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1. Introduction 

As high-speed networking technology has progressed, the current network environment 
comprises many applications. However, many users still feel uncertain about these network 
applications due to security issues. Intrusion detection and prevention systems (IDS/IPS) 
are designed to detect and identify diverse threats over the network, such as worms, virus, 
spyware, and malicious codes, by performing deep packet inspection on packet payloads. 
Deep packet inspection is used to perform various processing operations in the entire 
packet, including the header and payload. Therefore, searching keywords in each traffic 
stream forms a bottleneck. That is, string matching is always an important issue as well as 
significant challenge in high speed network processing. For instance, Snort (Roesch, 1999), 
the most famous and popular open source IDS, takes over 2,500 patterns as signatures and 
takes more than 80% of CPU time for pattern matching. Thus, IDS need an efficient pattern 
matching algorithm or other mechanisms to speed up this key operation. Otherwise, an 
under-performing system not only becomes the network bottleneck but also misses some 
critical attacks. 
Pattern matching algorithms have been studied for a long time, such algorithms include the 
Boyer Moore algorithm which solves single-pattern matching problem (Boyer & Moore, 
1977) and the Aho-Corasick (AC) (Aho & Corasick, 1975) and Wu-Manber (Wu & Manber, 
1994) algorithms, which solve multi-pattern string-matching problems. Research in this field 
has recently become popular again owing to the requirements for processing packets, 
especially for deep packet inspection applications. Various new concepts and algorithms 
have been proposed and implemented, such as Bitmap AC (Tuck et al., 2004), parallel 
bloom-filter (Dharmapurikar et al., 2004), reconfigure silicon hardware (Moscola et al., 2003) 
and TCAM-based mechanism (Yu et al., 2004). 
Implementations of IDS can be categorized into hardware-based approaches and software-
based approaches. The design concept for data structures and algorithms are usually 
different for these two implementations. The hardware approach is often used for network-
based IDS, which is usually placed in the entrance of a local area network (LAN) and is 
responsible for scanning suspicious packets through it. Most of them store the famous Snort 
signatures, which are the collection of the characteristic of many network attacks, in the 
database to perform pattern matching. In order to process packets quickly and flexibly, 
parallel processing is the main architecture employed for network processing. The network 
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processor (NP) is the most representative of these implementations. However, traditional 
network processors still suffer from poor performance and high cost when perform deep 
packet inspection, even though applying network processors for pattern matching has been 
proposed (Liu et al., 2004). Hence, many network security chip vendors have released 
special-purpose silicon products for accelerating the work of pattern matching. 
Nevertheless, such solutions are always expensive because of insufficient sales volume in 
the market. 
On the other hand, software-based solutions, such as anti-virus software, personal firewalls, 
are very popular, especially in personal computers and servers. According to the reports, 
the security software market in Asia/Pacific (excluding Japan) is expect to grow up to over 
$US1100 millions in 2007 (IDC, 2006, Asia) and the market in Japan will also reach $US1927 
million in 2010 (IDC, 2006, Japan), respectively. In terms of software, pattern matching is 
still necessary to detect network intrusion or to scan suspicious files. Form example, some 
famous network security software, such as Norton anti-virus, Trend-Micro pc-cillin, and 
Kaspersky anti-virus, have implemented the intrusion detection component in it. That is, 
host-based IDS becomes more and more common nowadays. However, the task of pattern 
matching slows down the system performance significantly because there is no additional 
hardware for accelerating. The problem is more crucial for servers, which often have to 
handle hundreds to thousands of connections simultaneously. 
This study has found that graphics processors could constitute a solution for end hosts to 
perform pattern matching efficiently. With the parallel nature of graphics processors, the 
performance of pattern matching is greatly improved, even outperforms some previous 
hardware solutions. The personal computer has now become a standard consumer 
electronic device, particularly because of its ability to play PC/TV games, which 
increasingly require 3D processing. Players now demand for real-time, smooth and vivid 
frame transition, leading to the rapid development of graphics related technologies. 
Graphics processors are capable of increasingly powerful computation, even surpassing that 
of general processors in floating point computation. Developers of games or multimedia can 
design their own features by programming the graphics processor. This feature also catches 
the eye of developers of software other than games or graphics. Non-graphics applications 
using the programming power of graphics processors are called General-Purpose 
Computations on Graphics Processor Units (GPGPU).  
This study proposes a novel approach and architecture to speed up pattern matching by 
using the GPUs. GPU is also capable of processing network traffic of multiple sessions in 
parallel. The contributions of this study can be summarized as follows:  
• Generic: The proposed architecture is generic, and can be integrated with other systems 

accelerating pattern matching, such as network security system or content-intuitive 
systems. 

• Economics: The GPUs are commodity and cost-effective. For example, the solution 
using NVIDIA GeForce 6800GT (NVIDIA GeForce 6800, 2005) costs 1/10 of other 
silicon solutions with the same performance. 

• Effective Utilization: In general, the graphics processing sub-system is often idle in a 
PC. The computation power of GPU is not always fully utilized even when running 
games and other GPU-consuming applications. Hence, using a GPU to reduce the 
system load when performing pattern matching computations, such as virus scans or 
intrusion prevention, or using a GPU as a co-processor, could improve the performance 
of systems or applications. 
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Fig. 1. NVIDIA GeForce 7900 GTX architecture 

• High Performance: This study demonstrates that the proposed concept and mechanism 
work well. Experimental results indicate that the performance of the proposed 
mechanism (programming the GPUs by OpenGL Application Program Interface 
(Wright & Sweet, 2000)) is almost thrice that of a system using only a general processor 
(CPU). Moreover, considering a system environment designed for GPUs, the proposed 
system could reach 6.4Gbps throughput, and costs under $400 overall.  

The rest of this chapter is organized as follows. Section 2 provides related research 
concerning pattern matching and GPU architecture. The architecture and operation of the 
proposed GPU-based pattern matching mechanism are presented in Section 3. Section 4 
focuses on the performance evaluation, and provides a complete performance analysis of 
the proposed system. Finally, conclusions and future work are given in Section 5. 

2. Related works 

The proposed scheme integrates the pattern matching algorithms and the computing power 
of commodity GPUs. The AC algorithm is a simple, but efficient string matching algorithm 
to locate all occurrences of a finite set of keywords in a text string. It constructs a finite state 
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automaton first by preprocessing a set of keywords and then applies that automaton to the 
input string. AC algorithm has best performance in worst case. In the following section, the 
GPU hardware architecture is described in detail since the rendering pipeline in GPUs is the 
key function in the proposed scheme. Works using GPUs for non-graphics applications are 
introduced in the end of this section. 

2.1 GPU architecture 

This section introduces the architecture and features of current GPUs. Due to market 
demand and the growth in semiconductor technology, the two major GPU suppliers, 
namely ATI (ATI Tech.) and NVIDIA (NVIDIA Corp.), are continuously improving the 
computing power of GPUs. The two currently most powerful GPUs, ATI X1900 and 
NVIDIA GeForce 7900 GTX, have hardware optimized for floating-point arithmetic. GPUs 
perform better than CPUs in many data parallel computations because of the strongly 
parallel nature of GPUs.  
Fig. 1 depicts the architecture of NVIDIA’s last flagship GPU, the GeForce7900 GTX, which 
has eight vertex shaders, 24 fragment shaders, and a core clock of 650 MHz. It uses GDDR3 
memory with a bandwidth of 51.2 Gigabytes per second and a work clock of 800 MHz. 
Unlike CPUs, today’s GPUs have higher off-chip memory clock rates than core clock rates. 
This feature can prevent the memory stall caused by heavy demand for memory access in 
shaders. For this study, the most important components in GPUs are the programmable 
vertex shaders and fragment shaders. A GPU program usually performs better with more 
vertex and fragment shaders. 
In computer graphics, the procedure that transforms the vertices, colors, and coordinates 
information into the 2D or 3D images on the screen is called rendering pipeline (Fig. 2). The 
pipeline has three major portions. The vertex shaders are at the front, followed by the 
rasterizer, with the fragment shaders at the back of the pipeline. The input of vertex shaders 
comprises geometric information, including vertices and colors. The coordinates of vertices 
are transformed to the positions rendered on screen according to the default or user-defined 
coordinate matrix. The vertex shaders then perform the lighting computation for each 
vertex, and determine their colors. The rasterizer, which is a non-programmable fixed 
function in GPUs, produces every triangle of a polygon based on the processed vertices and 
the connectivity between them (Triangle Setup), and colors every triangle linearly (Digital 
Differential Analyzer). The fragment shaders process every pixel outputted by the rasterizer, 
and generate real pixels on the screen. Those pixels that have not been processed by 
fragment shaders are also called potential pixels. The first and most important job of the 
fragment shaders is texture mapping, which map textures polygon faces. The fragment 
shaders then perform alpha, stencil, and depth test to determine whether to render or 
discard pixels. Finally, the GPU blends test results with the pixels that have been rendered 
to target. The GPU writes results to the rendering target and draw them on screen at the end 
of the rendering pipeline. The rendering target is generally a frame buffer or texture 
memory. A rendering pass is the procedure in which a collection of data passes through the 
rendering pipeline and outputs to the rendering target. 
Since the float-point computing power of GPUs grows much faster than the off-chip 
memory bandwidth (Pharr & Fernando, 2005) and the on-chip cache is small, accessing data 
from off-chip memory is rather expensive. Hence, GPUs require high arithmetic intensity.  
The number of logic operations must be maximized, whereas the amount of 
communications between GPUs and memory need to be minimized. 
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To build high performance GPU program, besides avoiding heavily access to off-chip 
memory, the data structure needs to be designed carefully to exploit the cache. The CPU 
was originally designed for general-purpose applications, and must function in different 
conditions, so has a higher control capacity than data-path capacity, making the CPU 
appropriate for sequential tasks. Conversely, a GPU is special-purpose hardware designed 
for computer graphics and has less control logic hardware than a CPU. However, GPUs are 
optimized for parallel computing. Algorithms should be designed to consider the parallel 
nature of a modern GPU to optimize a program’s performance. 
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Fig. 2. Typical 3D pipeline 

2.2 GPGPU 

GPGPU signifies General-Purpose computation on GPUs (GPGPU, Online). As discussed in 
the previous section, commodity graphics processing units are becoming increasingly 
powerful. Researchers have developed various algorithms and systems based on GPUs to 
improve the performance of CPU-oriented programs (Trancoso & Charalambous, 2005). 
Cook (Cook et al., 2005) is the first to apply GPU to cryptography. They demonstrated the 
feasibility of utilizing GPUs for cryptographic processing to offload symmetric key 
encryption from CPU, and proved that block cipher algorithms are unsuitable for 
application with GPUs. Moreover, various GPU-based pattern-matching applications are 
popular (Vasiliadis et al., 2008) (Smith, 2009) (Goyal, 2008). 
A number of works have been studied to process the stream data in a SIMD fashion. For 
instance, Lai applied Imagine Processor to Bloom Filter (Kapasi et al., 2002). However, these 
are neither implemented on a commodity GPU, nor analyzed from the viewpoint of 
computer graphics. 
Recently, Advanced Micro Devices (AMD) and ATI Technologies, which jointed together on 
October 25, 2006, has released the first GPGPU product named AMD stream processor 
(AMD Stream Processor, Online) and announced at the Supercomputing 2006 
(Supercomputing06, 2006) trade show. The AMD stream processor makes use of AMD's 
new technology called CLOSE TO METAL (CTM) to provide users a more powerful 
interface to develop applications based on GPUs. The parallel processing power of it is used 
for a wide range of applications, such as financial analysis, seismic migration analysis, and 
life sciences research, providing organizations and researchers now have the ability to 
process incredible amounts of information in significantly less time. 
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3. Packet inspection scheme using GPUs 

The proposed procedure is a parallel byte streams pattern matching scheme which is 
suitable for any automaton-based string matching algorithm. AC is a well known 
representative of automaton-based algorithm. The AC algorithm is a sequential task model, 
in which one task can process only one byte stream. This study combines several sequential 
AC tasks to form one complex task that can process multiple byte streams, each is 
independent of the others. With the task parallelism of GPU, the fragment shaders can 
match multiple byte streams with patterns simultaneously, enabling independent pattern 
matching tasks to be executed at the same time. When several fragment shaders want to 
access data in the GPU memory, GPU can provide simultaneous memory access for 
decreasing the latency of data access and achieve data parallelism because of its multiple 
memory controllers. In theory, increasing the number of fragment shaders running in GPU 
raises the number of byte streams that are processed in parallel, thus improving 
performance. Therefore, the GPU must be provided as many byte streams as possible in 
order to prevent any fragment shader in the GPU from being idle. 
The proposed approach can be applied in host-based IDS since GPU is almost available in 
every PC nowadays. It’s particularly suitable for servers, which are very common to serve 
many connections simultaneously. The proposed scheme is expected to perform better in 
the network environment if the number of concurrent sessions exceeds some threshold. The 
later performance analysis uses the Defcon9 (Defcon 9, 2001) as network packet for input 
byte streams, and uses Snort’s patterns as our patterns (Roesch, 1999). With the combination 
of the CPU and the GPU (GPU is the CPU’s co-processor), the feasibility of the proposed 
approach is analyzed. Using real network traffic and real IDS patterns in our experiment 
also demonstrates that the proposed approach is very suitable for working in a high-speed 
network environment with multiple connection sessions. 
The proposed approach is divided into three parts, namely Data Flow, Data Structure, and 
Control Flow. Data Flow transforms the original finite state automaton constructed with 
predefined patterns into another form that can be run in the GPU. That is, Data Flow must 
modify the layout of data in the CPU to fit that in the GPU. The major task of Data Flow is to 
execute the state transitions of multiple byte streams in GPUs. Data Structure is responsible 
for changing the data format between the CPU and GPU. Notably, casting operations may 
be necessary during processing due to the different data formats in GPU. Since casting 
operations decrease the throughput, an appropriate data structure must be chosen. Control 
Flow is responsible for the communication setup between the CPU and GPU. Additionally, 
Control Flow administers the overall operations of the proposed approach, and performs the 
program flow. The Control Flow constitutes the framework bottleneck, which is discussed 
later. 

3.1 Model framework 

Three data structures have to be maintained in the GPU texture memory. Automata texture is 
used to store the finite state automaton; Text texture is used to store multiple input streams, 
and State texture is employed to store the current states of input streams in the finite state 
automaton (Fig. 3). The dimensions of the Text texture and State texture are determined from 
the number of input streams in the system. For instance, if the number of input streams is 
256, then the dimensions of Text texture and State texture can be configured as 16× 16. The 
dimensions of rendering targets are set to 16× 16, and the rasterizer in the GPU maps one 
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pixel in the textures to one fragment. Therefore, the fragment shaders can process one single 
pixel in the textures (called a texel) at once. If one GPU has 16 fragment shaders, and 256 
pixels need to be processed, then each fragment shader should handle 16 pixels within one 
rendering pass. 
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Fig. 3. The block diagram of pattern matching engine 

Fig. 3 shows the flowchart of the proposed approach, which is described as follows: 
Step 1. Construct the pre-defined patterns into finite state automata. Through some 
preprocessing like basic data format and address translation, the finite state automata are 
transformed into Automata texture, which are then downloaded from system memory to 
GPU texture memory via a high speed memory bus. The Automata texture cannot be 
modified once the operation is finished. If new patterns are to be added into the finite state 
automaton, then one new finite state automaton must be re-constructed. 
Step 2. Define and allocate State texture and Text texture. The texture memory cannot be read 
and written in the meanwhile. Therefore, two state textures, Current State texture and Next 
State texture, are defined to read the current state and write the next state. 
Step 3. Program the fragment shaders in the GPU by shading language (Rost, 2009). All 
required data are stored in the texture memory. The geometry information in Fig. 3 is 
utilized only to map Text and Current State textures to the rendering target. All fragment 
shaders execute the following instructions:  
1. Obtain an input symbol from Text texture,  
2. Obtain the current state from Current State texture, and  
3. Apply the input symbol and current state as one index to obtain the next state from 

Automata texture.  
4. Write the next state into Next State texture for use in the next rendering pass. 
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Step 4. Read in and transform the streams into Text texture, then download Text texture 
from system memory to texture memory in the GPU. The fragment shaders process every 
texel in the Text texture based on the pre-defined shader instructions in Step 3. Modern 
commodity GPUs always have multiple fragments shaders. This study assumes that the 
performance of the proposed approach improves with increasing number of fragment 
shaders. The number of concurrent input streams (denoted as S) does not have to be the 
same as the number of fragment shaders (denoted as FS). However, if S < FS, then some 
fragment shaders remain idle. If S >= FS, then the hardware driver automatically 
dispatches input streams to the idle fragment shaders. The fragment shaders return the 
matching results to the system memory from the texture memory after each rendering 
pass. 

3.2 Data flow 

Programming on a GPU is very different from programming on a CPU. It is not trivial to 
write a general-purpose application on GPUs due to few supported libraries and limited 
usage of branch/logic operations. Additionally, it is not convenient to access memory like 
programming in C language. Besides temporary variables, the memory allowed to read and 
write is texture memory. However, texture memory cannot be read and written arbitrarily. 
Vertex shaders and fragment shaders can read from texture memory, but cannot write to it 
directly. The results must be written into texture memory at the end of the rendering 
pipeline. 
The pre-constructed finite state automaton is converted into the format suitable for GPU 
memory, through which fragment shaders can access data. The proposed approach utilizes 
pixels in Automata texture to represent each state in the finite state automaton (one pixel can 
carry 1~4 states, as discussed in the next section). GPUs operate according to the stream-
kernel principle, in which a stream is a data collection of the same data type and needing 
similar operations, and a kernel comprises functions that operate on every element in the 
stream. Streams can provide the GPU parallel data, and each element in different streams is 
independent of the kernel. In Data Flow, taking the input symbols that the CPU transfers to 
the GPU steadily as streams and the multiple fragment shaders in the GPU as the 
computation kernel. Each input symbol processed by different fragment shaders is 
independent. Data Flow is described as follows. 

Construction Phase 

In the Construction Phase, the pre-constructed finite state automaton is represented by a 
deterministic finite automaton (DFA) table. Assuming that the size of symbol space is n, 
each state in the finite state automaton will be expanded to n next states. For example, for 
the ASCII-based 8-bit codes, the symbol space n = 256 (0x00-0xff). If the finite state 
automaton contains k states, then one DFA table with dimensions n× k must be maintained 
in memory. Considering the patterns in the Snort project as example, the compiled finite 
state automaton contains about 22000 states. Hence, one Automata texture with n× 22000 
pixels should be maintained. Since the dimension of a texture is limited to 4096× 4096, the 
finite state automaton may need to be transformed, in case its dimensions exceed the limit of 
the fitting layout (the actual layout in GPU memory is shown later). Of course, there is no 
need to maintain one big 4096× 4096 texture for every finite state automaton. The dimension 
can be adjusted according to the size of the finite state automaton. For example, one finite 
state automaton contains 1024 states, then its DFA needs to be mapped to one texture with 

www.intechopen.com



Graphics Processor-based High Performance Pattern Matching Mechanism  
for Network Intrusion Detection 

 

295 

1024× n pixels, so one texture (square) with dimensions (1024× n)1/2 ×  (1024× n)1/2 is 
adequate. The memory structure in the GPU memory is two-dimensional, but that in the 
CPU is one-dimensional. The following procedure is used for translation between the two 
different dimensions. 

 
 
Procedure DataAddressing (T, H, W, A, K, S) 
Input: Deterministic Finite Automaton table: T, the height of DFA table: H, the width of 
DFA table: W, the dimension of element space: A, the amount of states: K, and the set of 
states: S 
Output: One two-dimensional texture in GPU memory: GT, transformed from the one-
dimensional DFA table. 
Load DFA table T; 
Initialize: t ← ∅, z ← ∅, offset ← ∅; 
For each S[t] do 
 r ← the remainder of t dividing by H; 
 p ← the quotient of W dividing by A; 
 q ← the quotient of t dividing by W; 
 offset ← multiply(A, sum(multiply(r, p), q)); 
 While z < A do 
  If T[t, z] ≠ NULL then 
   Load data from T at index (t, z) to GT at index (sum(offset, z), z); 
  Else 
   Continue; 
  Increase z by 1;   
 End 
End 
Return; 
 

 

Search Phase 

The Search Phase utilizes the programmable fragment shaders in GPUs. Numerous shading 
languages like GLSL, HLSL, Cg, Brook (Buck et al., 2004), and assembly language can be 
used to accomplish such purpose. This study applies GLSL and OpenGL (Wright & Sweet, 
2000) to program fragment shaders. Fragment shaders follow the SIMD programming 
model, which implies the same instructions are executed simultaneously on different data. 
The following search procedure is invoked by fragment shaders to perform state transitions. 
The input symbol is first obtained from the Text texture in GPU memory. The current state 
information is then obtained from Current State texture in the same way. The next state can 
be fetched by taking the input symbol and current state as an index of the Automata texture. 
Render-to-texture, which rendered computation results to texture rather than frame buffer, is 
then adopted to write the next states into the Next State texture for the next rendering pass. 
Additionally, the next states are transferred to the system memory for post-processing of 
pattern matching by CPUs. Although three memory lookup operations are executed in the 
above procedure, the speed of off-chip memory access inside GPUs is very fast, even up to 
51 GB/s. The latency of these three memory lookups is assumed to be low. 
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Procedure Search (AT, IT, CT, H, W, A, P); 
Input: The DFA texture: AT, the input symbol texture: IT, the current state texture: CT, 
the height of the rendering target: H, the width of the rendering: W, and the dimension of 
element space: A, the corresponding position in rendering target: P  
Output: The next state information in DFA: NS; 
Initialize: s ← ∅, c ← ∅, x ← ∅, y ← ∅; 
Fetch an input symbol from IT at P, and store in s; 
Fetch current state from CT at P, and store in c; 
Round up and down s for accuracy; 
If (s = NULL) then 
 Return; 
Else 
 r ← the remainder of c dividing by H; 
 r'← the quotient of c dividing by H; 
 x ← sum(multiply(r, A), s); 
 y ← r’; 
 NS ← Lookup(AT, x, y); /* Lookup next state from AT */ 
 If (NS is an accepted state) then 
  Set accepted flag; 
  Return True; 
 Else 
  Return True; 
Return False; 
 

3.3 Data structure 

This section introduces how to represent the DFA table in GPU, and discusses memory 
optimization issues. The DFA table and other data needed are stored in the GPU texture 
memory. Accordingly, all data in system memory must be transformed into the texture data 
format, namely pixels. Since data are stored in pixels, the chosen pixel format significantly 
affects the size of GPU memory required. Additionally, the processing time of the Search 
Phase varies according to the pixel format. Common OpenGL pixel formats include color 
index, grayscale, RGB, and RGBA. RGBA and grayscale pixel format are considered here as 
examples.  

RGBA Pixel Format 

Assuming that each pixel contains four 32-bit components: Red(R), Green(G), Blue(B), and 
Alpha(A). The state information of a finite state automaton is stored as R values in pixels 
(Fig. 4), so that one state is represented as one pixel. Although modern GPUs support 16-bit 
floating-point format, its precision is far lower than that of 32–bit floating-point format. For 
instance, if the NVIDIA fp16 float is used, the element 3079 cannot be addressed, since the 
closest representable numbers of fp16 float are 3078 and 3080. This inaccuracy seriously 
affects computations. The fp16 float is not used in this study. Supposing that the space of 
input symbols ranges between 0x00 and 0xff, the Snort patterns have over than 22,000 states, 
each then can be expanded to 256 next states. Therefore, about 5 millions pixels are needed 
to store the entire DFA table. The limit of the texture dimension in GPUs is 4096× 4096, 
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meaning that one single texture contains at most 224 pixels (16 millions). Therefore, storing 
entire DFA table of the Snort rules into one big texture has no problem. Additionally, 
modern GPU technology performs all computations with floating-point arithmetic. Floating-
point related operations in modern GPU hardware are improving. Therefore, floating-point 
arithmetic gives the best performance for finite state automaton data format and related 
computations. 
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Fig. 4. Illustration of data packing 

In Fig.4, the left side is a DFA table and the right side is a texture (square) with dimensions 
(k× 256)1/2×  (k× 256)1/2. The space of input symbols ranges between 0x00 and 0xff. The 
number of states is given as k. The dotted line indicates the mapping from state 37 to the R 
component of a pixel while reading in input symbol “5a”. The coordinate (x, y) is derived 
from the mentioned Search Procedure. 
In the above example, the state information of DFA table is stored in the R component of 
pixels, while the other three components, G, B, and A, are wasted. To fully utilize the 
components of pixels, the original patterns can be split into four groups, such that the 
number of states in each group are almost equal. The same component in different pixels 
comprises one finite state automaton. That is, the four finite state automata are traversed by 
fragment shaders concurrently. In this way, the four finite state automata, each with at most 
65536 states, can theoretically be packed into one single big texture. Naturally, fragment 
shaders must execute extra instructions to perform all pattern matching operations. The 
processing time would be slower than in the case that only R component is used. 

Grayscale Pixel Format 

The grayscale texture can be adopted to represent one DFA table rather than applying all 
components, namely R, G, B, and A. Pixels in a grayscale texture have only a grayscale 
component. By assigning each grayscale component one 16-bit unsigned integer, 216 states 
can be expressed at most. However, the grayscale value is clamped as a float-point number 
between 0.0 and 1.0 in OpenGL. Hence, extra computations are required to restore the state 
information to the original integer representation. 
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3.4 Control flow 
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Fig. 5. Illustration for packing N byte-streams into the Text texture (N1/2×N1/2) 

In Control Flow, OpenGL is used to control the flow of the proposed approach. The 
implementation follows the general computer graphics programming model, except that the 
data are not intended to be displayed on the screen. The focus is the communications 
between the CPU and GPU. Beyond that, the Control Flow is also responsible for pre-
processing of byte streams in CPU and post-processing of pattern matching. For illustration, 
considering the input phase, as shown in Fig. 5, N input byte streams need to be processed. 
First, all input streams are read into a buffer, and the w-th byte of each input stream is 
copied and placed into the Text texture in row-major order before starting the w-th rendering 
pass. This texture is then transferred to the GPU memory. The rendering pipeline can then 
be initialized and started. CPU has to trigger these operations every time before starting the 
rendering pipeline. As for the output phase, the results, which are rendered at the end of the 
rendering pipeline, are then transferred from GPU memory to system memory. The results 
are the accepted states in finite state automata. CPUs need to do computations with the 
accepted states for getting the corresponding matched patterns. We can use matched 
patterns or other related information as the matching results, and Automata texture is the 
only structure we have to modify. 

4. Evaluation and analysis 

The previous section demonstrated how finite state automata on GPUs function. The 
fingerprint of finite state automata is shown in the following section. Next, an attempt is 
made to demonstrate the performance of the proposed data flow with commodity GPUs by 
using the performance profiling tool released by NVIDIA for measuring unbiased 
throughput. Various pixel formats are also analyzed and compared with respect to the 
performance of the fragment shaders. Data Flow is then integrated with Control Flow to 
compare performance of the proposed approach with that of other AC algorithm-based 
implementations. 
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4.1 Memory fingerprint 

 

 

Fig. 6. The fingerprint of finite state automata 

The images in Fig. 6 show the layouts of finite state automata (for Snort patterns), which are 
located in GPU memory. The lower left corner of these images is the origin pixel, and it 
represents the next state which current state is 0 and input symbol is 0. From the origin to 
the point P are the pixels with current states ranged from 0 to 4095 in order and input 
symbol 0. Similarly, from the origin to the point Q are the pixels with input symbols from 0 
to 255 and current state 0.This rectangle with a width of 256 pixels and a height of 4096 
pixels could contain all next states with current state from 0 to 4095 (Fig. 6(a)). In the same 
way, we could divide Fig. 6(a) into six rectangles, and it can carry 4096× 6× 256 next states. 
Fig. 6(a) means the layout of finite state automaton located GPU memory which only utilizes 
R value of one pixel. Pixels with non-zero next state are red while pixels with zero next state 
are black. 
As for the case that all R, G, B, and A components are used, pixels are black if four next 
states are all zero (Fig. 6(b)). When only the R component is utilized, the pixels are red. 
Moreover, when only the G component is utilized, the pixels are green. Similarly, the pixels 
are blue only if B component is utilized. Furthermore, the pixels are yellow if both R and G 
components are employed.  Fig. 6(c) represents the layout in which grayscale pixel format is 
applied. 
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Memory Size 
(Mbytes) 

GeForce 
6200 
(NV44) 

GeForce 
6600 GT 
(NV43-GT) 

GeForce 
6800 Ultra 
(NV40) 

GeForce 
7800 GT 
(G70) 

GPU 
Pixel 
Format 64K 

states 
Snort 2.4 
(Apr.06) 

4 fragment 
shaders 

8 fragment 
shaders 

16 
fragment 
shaders 

24 
fragment 
shaders 

1 256 84.36 933.36 2666.64 4266.64 6400.00 

2 64 21.09 622.24 1777.76 2844.48 4266.64 

S
tr

at
eg

y
 

3 32 10.54 700.00 2000.00 3200.00 5485.68 

Unit: Mbps 

Table 1. Memory required and the throughput with different GPUs 

4.2 Performance analysis 
NVShaderPerf (NVIDIA ShaderPerf 2, 2008) is a command line utility to report shader 
performance metrics. It can produce the scheduling information based on instructions 
executed in shaders. In order to evaluate the proposed data flow, the pixel processing 
throughput is treated as the performance metric. In this section, the instructions executed in 
pixel shaders are different according to the pixel formats adopted in the three strategies. 
Although the purposes of these strategies are the same, the test result of these strategies 
varies.  
To compare with other related works impartially, the Control Flow was separated from this 
experiment. This is because Control Flow involves interaction between the operating system 
platform and device driver, which is not the focus of the proposed approach. The details are 
provided in the next section. 
Strategy 1 in TABLE 1 applies only the R component of pixels to represent the state 
information. Although the other three components, G, B, and A, are not used in Strategy 1, 
the operation is succinct. Strategy 1 obtains the optimum throughput among all. Assuming 
the space of input symbols ranges between 0x00 and 0xff, Strategy 1’s deterministic finite 
state automaton has a maximum of 224 next states since the texture dimension is limited to 
4096 ×4096. Each component of RGBA is 32-bit, such that Strategy 1 would consume 256MB 
GPU memory (4Bytes × 4 × 4096 × 4096) if the texture dimension is set to 4096 × 4096. On 
the contrary, Strategy 2 applies all components to represent states of four finite state 
automata. The GPU pixel utilization of Strategy 2 is 4 times efficient of Strategy 1; i.e., 
Strategy 2 requires only 1/4 of the memory of Strategy 1. However, the amount of memory 
access in Strategy 2 is also 4 times Strategy 1. Strategy 3 adopts the grayscale component of 
pixels, and every component is 16-bit. The DFA with 216 states requires 32MB of GPU 
memory in Strategy 3. All computations inside the GPU are based on 32-bit floating-point 
numbers. If 16-bit grayscale components are utilized for finite state automata, then shaders 
must perform extra computations for accuracy. These computations have significant 
overheads. Hence, Strategy 1 had the best throughput, and Strategy 3 was slightly worse 
than Strategy 1. The proposed approach is flexible, since it seeks a tradeoff between the 
number of patterns and throughput. Similar approaches are common in commercial 
Graphics Processor products. 
Fig. 7 shows the performance comparison between the proposed approach and other 
famous related proposals. The algorithm proposed by Tuck (Tuck et al., 2004) applies an 
accessible embedded memory of 1024 bits, which is implemented in on-chip. The design 
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cost can be assumed far more than the proposed approach using GPUs located in PCs 
originally. Even though Tuck’s ASIC design performs better than the proposed system, the 
superiority of GPUs can be discovered. TABLE I also shows that the number of fragment 
shaders raises with each new generation of GPUs. Therefore, the proposed approach with 
the new GPU architecture performs better than that with older GPU architecture. The 
GF7800-1 approach in Fig. 7 even outperforms other implementations which used specific 
hardware (Cho et al., 2002), (Tuck et al., 2004), (Bos & Huang, 2005), (Song et al., 2005). 
 
 

0 1 2 3 4 5 6 7 8

AC-BITMAP ASIC (Tuck et al., 2004)

AC-BITMAP FPGA  (Tuck et al., 2004)

AC-FAIL ASIC  (Tuck et al., 2004)

AC-FAIL FPGA  (Tuck et al., 2004)

GF7800 - 1

GF7800 - 2

GF7800 - 3

GF6800 -1

GF6200 -1

(Cho et al., 2002)

(Song et al., 2005)

(Dharmapurikar et al., 2004)

(Bos & Huang, 2005)

Performance Comparison

 

Fig. 7. The performance comparison between the proposed approach and other famous 
related proposal 

4.3 System overhead 

Fig. 7 indicates that the proposed solution is potentially as good as other FPGA or ASIC 
solutions. However, our proposed method is software-based since the GPU can be 
programmed through shader languages and almost every PC has GPU installed in it. It is 
considerable that the performance of a software-based solution is almost as good as that of 
hardware-based solutions. In this section, the proposed approach is integrated with 
commodity graphics cards in home PCs and designed to cooperate with other software in 
the operating system. The experimental environment was configured as follows: 
 

 
Processor: AMD Sempron 2500+ 
Operating system: Windows XP Service Pack 2 
System main memory: 512 DDR memory 
Graphics card: NVIDIA GeForce 7600 GT with 12 
fragment shaders 
Graphics API: OpenGL 
 

www.intechopen.com



 Intrusion Detection Systems 

 

302 

75.00

125.00

175.00

225.00

275.00

325.00

375.00

Sno
rt'

s A
C
 [2

8]

G
PU

-2
56

G
PU

-1
02

4

G
PU

-4
09

6

4 
sh

ad
er

s

8 
sh

ad
er

s

12
 sh

ad
er

s

300
 M

H
z

40
0 

M
H

z

50
0M

H
z

590
 M

H
z

20
0 

M
H

z

40
0 M

H
z

80
0 M

H
z

T
h

ro
u

g
h

p
u

t 
(M

b
/s

)

(a) (b) (c) (d)
 

Fig. 8. (a) Performance of AC algorithm and the proposed approach. This experiment 
compared the performance of AC algorithm and the proposed approach with different 
number of sessions.  (Number of sessions: GPU-256: 256, GPU-1024: 1024, GPU-4096: 4096);  
(b) Performance of the proposed approach with different number of fragment shaders;  
(c) Performance of the proposed approach at different GPU core clock rates; (d) Performance 
of the proposed approach at different GPU memory clock rates 

The Snort 2.4 patterns were also taken as the keyword patterns, as in other related work. 
The Defcon9 trace is taken as the testing data for pattern matching. As shown in Fig. 8(a), 
the software performance between the proposed approach with various amount of sessions 
and the Snort’s AC implementation (Norton, 2004) is compared. Multiple-session and 
single-session solutions were compared since traffic from a large network is an aggregation 
of many sessions. It shows that the proposed approach performs better than AC algorithm 
when processing 1024 or 4096 sessions, as well as the number of sessions raises. The AC 
algorithm is a sequential task model which naturally performs worse than a parallel task 
model. Thus it is always slower than the proposed approach once the benefit of parallel 
processing is greater than the overhead of using OpenGL API. From another perspective, 
this feature is advantageous for pattern-matching intuitive software, such as anti-virus 
software or intrusion detection systems on PCs. For instance, anti-virus software can scan 
multiple files simultaneously. Therefore, The GPU resources of PCs can be fully exploited.  
Fig. 8(b) shows the performance of the proposed approach with various numbers of 
fragment shaders. The throughput rises with increasing numbers of fragment shaders. 
However, using 12 fragment shaders did not produce a significant performance 
improvement, which is not consistent with previous assumptions. The gDEBugger (Graphic 
Remedy gDEBugger, 2005) profile indicates that the proposed approach is CPU-bound. The 
number of fragment shaders has minor effect on the entire architecture, since a GPU can 
finish its job and return results to CPU within 20 microseconds with either 4 or 12 fragment 
shaders. The experimental results also imply that the proposed approach can reach the peak 
performance when using a GPU-based system. 
Fig. 8(c) demonstrates that the core clock rate has a slight impact on performance. The 
difference between the maximum and minimum throughput was less than 10 Mbps. The 
performance was assumed to be better at a higher clock rate, but Fig. 8(c) shows the 
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opposite results. The performance dropped at high clock rates because our implementation 
determined the throughput using traffic divided by processing time. The difference in 
processing time with various clock rates was less than 0.5 seconds. The proposed 
implementation was possibly interrupted or preempted by other operating system 
(Microsoft Windows) application threads, influencing our testing processing time and 
producing a non-reasonable result. Fig. 8(d) shows the testing result after adjusting the clock 
rate of the GPU memory, demonstrating that the performance of the proposed approach is 
directly proportional to the clock rate of GPU memory. 
Fig. 8(b)–(d) show that the proposed approach performs well while the degree of parallelism 
is above a threshold, and the processing power of GPUs is never the bottleneck of the 
overall system. The GPU remains idle at most processing time period. The interaction 
between applications, OpenGL, OS, and device driver slows down the proposed system. 
Moreover, the data from CPU to GPU in every rendering pass is below 10KB. The proposed 
approach does not benefit from the high-speed PCI-E bus. Even though the proposed 
approach can perform better than other implementations in software, it has particularly 
strong potential when GPU and high-bandwidth bus are fully exploited.  
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Fig. 9. Performance ratio of various AC implementations to AC-FAIL 

Fig. 9 compares the software performance of the proposed approach and Tuck’s algorithm 
(Tuck et al., 2004) with the performance of Tuck’s AC-FAIL approach as the baseline. The 
proposed approach had a performance which is 9.615 times that of AC-FAIL when 4096 
sessions were processed simultaneously, and even outperformed the optimized software 
approach in Tuck’s algorithm. Although the GPU was used as the pattern matching 
accelerator, the proposed approach is still classified as a pure software application, since it 
utilizes no specific hardware. A graphics card is included in every modern personal 
computer, and therefore includes no extra cost. The proposed approach utilizes existing 
system resources. 

5. Conclusion 

This chapter discusses pattern matching algorithm and research about GPU, and presents a 
novel scheme that employs the GPU as an accelerator for multi-session deep packet 
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inspection. This study is the first to consider the application of a GPU for this purpose. 
Several parameters are analyzed, such as the pixel formats employed by finite state 
automata and the number of shaders. The measurement and analysis show that the 
proposed scheme is better than other explored approaches, and the idea of pattern matching 
on the GPU is feasible. High-performing IDS within a host is possible to be made by 
applying this new concept for network processing, especially useful for servers to provide 
reliable services for multiple connections concurrently. 
There are still many details that could be further improved in the future. First, GPUs are 
originally designed for graphics processing, so they have very good performance in matrix 
operations and have great power of floating point computation. For example, it can do 
multiply-add operations within one instruction. Problems such as how to store data in 
floating point format compactly or how to take the advantages of some special instructions 
designed for GPUs, need to be investigated deeply. As mentioned above, the proposed 
approach is appropriate for most automaton-based works, and the parallel nature of GPUs 
is particularly fitting for implementing various FSM-based algorithms for speedup (Tan et 
al., 2006). A suitable pattern matching algorithm may be found by further utilizing these 
virtues to exploit the power of GPUs. Additionally, GPU applications need high arithmetic 
intensity for peak performance. Therefore, rather than automaton-based pattern matching 
algorithms, hash-based algorithms, such as Wu-Manber or Bloom Filter, could also be 
utilized in GPUs. Second, GPGPU research usually focus on how to program fragment 
shaders regardless of programming vertex shader since it has limited operations on texture 
memory before, but the trend seems to change recently. Because some vertex shaders in 
GPUs can store data into the texture memory now, people try to use vertex shader to 
increase performance. All GPU-based algorithms might be improved by combining these 
two powerful processors, for instance, preprocessing in vertex shaders and taking other 
operations in fragment shaders. Third, as we mentioned in section II, AMD has released a 
stream processor, which is aimed at the GPGPU applications. With the new thin hardware 
interface called CLOSE TO METAL (CTM) proposed by AMD, programmers now could 
directly control the graphics kernel instead of using 3D application programming interfaces 
(APIs) which are originally designed for 3D rendering, such as OpenGL, DirectX, or with 
the compilation of GLSL, Cg and other shading languages. Therefore, the CTM can improve 
at least 8x throughput compare to 3D APIs. Thus, the system overhead generated by 
OpenGL APIs in our proposed method, has great chance to be solved in the near future. 
Finally, the main focus of future research will be NPGPU, a high-speed network packet 
processing application based on GPUs, like longest prefix matching, packet classification 
and network intrusion detection. With the rapid development of GPUs recently, as its 
programmability and flexibility increased, more friendly GPGPU development platform 
released, and the parallel nature of GPUs is consistent with the characteristic of 
simultaneous network connections, we ambitiously expect the diverse network applications 
based on GPUs will explode. 
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