intelligence methods
(particularly evolutionary algorithms) and use them to create code evolution. We use the term

www.intechopen.com

 Advances in Computer Science and Engineering

18

code evolution as an opposite concept to code generation (as described in previous paragraphs)
and later we will describe how these two concepts can be coupled. When using code
generation, we let the programmer specify program metadata and automatically generate
skeleton for his application, which he then fills with actual algorithms. When using code
evolution, we let the programmer specify sample inputs and outputs of the program and
automatically generate the actual algorithms fulfilling the requirements. We aim to create a
tool which will aid human programmers by generating working algorithms (not optimal
algorithms) in programming language of their choice.
In this chapter, we describe evolutionary methods usable for code evolution and results of
some experiments with these. Since most of the methods used are based on genetic
algorithms, we will first briefly describe this area of artificial intelligence. Then we will
move on to the actual algorithms for automatic generation of programs. Furthermore, we
will describe how these results can be beneficial to mainstream programming techniques.

2. Methods used for automatic generation of programs

2.1 Genetic algorithms

Genetic algorithms (GA) are a large group of evolutionary algorithms inspired by
evolutionary mechanisms of live nature. Evolutionary algorithms are non-deterministic
algorithms suitable for solving very complex problems by transforming them into state space
and searching for optimum state. Although they originate from modelling of natural
process, most evolutionary algorithms do not copy the natural processes precisely.
The basic concept of genetic algorithms is based on natural selection process and is very
generic, leaving space for many different approaches and implementations. The domain of
GA is in solving multidimensional optimisation problems, for which analytical solutions are
unknown (or extremely complex) and efficient numerical methods are unavailable or their
initial conditions are unknown. A genetic algorithm uses three genetic operators –
reproduction, crossover and mutation (Goldberg, 2002). Many differences can be observed in
the strategy of the parent selection, the form of genes, the realization of crossover operator,
the replacement scheme, etc. A basic steady-state genetic algorithm involves the following
steps.
Initialization. In each step, a genetic algorithm contains a number of solutions (individuals)
in one or more populations. Each solution is represented by genome (or chromosome).
Initialization creates a starting population and sets all bits of all chromosomes to an initial
(usually random) value.
Crossover. The crossover is the main procedure to ensure progress of the genetic algorithm.
The crossover operator should be implemented so that by combining several existing
chromosomes a new chromosome is created, which is expected to be a better solution to the
problem.
Mutation. Mutation operator involves a random distortion of random chromosomes; the
purpose of this operation is to overcome the tendency of genetic algorithm in reaching the
local optimum instead of global optimum. Simple mutation is implemented so that each
gene in each chromosome can be randomly changed with a certain very small probability.
Finalization. The population cycle is repeated until a termination condition is satisfied.
There are two basic finalization variations: maximal number of iterations and the quality of
the best solution. Since the latter condition may never be satisfied both conditions are
usually used.

www.intechopen.com

Automatic Generation of Programs

19

The critical operation of genetic algorithm is crossover which requires that it is possible to
determine what a “better solution” is. This is determined by a fitness function (criterion
function or objective function). The fitness function is the key feature of genetic algorithm,
since the genetic algorithm performs the minimization of this function. The fitness function
is actually the transformation of the problem being solved into a state space which is
searched using genetic algorithm (Mitchell, 1999).

2.2 Genetic programming

The first successful experiments with automatic generation of algorithms were using
Genetic Programming method (Koza, 1992). Genetic programming (GP) is a considerably
modified genetic algorithm and is now considered a field on its own. GP itself has proven
that evolutionary algorithms are definitely capable of solving complex problems such as
automatic generation of programs. However, a number of practical issues were discovered.
These later lead to extending GP with (usually context-free) grammars to make this method
more suitable to generate program source code (Wong & Leung, 1995) and (Patterson &
Livesey, 1997).
Problem number one is the overwhelming complexity of automatic generation of a program
code. The most straightforward approach is to split the code into subroutines (functions or
methods) the same way as human programmers do. In genetic programming this problem is
generally being solved using Automatically Defined Functions (ADF) extension to GP. When
using automatically defined function each program is split into definitions of one or more
functions, an expression and result producing branch. There are several methods to create
ADFs, from manual user definition to automatic evolution. Widely recognized approaches
include generating ADFs using genetic programing (Koza, 1994), genetic algorithms
(Ahluwalia & Bull, 1998), logic grammars (Wong & Leung, 1995) or gene expression
programming (Ferreira, 2006a).
Second very difficult problem is actually creating syntactically and semantically correct
programs. In genetic programming, the program code itself is represented using a concrete
syntax tree (parse tree). An important feature of GP is that all genetic operations are applied to
the tree itself, since GP algorithms generally lack any sort of genome. This leads to problems
when applying the crossover or mutation operators since it is possible to create a
syntactically invalid structure and since it limits evolutionary variability. A classic example
of the former is exchanging (within crossover operation) a function with two parameters for
a function with one parameter and vice versa – part of the tree is either missing or
superfluous. The latter problem is circumvented using very large initial populations which
contain all necessary prime building blocks. In subsequent populations these building
blocks are only combined into correct structure (Ferreira, 2006a).
Despite these problems, the achievements of genetic programming are very respectable; as
of year 2003 there are 36 human-competitive results known (Koza et al, 2003). These results
include various successful specialized algorithms or circuit topologies. However we would
like to concentrate on a more mainstream problems and programming languages. Our goal
are not algorithms competitive to humans, rather we focus on creating algorithms which are
just working. We are also targeting mainstream programming languages.

2.3 Grammatical evolution
The development of Grammatical Evolution (GE) algorithm (O’Neill & Ryan, 2003) can be
considered a major breakthrough when solving both problems mentioned in the previous

www.intechopen.com

 Advances in Computer Science and Engineering

20

paragraph. This algorithm directly uses a generative context-free grammar (CFG) to
generate structures in an arbitrary language defined by that grammar. A genetic algorithm
is used to direct the structure generation. The usage of a context-free grammar to generate a
solution ensures that a solution is always syntactically correct. It also enables to precisely
and flexibly define the form of a solution without the need to alter the algorithm
implementation.

Fig. 1. Production rules of grammar for generating arithmetic expressions

In grammatical evolution each individual in the population is represented by a sequence of
rules of a defined (context-free) grammar. The particular solution is then generated by
translating the chromosome to a sequence of rules which are then applied in specified order.
A context-free grammar G is defined as a tuple G = (Π,Σ,P,S) where Π is set of non-
terminals, Σ is set of terminals, S is initial non-terminal and P is table of production rules.
The non-terminals are items, which appear in the individuals’ body (the solution) only
before or during the translation. After the translation is finished all non-terminals are
translated to terminals. Terminals are all symbols which may appear in the generated
language, thus they represent the solution. Start symbol is one non-terminal from the non-
terminals set, which is used to initialize the translation process. Production rules define the
laws under which non-terminals are translated to terminals. Production rules are key part of
the grammar definition as they actually define the structure of the generated solution
(O’Neill & Ryan, 2003).
We will demonstrate the principle of grammatical evolution and the backward processing
algorithm on generating algebraic expressions. The grammar we can use to generate
arithmetic expressions is defined by equations (1) – (3); for brevity, the production rules are
shown separately in BNF notation on Figure 1 (Ošmera & Popelka, 2006).

 { }, , ,expr fnc num var∏ = (1)

 { }sin,cos, , , , , ,0,1,2,3,4,5,6,7,8,9xΣ = + − ÷ ⋅ (2)

 S expr= (3)

www.intechopen.com

Automatic Generation of Programs

21

Fig. 2. Process of the translation of the genotype to a solution (phenotype)

The beginning of the process of the translation is shown on Figure 2. At the beginning we
have a chromosome which consists of randomly generated integers and a non-terminal
<expr> (expression). Then all rules which can rewrite this non-terminal are selected and rule
is chosen using modulo operation and current gene value. Non-terminal <expr> is rewritten
to non-terminal <var> (variable). Second step shows that if only one rule is available for
rewriting the non-terminal, it is not necessary to read a gene and the rule is applied
immediately. This illustrates how the genome (chromosome) can control the generation of
solutions. This process is repeated for every solution until no non-terminals are left in its’
body. Then each solution can be evaluated and a genetic algorithm population cycle can
start and determine best solutions and create new chromosomes.
Other non-terminals used in this grammar can be <fnc> (function) and <num> (number).
Here we consider standard arithmetic operators as functions, the rules on Figure 1 are
divided by the number of arguments for a function (“u-“ stands for unary minus).

3. Two-level grammatical evolution

In the previous section, we have described original grammatical evolution algorithm. We
have further developed the original grammatical evolution algorithm by extending it with

www.intechopen.com

 Advances in Computer Science and Engineering

22

Backward Processing algorithm (Ošmera, Popelka & Pivoňka, 2006). The backward processing
algorithm just uses different order of processing the rules of the context free grammar than
the original GE algorithm. Although the change might seem subtle, the consequences are
very important. When using the original algorithm, the rules are read left-to-right and so is
the body of the individual scanned left-to-right for untranslated non-terminals.

mod 3 = 1

mod 4 = 3

mod 4 = 3

mod 10 = 3

mod 4 = 0

mod 1 = 0

mod 4 = 2

mod 4 = 3

mod 4 = 1

mod 3 = 2

mod 4 = 2

mod 4 = 1

mod 10 = 2

mod 4 = 0

mod 1 = 0

mod 4 = 1

42

23

17

11

38

45

22

8

78

37

13

7

19

63

16

27

<fnc>(<expr>, <expr >)

•(<expr >, <expr>)

•(<fnc>(<expr>), <expr>)

•(cos(<expr>), <expr>)

•(cos(<fnc>(<num>,<expr>)), <expr >)

•(cos(+(<num><expr>)), <expr >)

•(cos(+(2,<expr>)), <expr >)

•(cos(+(2,<var>)), <expr>)

•(cos(+(2,x)), <expr>)

•(cos(+(2,x)), <fnc>(<expr>))

•(cos(+(2,x)),sin (<expr >))

•(cos(+(2,x)),sin(<fnc>(<num>,<exp>)))

•(cos(+(2,x)),sin(•(<num>,<exp>)))

•(cos(+(2,x)),sin(•(3,<exp>)))

•(cos(+(2,x)),sin(•(3,<var>)))

•(cos(+(2,x)),sin(•(3,x)))

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

Chromosome Rule selection
State of the solution – nonterminals in

italics will be replaced , bold

nonterminals are new

N

T

N

T

N

T

T

N

T

N

T

N

T

T

N

T

Rule type

tr
a
n
s
la

tio
n
 p

ro
g
re

ss

Fig. 3. Translation process of an expression specified by equation (4)

3.1 Backward processing algorithm

The whole process of translating a sample chromosome into an expression (equation 4) is
shown on figure 3 []. Rule counts and rule numbers correspond to figure 1, indexes of the
rules are zero-based. Rule selected in step a) of the translation is therefore the third rule in
table.

 cos(2) sin(3)x x+ ⋅ ⋅ (4)

The backward processing algorithm scans the solution string for non-terminals in right-to-
left direction. Figure 4 shows the translation process when this mode is used. Note that the
genes in the chromosome are the same; they just have been rearranged in order to create
same solution, so that the difference between both algorithms can be demonstrated. Figure 4
now contains two additional columns with rule type and gene mark.
Rule types are determined according to what non-terminals they translate. We define a T-
terminal as a terminal which can be translated only to terminals. By analogy N-terminal is a
terminal which can be translated only to non-terminals. T-rules (N-rules) are all rules
translating a given T-nonterminal (N-nonterminal). Mixed rules (or non-terminals) are not

www.intechopen.com

Automatic Generation of Programs

23

allowed. Given the production rules shown on Figure 1, the only N-nonterminal is <expr>,
non-terminals <fnc>, <var> and <num> are all T-nonterminals (Ošmera, Popelka &
Pivoňka, 2006).

mod 4 = 0

mod 1 = 0

mod 10 = 2

mod 4 = 1

mod 3 = 2

mod 4 = 3

mod 4 = 2

mod 4 = 1

mod 4 = 3

mod 4 = 0

mod 1 = 0

mod 10 = 3

mod 4 = 3

mod 3 = 1

mod 4 = 1

mod 4 = 2

42

37

7

16

27

63

19

13

17

38

8

78

22

45

11

23

Chromosome Rule selection

<fnc>(<expr >, <expr>)

<fnc>(<expr >, <fnc>(<expr>))

<fnc>(<expr >, <fnc>(<fnc>(<num>, <expr>)))

<fnc>(<expr >, <fnc>(<fnc>(<num >, <var>)))

<fnc>(<expr >, <fnc>(<fnc>(<num>, x)))

<fnc>(<expr >, <fnc>(<fnc>(3, x)))

<fnc>(<expr >, <fnc>(•(3, x)))

<fnc>(<expr >, sin (•(3, x)))

<fnc>(<fnc>(<expr>), sin(•(3, x)))

<fnc>(<fnc>(<fnc>(<num>, <expr>)), sin(•(3, x)))

<fnc>(<fnc>(<fnc>(<num>, <var>)), sin(•(3, x)))

<fnc>(<fnc>(<fnc>(<num>, x), sin(•(3, x)))

<fnc>(<fnc>(<fnc>(2, x)), sin(•(3, x)))

<fnc>(<fnc>(+(2, x)), sin(•(3, x)))

<fnc>(cos(+(2,x)), sin(•(3, x)))

•(cos(+(2,x)), sin(•(3, x)))

State of the solution – nonterminals in

italics will be replaced , bold

nonterminals are new

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

N

N

N

N

T

T

T

T

N

N

N

T

T

T

T

T

B

B

B

B

E

I

E

E

B

B

B

E

I

E

E

E

Type of selected rule

Gene mark

Block pairs

Fig. 4. Translation of an expression (equation (4)) using the backward processing algorithm

Now that we are able to determine type of the rule used, we can define gene marks. In step c)
at figure 4 a <expr> non-terminal is translated into a <fnc>(<num>, <expr>) expression.
This is further translated until step g), where it becomes 3 x⋅ . In other words – in step c) we
knew that the solution will contain a function with two arguments; in step g) we realized
that it is multiplication with arguments 3 and x. The important feature of backward
processing algorithm that all genes which define this sub-expression including all its’
parameters are in a single uninterrupted block of genes. To explicitly mark this block we use
Block marking algorithm which marks:
- all genes used to select N-rule with mark B (Begin)
- all genes used to select T-rule except the last one with mark I (Inside)
- all genes used to select last T-rule of currently processed rule with mark E (End).
The B and E marks determine begin and end of logical blocks generated by the grammar. This
works independent of the structure generated provided that the grammar consists only of
N-nonterminals and T-nonterminals. These logical blocks can then be exchanged the same
way as in genetic programming (figure 5) (Francone et al, 1999).
Compared to genetic programing, all the genetic algorithm operations are still performed on
the genome (chromosome) and not on the actual solution. This solves the second problem
described in section 2.2 – the generation of syntactically incorrect solutions. Also the

www.intechopen.com

 Advances in Computer Science and Engineering

24

problem of lowered variability is solved since we can always insert or remove genes in case
we need to remove or add parts of the solution. This algorithm also solves analogical
problems existing in standard grammatical evolution (O’Neill et al, 2001).

42

37

7

16

27

63

19

13

17

38

8

78

22

45

11

23

B

B

B

B

E

I

E

E

B

B

B

E

I

E

E

E

42

37

7

16

27

63

19

13

17

38

8

78

22

45

11

23

B

B

B

B

E

I

E

E

B

B

B

E

I

E

E

E

16

27

38

8

78

22

45

B

B

E

I

E

1. parent
cos(2 + x) · sin(3 · x)

2. parent
cos(2 + x) · sin(3 · x)

B

E

1. parent part
x

2. parent part

2 + x

42

37

7

38

8

78

22

45

63

19

13

17

38

8

78

22

45

11

23

B

B

B

B

B

E

I

E

I

E

E

B

B

B

E

I

E

E

E

42

37

7

16

27

63

19

13

17

16

27

11

23

B

B

B

B

E

I

E

E

B

B

E

E

E

1. child
cos(2 + x) · sin(3 · (2 + x))

2. child
cos (x) · sin(3 · x)

Fig. 5. Example of crossing over two chromosomes with marked genes

The backward processing algorithm of two-level grammatical evolution provides same results as
original grammatical evolution. However in the underlying genetic algorithm, the genes
that are involved in processing a single rule of grammar are grouped together. This
grouping results in greater stability of solutions during crossover and mutation operations
and better performance (Ošmera & Popelka, 2006). An alternative to this algorithm is Gene
expression programming method (Cândida Ferreira, 2006b) which solves the same problem
but is quite limited in the form of grammar which can be used.

3.2 Second level generation in two-level grammatical evolution

Furthermore, we modified grammatical evolution to separate structure generation and
parameters optimization (Popelka, 2007). This is motivated by poor performance of
grammatical evolution when optimizing parameters, especially real numbers (Dempsey et
al., 2007). With this approach, we use grammatical evolution to generate complex structures.
Instead of immediately generating the resulting string (as defined by the grammar), we store

www.intechopen.com

Automatic Generation of Programs

25

the parse tree of the structure and use it in second level of optimization. For this second
level of optimization, a Differential evolution algorithm (Price, 1999) is used. This greatly
improves the performance of GE, especially when real numbers are required (Popelka &
Šťastný, 2007)

Initialization

Fitness computation

Desired fitness
reached ?

Selection

Crossover

Mutation

No

Yes

Finish

Translate chromosome

Differential evolution

Fitness computation

Desired fitness
reached ?

Crossover +
Selection

No

Initialization

Yes

Fitness computation

Apply to all

individuals

Are there any variables to
be optimized ?

No

Yes

Fig. 6. Flowchart of two-level grammatical evolution

The first level of the optimization is performed using grammatical evolution. According to
the grammar, the output can be a function containing variables (x in our case); and instead
of directly generating numbers using the <num> nonterminal we add several symbolic
constants (a, b, c) into to grammar. The solution expression cannot be evaluated and
assigned a fitness value since the values of symbolic constants are unknown. In order to
evaluate the generated function a secondary optimization has to be performed to find values
for constants. Input for the second-level of optimization is the function with symbolic
constants which is transformed to a vector of variables. These variables are optimized using
the differential evolution and the output is a vector of optimal values for symbolic constants
for a given solution. Technically in each grammatical evolution cycle there are hundreds of
differential evolution cycles executed. These optimize numeric parameters of each generated
individual (Popelka, 2007). Figure 6 shows the schematic flowchart of the two-level
grammatical evolution.

www.intechopen.com

 Advances in Computer Science and Engineering

26

3.3 Deformation grammars

Apart from generating the solution we also need to be able to read and interpret the
solutions (section 4.2). For this task a syntactic analysis is used. Syntactic analysis is a
process which decides if the string belongs to a language generated by a given grammar,
this can be used for example for object recognition (Šťastný & Minařík, 2006). It is possible to
use:
- Regular grammar – Deterministic finite state automaton is sufficient to analyse regular

grammar. This automaton is usually very simple in hardware and software realization.
- Context-free grammar – To analyse context-free grammar a nondeterministic finite state

automaton with stack is generally required.
- Context grammar – “Useful and sensible” syntactic analysis can be done with context-

free grammar with controlled re-writing.
There are two basic methods of syntactic analysis:
- Bottom-up parsing – We begin from analysed string to initial symbol. The analysis begins

with empty stack. In case of successful acceptance only initial symbol remains in the
stack, e.g. Cocke-Younger-Kasami algorithm (Kasami, 1965), which grants that the time
of analysis is proportional to third power of string length;

- Top-down parsing – We begin from initial symbol and we are trying to generate analysed
string. String generated so far is saved in the stack. Every time a terminal symbol
appears on the top of the stack, it is compared to actual input symbol of the analysed
string. If symbols are identical, the terminal symbol is removed from the top of the
stack. If not, the algorithm returns to a point where a different rule can be chosen (e.g.
with help of backtracking). Example of top down parser is Earley’s Parser (Aycock &
Horspool, 2002), which executes all ways of analysis to combine gained partial results.
The time of analysis is proportional to third power of string length; in case of
unambiguous grammars the time is only quadratic. This algorithm was used in
simulation environment.

When designing a syntactic analyser, it is useful to assume random influences, e.g. image
deformation. This can be done in several ways. For example, the rules of given grammar can
be created with rules, which generate alternative string, or for object recognition it is
possible to use some of the methods for determination of distance between attribute
description of images (string metric). Finally, deformation grammars can be used.
Methods for determination of distance between attribute descriptions of images (string
metric) determine the distance between attribute descriptions of images, i.e. the distance
between strings which correspond to the unknown object and the object class patterns.
Further, determined distances are analysed and the recognized object belongs to the class
from which the string has the shortest distance. Specific methods (Levenshtein distance
Ld(s, t), Needleman-Wunsch method) can be used to determine the distance between
attribute descriptions of image (Gusfield, 1997).
Results of these methods are mentioned e.g. in (Minařík, Šťastný & Popelka, 2008). If the
parameters of these methods are correctly set, these methods provide good rate of successful
identified objects with excellent classification speed. However, false object recognition or
non-recognized objects can occur.
From the previous paragraphs it is clear that recognition of non-deformed objects with
structural method is without problems, it offers excellent speed and 100% classification rate.
However, recognition of randomly deformed objects is nearly impossible. If we conduct
syntactic analysis of a string which describes a structural deformed object, it will apparently

www.intechopen.com

Automatic Generation of Programs

27

not be classified into a given class because of its structural deformation. Further, there are
some methods which use structural description and are capable of recognizing randomly
deformed objects with good rate of classification and speed.
The solution to improve the rate of classification is to enhance the original grammar with
rules which describe errors – deformation rules, which cover up every possible random
deformation of object. Then the task is changed to finding a non-deformed string, which
distance from analysed string is minimal. Compared to the previous method, this is more
informed method because it uses all available knowledge about the classification targets – it
uses grammar. Original grammar may be regular or context-free, enhanced grammar is
always context-free and also ambiguous, so the syntactic analysis, according to the
enhanced grammar, will be more complex.
Enhanced deformation grammar is designed to reliably generate all possible deformations of
strings (objects) which can occur. Input is context-free or regular grammar G = (VN, VT, P,
S). Output of the processing is enhanced deformation grammar G’ = (VN’, VT’, P’, S’), where P’
is set of weighted rules. The generation process can be described using the following steps:
Step1:

 { } { }’ ’N N B TV V S E b V= ∈∪ ∪ │ (5)

 ’
T TV V⊆ (6)

Step 2:
If holds:

 ’ ’
0 1 1 2 1 1... ; 0; ; 1,2,..., ; 0,1,...,m m m N i TA b b b m V b V i m l mα α α α α−→ ≥ ∈ ∧ ∈ = = (7)

Then add new rule into P’ with weight 0:

 0 1 1 2 1...b b m bm mA E E Eα α α α−→ (8)

Step 3:
Into P’add the rules in table 1 with weight according to chosen metric. In this example
Levenshtein distance is used. In the table header L is Levenshtein distance, w is weighted
Levenshtein distance and W is weighted metric.

Rule L w W Rule for

’S S→ 0 0 0 -

’S Sa→ 1 lw ’()I a ’
Ta V∈

aE a→ 0 0 0 Ta V∈

aE b→ 1 Sw (,)S a b ’, ,T Ta V b V a b∈ ∈ ≠

aE δ→ 1 Dw ()D a Ta V∈

a aE bE→ 1 lw (,)I a b ’,T Ta V b V∈ ∈

Table 1. Rules of enhanced deformation grammar

These types of rules are called deformation rules. Syntactic analyser with error correction
works with enhanced deformation grammar. This analyser seeks out such deformation of

www.intechopen.com

 Advances in Computer Science and Engineering

28

input string, which is linked with the smallest sum of weight of deformation rules. G’ is
ambiguous grammar, i.e. its syntactic analysis is more complicated. A modified Earley
parser can be used for syntactic analyses with error correction. Moreover, this parser
accumulates appropriate weight of rules which were used in deformed string derivation
according to the grammar G’.

3.4 Modified Early algorithm

Modified Early parser accumulates weights of rules during the process of analysis so that
the deformation grammar is correctly analysed (Minařík, Šťastný & Popelka, 2008). The
input of the algorithms is enhanced deformation grammar G’ and input string w.

 1 2 ... _w b b b m= (9)

Output of the algorithm is lists 0 1, ,... mI I I for string w (equation 9) and distance d of input
string from a template string defined by the grammar.
Step 1 of the algorithm – create list 0I . For every rule ’ ’S Pα→ ∈ add into 0I field:

 []’ ,0,S xα→⋅ (10)

Execute until it is possible to add fields into 0I . If

 [],0,A B yβ→⋅ (11)

is in 0I field then add

 []field ,0,
Z

B B zγ γ→ →⋅ (12)

into 0I .
Step 2: Repeat for 1,2,...,j m= the following sub-steps A – C:
a. for every field in 1jI − in form of [], ,B a i xα β→ ⋅ such that ja b= , add the field

 [], ,B a i xα β→ ⋅ (13)

into jI . Then execute sub-steps B and C until no more fields can be added into jI .
b. If field [], ,A i xα→ ⋅ is in jI and field [], ,B A k yβ γ→ ⋅ in jI , then

a. If exists a field in form of [], ,B A k zβ γ→ ⋅ in jI , and then if x+y < z, do replace
the value z with value x + y in this field

b. If such field does not exist, then add new field [], , B A k x yβ γ→ ⋅ +
c. For every field in form of [], ,A B i xα β→ ⋅ in jI do add a field [], ,B j zγ→⋅ for every

rule

Z

B γ→ (14)
Step 3: If the field

 []’ ,0,S xα→ ⋅ (15)

is in mI , then string w is accepted with distance weight x. String w (or its derivation tree) is
obtained by omitting all deformation rules from derivation of string w.

www.intechopen.com

Automatic Generation of Programs

29

Designed deformation grammar reliably generates all possible variants of randomly
deformed object or string. It enables to use some of the basic methods of syntactic analysis
for randomly deformed objects. Compared to methods for computing the distance between
attribute descriptions of objects it is more computationally complex. Its effectiveness
depends on effectiveness of the used parser or its implementation respectively. This parses
is significantly are more complex than the implementation of methods for simple distance
measurement between attribute descriptions (such as Levenshtein distance).
However, if it is used correctly, it does not produce false object recognition, which is the
greatest advantage of this method. It is only necessary to choose proper length of words
describing recognized objects. If the length of words is too short, excessive deformation (by
applying only a few deformation rules) may occur, which can lead to occurrence of
description of completely different object. If the length is sufficient (approximately 20% of
deformed symbols in words longer than 10 symbols), this method gives correct result and
false object recognition will not occur at all.
Although deformed grammars were developed mainly for object recognition (where an
object is represented by a string of primitives), it has a wider use. The main feature is that it
can somehow adapt to new strings and it can be an answer to the problem described in
section 4.2.

4. Experiments

The goal of automatic generation of programs is to create a valid source code of a program,
which will solve a given problem. Each individual of a genetic algorithm is therefore one
variant the program. Evaluation of an individual involves compilation (and building) of the
source code, running the program and inputting the test values. Fitness function then
compares the actual results of the running program with learning data and returns the
fitness value. It is obvious that the evaluation of fitness becomes very time intensive
operation. For the tests we have chosen the PHP language for several reasons. Firstly it is an
interpreted language which greatly simplifies the evaluation of a program since compiling
and building can be skipped. Secondly a PHP code can be interpreted easily as a string
using either command line or library API call, which simplified implementation of the
fitness function into our system. Last but not least, PHP is a very popular language with
many tools available for programmers.

4.1 Generating simple functions

When testing the two-level grammatical evolution algorithm we stared with very simple
functions and a very limited grammar:
<statement> ::= <begin><statement><statement> |
 <if><condition><statement> |
 <function><expression><expression> |
 <assign><var><expression>
<expression> ::= <function><expression> |
 <const> |
 <var> |
 <function><expression><expression>
<condition> ::= <operator><expression><expression>
<operator> ::= < | > | != | == | >= | <=

www.intechopen.com

 Advances in Computer Science and Engineering

30

<var> ::= $a | $b | $result
<const> ::= 0 | 1| -1
<function> ::= + | - | * | /
<begin> ::= {}
<if> ::= if {}
<assign> ::= =
This grammar represents a very limited subset of the PHP language grammar (Salsi, 2007)
or (Zend, 2010). To further simplify the task, the actual generated source code was only a
body of a function. Before the body of the function, a header is inserted, which defines the
function name, number and names of its arguments. After the function body, the return
command is inserted. After the complete function definition, a few function calls with
learning data are inserted. The whole product is then passed to PHP interpreter and the text
result is compared with expected results according to given learning data.
The simplest experiment was to generate function to compute absolute value of a number
(without using the abs() function). The input for this function is one integer number; output
is absolute value of that number. The following set of training patterns was used:
P = {(−3, 3); (43, 43); (3, 3); (123, 123); (−345, 345); (−8, 8); (−11, 11); (0, 0)}.
Fitness function is implemented so that for each pattern it assigns points according to
achieved result (result is assigned, result is number, result is not negative, result is equal to
training value). Sum of the points then represents the achieved fitness. Following are two
selected examples of generated functions:
function absge($a) {
 $result = null;
 $result = $a;
 if (($a) <= (((-(-((-($result)) + ((-($a)) - (1))))) - (-1)) - (0))) {
 $result = -($result);
 }
 return $result;
}
function absge($a) {
 $result = null;
 $result = -($a);
 if ((-($result)) >= (1)) {
 $result = $a;
 };
return $result;
}
While the result looks unintelligible, it must be noted that this piece of source code is correct
algorithm. The last line and first two lines are the mandatory header which was added
automatically for the fitness evaluation. Apart from that it has not been processed, it is also
important to note that it was generated in all 20 runs from only eight sample values in
average of 47.6 population cycles (population size was 300 individuals).
Another example is a classic function for comparing two integers. Input values are two
integer numbers a and b. Output value is integer c, which meets the conditions c > 0, for a >
b; c = 0, for a = b; c < 0, for a < b. Training data is a set of triples (a, b, c):
P = {(−3, 5,−1); (43, 0, 1); (8, 8, 0); (3, 4,−1); (−3,−4, 1);}

www.intechopen.com

Automatic Generation of Programs

31

The values intentionally do not correspond to the usual implementation of this function: c =
a − b. Also the fitness function checks only if c satisfies the conditions and not if the actual
value is equal, thus the search space is open for many possible solutions. An example
solution is:
function comparege($a, $b) {
 $result = null;
 if ((($a) - (($b) * (-(($result) / (1))))) <= ($result)) {{
 $result = 0;
 $result = $b;
 }}
 $result = ($b) - ($a);;
 $result = -($result);;
 return $result;
}
The environment was the same like in the first example; generation took 75.1 population
cycles on average. Although these tests are quite successful, it is obvious, that this is not
very practical.
For each simple automatically generated function a programmer would need to specify a
very specific test, function header, function footer. Tests for genetic algorithms need to be
specific in the values they return. A fitness function which would return just “yes” or “no”
is insufficient in navigating the genetic algorithm in the state space – such function cannot
be properly optimized. The exact granularity of the fitness function values is unknown, but
as little as 5 values can be sufficient if they are evenly distributed (as shown in the first
example in this section).

4.2 Generating classes and methods

To make this system described above practical, we had to use standardized tests and not
custom made fitness functions. Also we wanted to use object oriented programming,
because it is necessary to keep the code complexity very low. Therefore we need to stick
with the paradigm of small simple “black box” objects. This is a necessity and sometimes an
advantage. Such well-defined objects are more reliable, but it is a bit harder to maintain their
connections (Büchi & Weck, 1999).
Writing class tests before the actual source code is already a generally recognized approach
– test-driven development. In test-driven development, programmers start off by writing tests
for the class they are going to create. Once the tests are written, the class is implemented and
tested. If all tests pass, a coverage analysis is performed to check whether the tests do cover
all the newly written source code (Beck, 2002). An example of a simple test using PHPUnit
testing framework:
class BankAccountTest extends PHPUnit_Framework_TestCase {
 protected $ba;
 protected function setUp() {
 $this->ba = new BankAccount;
 }
 public function testBalanceIsInitiallyZero() {
 $this->assertEquals(0, $this->ba->getBalance());
 }

www.intechopen.com

 Advances in Computer Science and Engineering

32

 public function testBalanceCannotBecomeNegative() {
 try {
 $this->ba->withdrawMoney(1);
 }
 catch (BankAccountException $e) {
 $this->assertEquals(0, $this->ba->getBalance());
 return;
 }
 $this->fail();
 }
 ...
}
The advantage of modern unit testing framework is that it is possible to create class skeleton
(template) from the test. From the above test, the following code can be easily generated:
class BankAccount {
 public function depositMoney() {}
 public function getBalance() {}
 public function withdrawMoney() {}
}
Now we can use a PHP parser to read the class skeleton and import it as a template
grammar rule into grammatical evolution. This task is not as easy as it might seem. The class
declaration is incomplete – it is missing function parameters and private members of the
class.
Function parameters can be determined from the tests by static code analysis, provided that
we refrain from variable function parameters. Function parameter completion can be solved
by extending the PHPUnit framework. Private members completion is more problematic,
since it should be always unknown to the unit test (per the black box principle). Currently
we created grammar rule for grammatical evolution by hand. In future, however, we would
like to use deformed grammar (as described in section 3.3) to derive initial rule for
grammatical evolution. We use <class_declaration_statement> as starting symbol, then we
can define first (and only) rewriting rule for that symbol as (in EBNF notation):

<class_declaration_statement> :==
 “class BankAccount {“ <class_variable_declarations>
 “public function depositMoney(“<variable_without_objects>”) {“
 <statement_list>
 “}
 public function getBalance() {“
 <statement_list>
 “}
 public function withdrawMoney(“<variable_without_objects>”) {“
 <statement_list
 “}
 }”
This way we obtain the class declaration generated by the unit test, plus space for private
class members (only variables in this case) and function parameters. It is important to note
that the grammar used to generate a functional class needs at least about 20 production rules

www.intechopen.com

Automatic Generation of Programs

33

(compared to approximately 10 in the first example). This way we obtain grammar to
generate example class BankAccount. This can now be fed to the unit test, which will return
number of errors and failures.
This experiment was only half successful. We used the concrete grammar described above –
that is grammar specifically designed to generate BankAccount class with all its’ public
methods. Within average of 65.6 generations (300 individuals in generation) we were able to
create individuals without errors (using only initialized variables, without infinite loops,
etc.). Then the algorithm remained in local minimum and failed to find a solution with
functionally correct method bodies.
After some investigation, we are confident that the problem lies in the return statement of a
function. We have analyzed hundreds of solution and found that the correct code is present,
but is preceded with return statement which exits from the function. The solution is to use
predefined function footer and completely stop using the return statement (as described in
section 4.1). This however requires further refinement of the grammar, and again
deformation grammars might be the answer. We are also confident that similar problems
will occur with other control-flow statements.
We have also tested a very generic production rules, such as:
<class_declaration_statement> :== “class BankAccount {“ {<class_statement>} “}”
<class_statement> :== <visibility_modifier> “function (“<parameter_list>”){“
 <statement_list> “}”
 | <visibility_modifier> <variable_without_objects> “;”
 ...
When such generic rules were used, no solution without errors was found within 150
allowed generations. This was expected as the variability of solutions and state space
complexity rises extremely quickly.

5. Conclusion

In this chapter, we have presented several methods and concepts suitable for code evolution a
fully automated generation of working source code using evolutionary algorithms. In the
above paragraphs, we described how code evolution could work together with code
generation. Code generation tools can be used to create a skeleton or template for an
application, while code evolution can fill in the actual algorithms. This way, the actual
generated functions can be kept short enough, so that the code evolution is finished within
reasonable time.
Our long term goal is to create a tool which would be capable of generating some code from
unit tests. This can have two practical applications – creating application prototypes and
crosschecking the tests. This former is the case where the code quality is not an issue. What
matters most is that the code is created with as little effort (money) as possible. The latter is
the case where a programmer would like to know what additional possible errors might
arise from a class.
The method we focused on in this chapter is unique in that its’ output is completely
controlled by a context-free grammar. Therefore this method is very flexible and without
any problems or modifications it can be used to generate programs in mainstream
programing languages. We also tried to completely remove the fitness function of the
genetic algorithm and replace it with standardized unit-tests. This can then be thought of as
an extreme form of test-driven development.

www.intechopen.com

 Advances in Computer Science and Engineering

34

6. Acknowledgement

This work was supported by the grants: MSM 6215648904/03 and IG1100791 Research
design of Mendel Univeristy in Brno.

7. References

Ahluwalia, M. & Bull, L. (1998). Co-evolving functions in genetic programming: Dynamic
ADF creation using GliB, Proceedings of Evolutionary Programming VII - 7th
International Conference, EP98 San Diego. LNCS Volume 1447/1998, Springer, ISBN-
13: 978-3540648918, USA

Aycock, J. & Horspool, R.N. (2002). Practical Early Parsing, The Computer Journal, Vol. 45,
No. 6, British Computer Society, pp. 620-630, DOI: 45:6:620-630

Beck, K. (2002). Test Driven Development: By Example, Addison-Wesley Professional, 240
p., ISBN 978-0321146533, USA

Büchi, M., Weck, W. (1999). The Greybox Approach: When Blackbox Specifications Hide
Too Much, Technical Report: TUCS-TR-297, Turku Centre for Computer Science,
Finland

Cândida Ferreira (2006a). Automatically Defined Functions in Gene Expression
Programming in Genetic Systems Programming: Theory and Experiences, Studies in
Computational Intelligence, Vol. 13, pp. 21-56, Springer, USA

Cândida Ferreira (2006b). Gene Expression Programming: Mathematical Modelling by an
Artificial Intelligence (Studies in Computational Intelligence), Springer, ISBN 978-
3540327967, USA

Czarnecki, K. & Eisenecker, U. (2000). Generative Programming: Methods, Tools, and
Applications, Addison-Wesley Professional, ISBN 978-0201309775, Canada

Dempsey, I., O’Neill, M. & Brabazon, A. (2007). Constant creation in grammatical evolution,
Innovative Computing and Applications, Vol. 1, No.1, pp. 23–38

Francone, D. F, Conrads, M., Banzhaf, W. & Nordin, P. (1999). Homologous Crossover in
Genetic Programming, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pp. 1021–1026. ISBN 1-55860-611-4, Orlando, USA

Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Competent
 Genetic Algorithms. Kluwer Academic Publishers, 272 p. ISBN 1-4020-7098-5,

Boston, USA
Gunter, C. A. & Mitchell, J. C. (1994). Theoretical Aspects of Object-Oriented Programming:

Types, Semantics, and Language Design, The MIT Press, ISBN 978-0262071550,
Cambridge, Massachusetts, USA

Gusfield, D. (1997). Gusfield, Dan (1997). Algorithms on strings, trees, and sequences: computer
science and computational biology, Cambridge University Press. ISBN 0-521-58519-8.
Cambridge, UK

Kasami, T. (1965). An efficient recognition and syntax-analysis algorithm for context-free
languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab,
Bedford, MA, USA

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection, The MIT Press, ISBN 978-0262111706, Cambridge, Massachusetts, USA

Koza, J. R. (1994). Gene Duplication to Enable Genetic Programming to Concurrently Evolve
Both the Architecture and Work-Performing Steps of a Computer Program, IJCAI-

www.intechopen.com

Automatic Generation of Programs

35

95 – Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
Vol. 1, pp. 734-740, Morgan Kaufmann, 20-25 August 1995, USA

Koza, J.R. et al (2003). Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Springer, 624 p., ISBN 978-1402074462, USA

Laddad, R. (2009). Aspectj in Action: Enterprise AOP with Spring Applications, Manning
Publications, ISBN 978-1933988054, Greenwich, Connecticut, USA

Mitchell, M. (1999). An Introduction to Genetic Algorithms, MIT Press, 162 p. ISBN 0-262-
63185-7, Cambridge MA, USA

Minařík, M., Šťastný, J. & Popelka, O. (2008). A Brief Introduction to Recognition of
Deformed Objects, Proceedings of International Conference on Soft Computing Applied
in Computer and Economic Environment ICSC, pp.191-198, ISBN 978-80-7314-134-9,
Kunovice, Czech Republic

O’Neill, M. & Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Programming in
an Arbitrary Language, Springer, ISBN 978-1402074448, Norwell, Massachusetts,
USA

O'Neill, M., Ryan, C., Keijzer, M. & Cattolico, M. (2001). Crossover in Grammatical
Evolution: The Search Continues, Proceedings of the European Conference on
Genetic Programming (EuroGP), pp. 337–347, ISBN 3-540-41899-7, Lake Como,
Italy

Ošmera P. & Popelka O. (2006). The Automatic Generation of Programs with Parallel
Grammatical Evolution, Proceedings of: 13th Zittau Fuzzy Colloquium, Zittau,
Germany, pp. 332-339

Ošmera P., Popelka O. & Pivoňka P. (2006). Parallel Grammatical Evolution with Backward
Processing, Proceedings of ICARCV 2006, 9th International Conference on Control,
Automation, Robotics and Vision, pp. 1889-1894, ISBN 978-1-4244-0341-7, Singapore,
December 2006, IEEE Press, Singapore

Patterson, N. & Livesey, M. (1997). Evolving caching algorithms in C by genetic
programming, Proceedings of Genetic Programming 1997, pp. 262-267, San
Francisco, California, USA, Morgan Kaufmann

Poli, R. (2002). Automatic generation of programs: An overview of Lyee methodology,
Proceedings of 6th world multiconference on systemics, cybernetics and informatics, vol. I,
proceedings - information systems development I, pp. 506-511, Orlando, Florida,
USA, July 2002

Popelka O. (2007). Two-level optimization using parallel grammatical evolution and
differential evolution. Proceedings of MENDEL 2007, International Conference on Soft
Computing, Praha, Czech Republic. pp. 88-92. ISBN 978-80-214-3473-8., August 2007

Popelka, O. & Šťastný, J. (2007). Generation of mathematic models for environmental data
analysis. Management si Inginerie Economica. Vol. 6, No. 2A, 61-66. ISSN 1583-624X.

Price, K. (1999). An Introduction to Differential Evolution. In: New Ideas in Optimization.
Corne D., Dorigo, M. & Glover, F. (ed.) McGraw-Hill, London (UK), 79–108, ISBN
007-709506-5.

Salsi, U. (2007). PHP 5.2.0 EBNF Syntax, online: http://www.icosaedro.it/articoli/php-
syntax-ebnf.txt

Smith, D. R. (1999). Mechanizing the development of software, In: Nato Advanced Science
Institutes Series, Broy M. & Steinbruggen R. (Ed.), 251-292, IOS Press, ISBN 90-5199-
459-1

www.intechopen.com

 Advances in Computer Science and Engineering

36

Šťastný, J. & Minařík, M. (2006). Object Recognition by Means of New Algorithms,
Proceedings of International Conference on Soft Computing Applied in Computer and
Economic Environment ICSC, pp. 99-104, ISBN 80-7314-084-5, Kunovice, Czech
Republic

TIOBE Software (2010). TIOBE Programming Community Index for June 2010, online:
http://www.tiobe.com/index.php/content/paperinfo/tpci/

Wong M. L. & Leung K. S. (1995) Applying logic grammars to induce sub-functions in
genetic programming, Proceedings of 1995 IEEE International Conference on
Evolutionary Computation (ICEC 95), pp. 737-740, ISBN 0-7803-2759-4, Perth,
Australia, November 1995, IEEE Press

Zend Technologies (2010). Zend Engine – Zend Language Parser, online:
http://svn.php.net/repository/php/php src/trunk/Zend/zend_language_parser.y

www.intechopen.com

Advances in Computer Science and Engineering

Edited by Dr. Matthias Schmidt

ISBN 978-953-307-173-2

Hard cover, 462 pages

Publisher InTech

Published online 22, March, 2011

Published in print edition March, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters

written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of

Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and

Applications and Advances in Applied Modeling.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ondřej Popelka and Jiří Štastný (2011). Automatic Generation of Programs, Advances in Computer Science

and Engineering, Dr. Matthias Schmidt (Ed.), ISBN: 978-953-307-173-2, InTech, Available from:

http://www.intechopen.com/books/advances-in-computer-science-and-engineering/automatic-generation-of-

programs

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

