We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



1

Internet Epidemics:
Attacks, Detection and Defenses, and Trends

Zesheng Chen and Chao Chen

Department of Engineering, Indiana University - Purdue University Fort Wayne
Fort Wayne, IN 46805

USA

1. Introduction

Internet epidemics are malicious software that can self-propagate across the Internet, i.e.,
compromise vulnerable hosts and use them to attack other victims. Since the early stage of
the Internet, epidemics have caused enormous damages and been a significant security threat.
For example, the Morris worm infected 10% of all hosts in the Internet in 1988; the Code Red
worm compromised at least 359,000 hosts in one day in 2001; and the Storm botnet affected
tens of millions of hosts in 2007. Therefore, it is imperative to understand and characterize the
problem of Internet epidemics including the methods of attacks, the ways of detection and
defenses, and the trends of future evolution.

Internet epidemics include viruses, worms, and bots. The past more than twenty years have
witnessed the evolution of Internet epidemics. Viruses infect machines through exchanged
emails or disks, and dominated 1980s and 1990s. Internet active worms compromise
vulnerable hosts by automatically propagating through the Internet and have caused much
attention since Code Red and Nimda worms in 2001. Botnets are zombie networks controlled
by attackers through Internet relay chat (IRC) systems (e.g., GTBot) or peer-to-peer (P2P)
systems (e.g., Storm) to execute coordinated attacks, and have become the number one threat
to the Internet in recent years. Since Internet epidemics have evolved to become more and
more virulent and stealthy, they have been identified as one of top four security problems and
targeted to be eliminated before 2014 (52).

The task of protecting the Internet from epidemic attacks has many significant challenges:

— The original Internet architecture was designed without taking into consideration inherent
security mechanisms, and current security approaches are based on a collection of “add-on”
capabilities.

— New network applications and technologies become increasingly complex and expand

constantly, suggesting that there will exist new vulnerabilities, such as zero-day exploits,
in the foreseeable future.

— As shown by the evolution of Internet epidemics, attackers and the attacking code are
becoming more and more sophisticated. On the other hand, the ordinary users cannot keep
up with good security practices.

In this chapter, we survey and classify Internet epidemic attacks, detection and defenses,
and trends, with an emphasis on Internet epidemic attacks. The remainder of this chapter
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4 Intrusion Detection Systems

is structured as follows. Section 2 proposes a taxonomy of Internet epidemic attacks. Section
3 discusses detection and defense systems against Internet epidemics. Section 4 predicts the
trends of epidemic attacks. Finally, Section 5 concludes the paper.

2. Internet epidemic attacks

In this chapter, we focus on the self-propagation characteristic of epidemics, and use the terms
“Internet epidemics” and “worms” interchangeably. A machine that can be compromised by
the intrusion of a worm is called a vulnerable host, whereas a host that has been compromised
by the attack of a worm is called an infected host or a compromised host or a bot. The way that a
worm uses to find a target is called the scanning method or the target discovery strateqy. Worm
propagation is a procedure whereby a worm infects many hosts through Internet connections.

In this section, we first identify three parameters that attackers can control to change the
behavior of epidemic propagation. Next, we list the scanning methods that worms have used
or will potentially exploit to recruit new bots and spread the epidemics. We also explain
how these worm-scanning methods adjust the three parameters. Finally, we discuss the
metrics that can be applied to evaluate worm propagation performance. The left of Figure
1 summarizes our taxonomy of Internet epidemic attacks.

2.1 Parameters controlled by worms
Three parameters that worms control to design the desired epidemic behaviors include

— Scanning space: the IP address space among which a worm searches for vulnerable hosts. A
worm can scan an entire IPv4 address space, a routable address space, or only a subnetwork
address space. Different bots may scan different address spaces at the same time.

— Scanning rate: the rate at which a worm sends out scans in the scanning space. A worm
may dispatch as many scans as possible to recruit a certain number of bots in a short time
or deliver scans slowly to behave stealthy and avoid detection.

— Scanning probability: the probability that a worm scans a specific address in the scanning
space. A worm may use a uniform scanning method that hits each address in the scanning
space equally likely or use a biased strategy that prefers scanning a certain range of IP
addresses. Moreover, if the scanning probability is fixed at all time, the scanning strategy is
called static; otherwise, the scanning probability varies with time, and the strategy is called
dynamic.

All worm-scanning strategies have to consider these three parameters, adjusting them for
different purposes (4). Although the parameters are local decisions that individual infected
hosts make, they may lead to global effects on the Internet, such as the worm propagation
speed, total malicious traffic, and difficulties in worm detection. In the following section, we
demonstrate how different worm-scanning methods exploit these parameters.

2.2 Worm-scanning methods

Many worm-scanning methods have been used in reality or developed in the research
community to spread epidemics. The methods include the following twelve representative
strategies.

(1) Random Scanning (RS)

RS selects target IPv4 addresses uniformly (35; 6). Such a strategy is the simplest method and
has been widely used by Internet worms such as Code Red (26), Slammer (25), and Witty (32).
Specifically, RS probes the entire (i.c., 23?) IPv4 address space, uses a constant scanning rate,
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6 Intrusion Detection Systems

and scans each address in the scanning space equally likely (i.e., with the probability 1/232).
(2) Localized Scanning (LS)

LS preferentially searches for targets in the “local” address space by designing the scanning
probability parameter and has been used by such famous worms as Code Red II and Nimda
(29; 5). For example, the Code Red II worm chooses a target IP address with the same first byte
as the attacking machine with probability 0.5, chooses a target address with the same first two
bytes with probability 0.375, and chooses a random address with probability 0.125. Similar to
RS, LS probes the entire IPv4 address space and applies a constant scanning rate.

(3) Sequential Scanning (SS)

SS scans IP addresses sequentially from a randomly chosen starting IP address and has been
exploited by the Blaster worm (49; 16; 10). Specifically, if SS is scanning address A now, it will
continue to sequentially scan IP addresses A +1, A+2, --- (or A—1, A—2, ---). Similar
to RS, SS scans the entire IPv4 address space and uses a constant scanning rate. Although
SS attempts to avoid re-scanning the IP addresses that have been probed, the scanning
probability for SS can still be regarded as uniform. As a result, SS has a similar propagation
speed as RS (49).

(4) Hitlist Scanning (HS)

HS collects a list of vulnerable hosts before a worm is released and attacks the hosts on the
list first after the worm is set off (35; 40). Once the hosts on the list are compromised, the
worm switches from HS to RS to infect the remaining vulnerable hosts. If the IP addresses
of all vulnerable hosts are known to a worm in advance, HS leads to the fastest worm called
the flash worm (34). Different from RS, HS only scans the hosts on the list before the list is
exhausted. Moreover, HS is difficult to detect since each worm scan hits an existing host or
service, which is indistinguishable from normal connections. But similar to RS, HS usually
uses a constant scanning rate and selects targets on the list uniformly.

(5) Routable Scanning (RoS)

RoS scans only a routable address space (42; 50). According to the information provided by
BGP routing tables, only about 28.6% of the entire IPv4 addresses are routable and can thus be
used for real machines. Hence, RoS reduces the scanning space and spreads an epidemic much
faster than RS. But similar to RS, RoS uses a constant scanning rate and selects targets in the
routable address space uniformly.

(6) Selected Random Scanning (SRS)

Similar to RoS, SRS scans a partial IPv4 address space instead of the entire IPv4 address space
(49; 31). For example, an attacker samples the Internet to detect an active IP address space
before releasing a worm, and directs the worm to avoid scanning inactive addresses so that
the worm can be stealthy for network telescope detection. Network telescopes use routable but
unused IP addresses to detect worms and will be discussed in details in Section 3. Similarly,
SRS applies a constant scanning rate and chooses targets in the scanning space uniformly.

(7) Importance Scanning (IS)

IS exploits the scanning probability parameter and probes different IP addresses with different
probabilities (9; 8). Specifically, IS samples targets according to an underlying group
distribution of vulnerable hosts. A key observation for IS is that vulnerable hosts distribute
highly non-uniform in the Internet and form clusters (25; 26; 32; 29; 1; 10; 11; 38). Hence,
IS concentrates on scanning groups that contain many vulnerable hosts to speed up the
propagation. If a worm probes an IP address with probability 0, the worm would never scan
this IP address. Therefore, RoS and SRS can be regarded as special cases of IS. Similarly, IS
uses a constant scanning rate.
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(8) Divide-Conguer Scanning (DCS)

DCS exploits the scanning space parameter, and different worm instances may probe different
scanning spaces (42; 49; 4). Specifically, after an attacking host A infects a target B, A divides
its scanning space into halves so that A would scan one half and B would scan the other
half. As a result, the address space initially scanned by a worm will be partitioned into pieces
that are probed by different infected hosts. Similar to RS, a worm instant uses a constant
scanning rate and scans targets in its scanning space uniformly. In Section 2.3, however, it
is demonstrated that DCS can spread an epidemic much faster than RS based on the realistic
distribution of vulnerable hosts.

(9) Varying-Rate Scanning (VRS)

VRS varies the scanning rate over time to avoid detection (46; 47). Many worm detection
methods have been developed based on change-point detection on the traffic going through
routers or the unwanted traffic towards network telescopes. VRS, however, can potentially
adjust its scanning rate dynamically so that it can smooth the malicious traffic. Similar to RS,
VRS probes the IPv4 address space and scans targets in the scanning space uniformly.

(10) Permutation Scanning (PS)

PS allows all worm instances to share a common pseudo random permutation of the IP
address space and to coordinate to provide comprehensive scanning (35). That is, the IPv4
address space is mapped into the permutation space, and an infected host uses SS in the
permutation space. Moreover, if an infected host A hits another infected host B, A realizes that
the scanning sequence starting from B in the permutation space has been probed and would
switch to another scanning sequence to avoid duplicate scanning. In this way, compared with
RS, PS can improve worm propagation performance (i.e., the speed and the traffic) at the late
stage. But at the early stage, PS behaves similar to RS in terms of the scanning space, the
scanning rate, and the scanning probability.

(11) Optimal Static Scanning (OSS)

OSS minimizes the number of worm scans required to reach a predetermined fraction of
vulnerable hosts by designing the proper scanning probability parameter (38). OSS is similar
to IS since both methods exploit the scanning probability parameter. However, while IS
emphasizes the speed of worm propagation, OSS focuses on the number of worm scans. In
Section 2.3, we will further illustrate this point.

(12) Topological Scanning (TS)

TS exploits the information contained in the victim machines to locate new targets and has
been used by Email viruses and Morris/SSH worms (40; 7). Hence, TS is a topology-based
method, whereas the above eleven scanning strategies are scan-based methods. TS scans only
neighbors on the topology, uses a constant scanning rate, and probes targets among neighbors
uniformly.

2.3 Worm propagation performance metrics

How can we evaluate the performance of a worm-scanning method? In this section, we study
several widely used performance metrics, focusing on scan-based epidemics.

(1) Propagation Speed

The epidemic propagation speed is the most used metric and defines how fast a worm can
infect vulnerable hosts (35; 6; 49; 37; 36). Specifically, assume that two scanning methods A
and B have the same initial conditions (e.g., the number of vulnerable hosts and the scanning
rate). If the numbers of infected hosts at time  for these two methods, I4(t) and Ig(t), have
the following relationship: I4(t) > Ig(t) for Vt > 0, then method A has a higher propagation
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Fig. 2. Epidemic propagation speeds of different scanning methods (the vulnerable-host
population is 360,000, the scanning rate is 358 per minute, the vulnerable-host distribution is
from the DShield data with port 80, HS has a hitlist of 1,000, and other scanning methods
start from an initially infected host).

speed than method B.

In Figure 2, we simulate a Code Red v2 worm using different scanning methods. Code Red
v2 has a vulnerable-host population of 360,000 and a scanning rate of 358 per minute. To
characterize scanning methods, we employ the analytical active worm propagation (AAWP)
model and its extensions (6). The AAWP model applies a discrete-time mathematical
difference equation to describe the spread of RS and has been extended to model the
propagation of other advanced scanning methods. In Figure 2, we compare IS, LS, RoS, and
HS with RS. We assume that except HS, a worm begins spreading from an initially infected
host. HS has a hitlist size of 1,000. Since the Code Red v2 worm attacks Web servers, we use
the DShield data (54) with port 80 as the distribution of vulnerable hosts. DShield collects
intrusion detection system and firewall logs from the global Internet (54; 1; 11). We also
assume that once a vulnerable host is infected, it will stay infected. From the figure, it is seen
that IS, LS, RoS, and HS can spread an epidemic much faster than RS. Specifically, it takes RS
10 hours to infect 99% of vulnerable hosts, whereas HS uses only about 6 hours. RoS and LS
can further reduce the time to 3 hours and 1 hour. IS spreads fastest and takes only 0.5 hour.
The design of most advanced scanning methods (e.g., IS, LS, RoS, and OSS) roots on the
fact that vulnerable hosts are not uniform distributed, but highly clustered (9; 29; 49; 38).
Specifically, the Internet is partitioned into sub-networks or groups according to such
standards as the first byte of IP addresses (/8 subnets), the IP prefix, autonomous systems,
or DNS top-level domains. Since the distribution of vulnerable hosts over groups is highly
uneven, a worm would avoid scanning groups that contain no or few vulnerable hosts and
concentrate on scanning groups that have many vulnerable hosts to increase the propagation
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Fig. 3. Comparison of DCS and RS (the vulnerable-host population is 65,536, the scanning
rate is 1,200 per minute, the vulnerable-host distribution follows that of Witty-worm victims,
and a hitlist size is 100).

speed. Moreover, once a vulnerable host in a sub-network with many vulnerable hosts is
infected, a LS worm can rapidly compromise all the other local vulnerable hosts (29; 5).

DCS is another scanning method that exploits the highly uneven distribution of vulnerable
hosts, but has been studied little (4). Imagine a toy example where vulnerable hosts only
distribute among the first half of the IPv4 address space and no vulnerable hosts exist in the
second half of the space. A DCS worm starts from an initially infected host, which behaves like
RS until hitting a target. After that, the initially infected host scans the first half of the space,
whereas the new bot probes the other half. While the new bot cannot recruit any target, the
initially infected host would find the vulnerable hosts faster with the reduced scanning space.
This fast recruitment in the first half of the space would in return accelerate the infection
process since the newly infected hosts in the area only scan the first half of the space. In some
sense, DCS could lead an epidemic to spread towards an area with many vulnerable hosts.
Figure 3 compares DCS with RS, using a discrete event simulator. The simulator implements
each worm scan through a random number generator and simulates each scenario with 100
runs using different seeds. The curves represent the mean of 100 runs, whereas the error bars
show the variation over 100 runs. The worm has a vulnerable population of 65,536, a scanning
rate of 1,200 per second, and a hitlist size of 100. The distribution of vulnerable hosts follows
that of Witty-worm victims provided by CAIDA (56). Figure 3 demonstrates that DCS spreads
an epidemic much faster than RS. Specifically, RS takes 479 seconds to infect 90% of vulnerable
hosts, whereas DCS takes only 300 seconds.

(2) Worm Traffic

Worm traffic is defined as the total number of worm scans (38). Specifically, assuming that a
worm uses a constant scanning rate s and infects I(t) machines at time ¢, we can approximate
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Fig. 4. Comparison of OSS and optimal IS (the vulnerable-host population is 55,909, the
scanning rate is 1,200 per minute, the vulnerable-host distribution follows that of
Witty-worm victims, and a hitlist size is 10).

worm traffic by time t as s - fg I(x)dx. An epidemic may intend to reduce the worm traffic to
elude detection or avoid too much scanning traffic that would slow down worm propagation
in return. OSS is designed to minimize the traffic required to reach a predetermined fraction
of vulnerable hosts (38).

The two metrics, the propagation speed and the worm traffic, reflect different aspects of
epidemics and may not correlate. For example, two scanning methods can use the same
number of worm scans to infect the same number of vulnerable hosts, but differ significantly
on the propagation speed. Specifically, we apply the extensions of the AAWP model to
characterize the spread of OSS and optimal IS, as shown in Figure 4. Here, we simulate the
propagation of the Witty worm, where the vulnerable-host population is 55,909, the scanning
rate is 1,200 per minute, the vulnerable-host distribution follows that of Witty-worm victims,
and a hitlist size is 10. Both scanning methods use 1.76 x 10° worm scans to infect 90% of
vulnerable hosts (i.e., the scanning rate multiples the area under the curve). However, OSS
uses 102 seconds to infect 90% vulnerable hosts, whereas optimal IS takes only 56 seconds.
(3) Initially Infected Hosts (Hitlist)

A hitlist defines the hosts that are infected at the beginning of worm propagation and reflects
the attacks” ability in preparing the worm attacks (35). The curves of HS and RS in Figure 2
show that a worm can spread much faster with a larger hitlist. Hence, an attacker may use
a botnet (i.e., a network of bots) as a hitlist to send out worm infection (14). Moreover, the
locations of the hitlist affect LS. For example, if the hitlist resides in sub-networks with few
vulnerable hosts, the worm cannot spread fast at the early stage.

(4) Self-Stopping

If a worm can self-stop after it infects all or most vulnerable hosts, it can reduce the chance to
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be detected and organize the network of bots in a more stealthy way (23). One way for a bot
to know the saturation of infected hosts is that it has hit other bots for several times. Another
way is that a worm estimates the number of vulnerable hosts and the scanning rate, and thus
predicts the time to compromise most vulnerable hosts.

(5) Knowledge

The use of knowledge by an attacker can help a worm speed up the propagation or reduce
the traffic (8; 38). For example, IS exploits the knowledge of the vulnerable-host distribution,
assuming that this distribution is either obtainable or available. Based on the knowledge,
worm-scanning methods can be classified into three categories:

— Blind: A worm has no knowledge about vulnerable hosts and has to use oblivious scanning
methods such as RS, LS, SS, and DCS.

— Partial: A scanning strategy exploits partial knowledge about vulnerable hosts, such as RoS,
SRS, IS, and OSS.

— Complete: A worm has the complete knowledge about vulnerable hosts, such as a flash
worm (34).

A future intelligent worm can potentially learn certain knowledge about vulnerable hosts
while propagating. Specifically, a blind worm uses RS to spread and collect the information
on vulnerable hosts at the very early stage, and then switches to other advanced scanning
methods (e.g., SRS, IS, or OSS) after estimating the underlying distribution of vulnerable hosts
accurately. We call such worms self-learning worms (8).

(6) Robustness

Robustness defines a worm’s ability against bot failures. For example, DCS is not robust since
the failure of a bot at the early stage may lead to the consequence that a worm misses a certain
range of IP addresses (4). Therefore, redundancy in probing the same scanning space may be
necessary to increase the robustness of DCS. Comparatively, RS, SS, RoS, IS, PS, and OSS are
robust since except extreme cases (e.g., all initially infected hosts fail before recruiting a new
bot), a small portion of bot failures do not affect worm infection significantly.

(7) Stealth

Stealth defines a worm’s ability in avoiding detection. For example, many worm detection
methods root on change-point detection on the unwanted traffic towards network telescopes
or the traffic going through routers (51; 48; 2). These methods, however, may fail to detect
VRS that adjusts the worm traffic to spread an epidemic under the radar (46; 47). Another
stealthy scanning method is HS that makes worm infection undistinguishable from normal
connections (35).

(8) Overhead

Overhead defines the size of additional packet contents required for a worm to design a
scanning method. For example, the flash worm may require a very large storage to contain
the IP addresses of all vulnerable hosts (34). Specifically, if there are 100,000 vulnerable hosts,
the flash worm demands 400,000 bytes to store the IP addresses without compression. Such
large overhead slows down the worm propagation speed and introduces extra worm traffic.

3. Internet epidemic detection and defenses

To counteract notorious epidemics, many detection and defense methods have been studied in
recent years. Based on the location of detectors, we classify these methods into the following
three categories. The top-right of Figure 1 summarizes our taxonomy of Internet epidemic
detection and defenses.
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3.1 Source detection and defenses

Source detection and defenses are deployed at the local networks, protecting local hosts and
locating local infected hosts (17; 18; 41; 36; 19). For example, a defense system applies the
latest patches to end systems so that these systems can be immunized to epidemic attacks
that exploit known vulnerabilities. To detect infected hosts, researchers have characterized
epidemic host behaviors to distinguish them from the normal host behaviors. For example,
an infected host attempts to spread an epidemic as quickly as possible and sends out many
scans to different destinations at the same time. Comparatively, a normal host usually does
not connect to many hosts simultaneously. Hence, a detection and defense system can explore
this difference and build up a connection queue with a small length (e.g., 5) for an end host.
Once the queue is filled up, the further connection request would be rejected. In this way, the
spread of an epidemic is slowed down, while the normal hosts are affected little. Moreover,
monitoring the queue length can reveal the potential appearance of a worm. Such a method is
called virus throttling (36). Another detection method targets the inherent feature of scan-based
epidemics. Specifically, since a bot does not know the (exact) locations of vulnerable hosts, it
guesses the IP addresses of targets, which leads to the likely failures of connections and differs
from normal connections. A sequential hypothesis testing method has been proposed to exploit
such a difference and shown to identify an RS bot quickly (17; 18; 41).

3.2 Middle detection and defenses

Middle detection and defenses are deployed at the routers, analyzing the on-going traffic and
filtering out the malicious traffic (27; 43; 33; 21). Content filtering and address blacklisting are two
commonly used techniques (27). Content filtering uses the known signatures to detect and
remove the attacking traffic, whereas address blacklisting filters out the traffic from known
bots. Similar to source detection and defenses, middle detection and defenses can also explore
the inherent behaviors of epidemics and differ the malicious traffic from the normal traffic. For
example, several sampling methods have been proposed to detect the super spreader —a host
sends traffic to many hosts, and thus identify potential bots (43). Another method is based on
the distributions of source IP addresses, destination IP addresses, source port numbers, and
destination port numbers, which would change after a worm is released (33; 21).

3.3 Destination detection and defenses

Destination detection and defenses are deployed at the Darknet or network telescopes, a globally
routable address space where no active servers or services reside (51; 53; 55). Hence, most
traffic arriving at Darknet is malicious or unwanted. CAIDA has used a /8 sub-network as
network telescopes and observed several large-scale Internet epidemic attacks such as Code
Red (26), Slammer (25), and Witty (32) wormes.

We coin the term Internet worm tomography as inferring the characteristics of Internet epidemics
from the Darknet observations (39), as illustrated in Figure 5. Since most worms use
scan-based methods and have to guess target IP addresses, Darknet can observe partial
scans from bots. Hence, we can combine Darknet observations with the worm propagation
model and the statistical model to detect the worm appearance (42; 2) and infer the worm
characteristics (e.g., the number of infected hosts (6), the propagation speed (48), and the worm
infection sequence (30; 39)). Internet worm tomography is named after network tomography,
where end system observations are used to infer the characteristics of the internal network
(e.g., the link delay, the link loss rate, and the topology) (3; 12). The common approach
to network tomography is to formulate the problem as a linear inverse problem. Internet
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Fig. 5. Internet Worm Tomography (39).

worm tomography, however, cannot be translated into the linear inverse problem due to the
complexity of epidemic spreading, and therefore presents new challenges. Several statistical
detection and estimation techniques have been applied to Internet worm tomography, such
as maximum likelihood estimation (39), Kalman filter estimation (48), and change-point
detection (2).

Figure 6 further illustrates an example of Internet worm tomography on estimating when a
host gets infected, i.e., the host infection time, from our previous work (39). Specifically, a host
is infected at time instant ¢3. The Darknet monitors a portion of the IPv4 address space and
can receive some scans from the host. The time instants when scans hit the Darknet are ¢4, t5,
-+, ty, where n is the number of scans received by the Darknet. Given Darknet observations
t1, ta, - - -, ty, we then attempt to infer ty by applying advanced estimation techniques such as
maximum likelihood estimation.

Infected host
Monitor
AN (L) / -
- — >
N =
0, 51 0, 0, |
S -2 "o — — — — — I — S &— 3 Observed
t, t, t, t t. t, t, hit times

Fig. 6. An illustration of Darknet observations (39).
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4. Internet epidemic trends

Internet epidemics have evolved in the past more than twenty years and will continue
developing in the future. In this section, we discuss three prominent trends of epidemic
attacks. The bottom-right of Figure 1 summarizes our taxonomy of Internet epidemic trends.

4.1 Mobile epidemics

Over the past few years, a new type of worms has emerged that specifically targets portable
devices such as cell phones, PDAs, and laptops. These mobile worms can use Internet
connectivity for their propagation. But more importantly, they can apply TS and spread
directly from device to device, using a short-range wireless communication technology such
as WiFi or Bluetooth (20; 44). The first mobile epidemic, Cabir, appeared in 2004 and used
Bluetooth channels on cell phones running the Symbian operation system to spread onto
other phones. As WiFi/Bluetooth devices become increasing popular and wireless networks
become an important integrated part of the Internet, it is predicted that epidemic attacks will
soon become pervasive among mobile devices, which strongly connect to our everyday lives.

4.2 IPv6 worms

IPv6 is the future of the Internet. IPv6 can increase the scanning space significantly, and
therefore, it is very difficult for an RS worm to find a target among the 2! IP address space
(50). The future epidemics, however, can still spread relatively fast in the IPv6 Internet.
For example, we find that if vulnerable hosts are still clustered in IPv6, an IS worm can be
a zero-day worm (10). Moreover, a TS epidemic can spread by exploiting the topological
information, similar to Morris and SSH worms. Another example of advanced worms would
propagate by guessing DNS names in IPv6, instead of IP addresses (15).

4.3 Propagation games

To react to worm attacks, a promising method generates self-certifying alerts (SCAs) or
patches from detected bots or known vulnerabilities and uses an overlay network for
broadcasting SCAs or patches (13; 37). A key factor for this method to be effective is
indeed that SCAs or patches can be disseminated much faster than worm propagation.
This introduces propagation games between attackers and defenders, since both sides apply
epidemic spreading techniques. Such a weapon race would continue in the foreseeable future.

5. Conclusions

In this chapter, we have surveyed a variety of techniques that Internet epidemics have used
or will potentially exploit to locate targets in the Internet. We have examined and classified
existing mechanisms against epidemic attacks. We have also predicted the coming threats of
future epidemics.

In addition to survey, we have compared different worm scanning methods based on the three
important worm-propagation parameters and different performance metrics. Specifically, we
have demonstrated that many advanced scanning methods can spread a worm much faster
than random scanning. Moreover, the worm propagation speed and the worm traffic reflect
different aspects of Internet epidemics and may not correlate. We have also emphasized
Internet worm tomography as a framework to infer the characteristics of Internet epidemics
from Darknet observations. Finally, we have contemplated that epidemics can spread among
mobile devices and in IPv6, and have a far-reaching effect to our everyday lives.
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