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1. Introduction  

Scanning and starring photovoltaic infrared focal plane arrays (PV IRFPAs) based on 

ternary alloys Hg1-xCdxTe (Whicker, 1992; Triboulet & Chatard, 2000; Baker & Maxey, 2001; 

Norton, 2002; Kinch, 2007) and binary compound InSb and its alloys (Glozman et al., 2006) 

are considered as the most sensitive, flexible and perspective for detection of infrared 

radiation in spectral ranges 1.5-2.7 Ǎm Short-Wave IR (SWIR), 3-5.5 Ǎm Mid-Wave IR 

(MWIR), 8-14 Ǎm Long-Wave IR (LWIR) and longer than 14 Ǎm Very Long-Wave IR 

(VLWIR). Those FPAs are updated and improved continuously and move gradually from 

linear arrays such as 288×4 (TDI); 480×(4-8) (TDI); 768×8 (TDI) pixels to mid-format (sub-TV 

and TV) including but not limited 64×64; 320×256; 384×288; 640×512 pixels and finally to 

megapixel format (High Definition TV) like 1280×768; 1280×1024 pixels and more. 

Nowadays all manufacturers offer LWIR PV FPA with peak wavelength ǌp ≈ 8.5±0.5 Ǎm. It 

means that scanning thermal imagers (TI) based on old LWIR photoconductive (PC) linear 

arrays (ǌp ≈ 11 Ǎm) covers 8-14 Ǎm atmospheric “window” of transparency totally whereas 

TI based on LWIR PV FPA with ǌp ≈ 8.5±0.5 Ǎm covers left (shorter) part of that “window” 

only. As the result TIs based on LWIR PC linear arrays (ǌp ≈ 11 Ǎm) allow adequate 

visualizing of cold landscape (scene) with temperatures as low as minus 60 0C. Thermal 

Imagers based on LWIR PV FPA with ǌp ≈ 8.5±0.5 Ǎm can visualize adequately cold 

landscape at scene temperatures higher than minus 30 0C (even higher than minus 20 0C). 

Full replacement of scanning type TI by starring type TI will take place when extended 

LWIR PV FPA with ǌp shifted to 10-11 Ǎm at Top=80-100 K will become affordable. 

Megapixel high performance IRFPA having extended spectral covering with ǌp=10-11 µm at 

Top=80-100 K could be preferable to create future TI systems.   

Increasing of array format along with improvement in performance is general development 

trend in IRFPA technology. It is accompanied inevitably by decreasing of pixel size and 

pixel pitch to minimal size reasonable from point of view of infrared physics to provide the 

best resolution and producing comfortable imaging with electro-optic (EO) system. Pitch in 

small-pitch PV IRFPA can be equal to from 10 Ǎm to 20 Ǎm. PV arrays based on InSb and its 

alloys or Hg1-xCdxTe alloys are fabricated often on single layer (substrate) that is common 

for all pixels of array.  
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Implementation of large format high performance PV IRFPAs covering above mentioned 
spectral ranges both single-color and multi-color requires comprehensive simulation of 
photodiodes (PD) performance depending on base material layers properties, interfaces 
parameters, array topology, array design and operating conditions. Analysis of MWIR and 
LWIR PD performance at operating temperatures from 77 K to 100 K and higher is needed 
also due to strong tendency to use so called HOT (higher operating temperature) mode  for 
lowering weight and power consumption in perspective TIs with cryogenically cooled 
megapixel IRFPAs. 
Perhaps novel Hg1-xCdxTe FPAs will be based on photodiodes with p-n junction opposite to 
usually used n+-p junction. PD with optimal p-n junction could have lower dark current 
value than same size n+-p junction. It is desirable for adequate multiplexing of PD arrays to 
Silicon Read-out Integrated Circuits (ROICs).  

2. Key aspects of IRFPA performance requiring simulation 

1. Simulation of IR photodiodes detectivity and responsivity depending on cut-off 
wavelength, type of junction: n+-p junction or p-n junction and operating temperatures 
from 77 K to 100 K and higher. 

2. How does recombination rate at nearest interface to PD absorber impact on PD dark 
current? 

3. Development of theoretical approach producing analytical expressions for collection of 
photogenerated charge carriers in small-pitch infrared PV arrays enabling optimization 
of array topology for reaching the best resolution, good filling factor and minimal cross-
talking. 

Due to small thickness of layers in epitaxial heterostructure interfaces are located close to 
active regions of p-n junction and hence generation-recombination processes at interfaces 
can impact on value of current flowing through junction. In high-density arrays with thin 
common layer, collection length of photogenerated charge carriers will exceed pixel pitch as 
a rule. It means that each pixel can collect excess charge carriers generated far from PD’s p-n 
junction border. Therefore optimization of resolution, filling factor and cross-talking level of 
small-pitch high-density PV FPA requires complete estimation of photocurrent generation 
in neighbor PD pixels depending on pixel and array design, material properties and 
operating conditions. In two technologically viable 2D IRFPA architectures: front-side 
illuminated High-Density Vertically Integrated Photodiode (HDVIP) or (“Loop-hole”) and 
backside illuminated flip-chip bonded via In-bumps to Si-ROIC are used special guard rings 
or grids to solve a. m. problems. Therefore development of theoretical simulation describing 
analytically collection of photogenerated charge carriers in small-pitch infrared PV arrays 
seems useful.  

3. Simulation of LWIR Hg1-xCdxTe PD with small sensitive area 

3.1 Photodiode models and simulation approach 

Simulation was done for front-side illuminated LWIR Hg1-xCdxTe photodiode based on n+-p 
or p-n junction. Performance of LWIR photodiodes (Hg0.785Cd0.215Te and Hg0.766Cd0.234Te) 
was estimated at operating temperatures 77 K and 100 K. Evaluation was performed at 
reverse bias 0.05 V because every real Hg1-xCdxTe PD array multiplexed to Silicon Read-out 
Integrated Circuit (ROIC) is operated under reverse bias.  
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Upper limit of PD performance was calculated under assumption that diffusion current is 

prevailing component of dark current in PD pixel at low reverse bias. Photocurrent excited 

by background radiation was taken into account as well because its value is competitive to 

dark (diffusion) current. Tunnel current is controlled mainly by total absorber doping and in 

calculations its value was considered many times lower than diffusion current value at 

reverse bias 0.05 V. Currents due to generation in space charge region of p-n junction and 

surface (interface) shunting were ignored. Interface shunting elimination can become the 

hardest task to solve. Surface (interface) recombination acts as generator of minority charge 

carriers into absorber region of either n+-p or p-n junction and at high rates it can enlarge 

seriously dark current value, especially when p or n absorber region is thin (shorter than 

diffusion length of minority charge carriers). For simplicity surface recombination rate was 

taken low (negligible) - 102 cm/sec and high (infinitive) - 107 cm/sec.  

3.2 PD performance: simulation formalism 

Let’s take photodiode with n-p junction as a model and consider contribution of quasi-

neutral n-side and p-side of photodiode to dark current and background current. 

Depletion current per unit volume from the n-side for a planar one-side photodiode is given 

by expression: 

 ( ) ( ) ( )F D
p n p n p nJ W J W J W− = − + −  (1) 

 

Density of background current from n-side is described by formula:  
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Density of dark current from n-side is described by formulae:  
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Contribution to responsivity from n-side of photodiode:  
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Depletion current per unit volume from the p-side for a planar one-side photodiode is given 
by expression: 

 ( ) ( ) ( )F D
n p n p n pJ W J W J W= +  (8) 

Density of background current from p-side is described by formula:  
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Density of dark current from p-side is described by formulae:  
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Contribution to responsivity from p-side of photodiode: 

  
2 2

4
1 2 2

0.8 10 exp( ) {2}
1

P n
J co

n

L
S W

L
λ
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γ
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Here: 

nW−  - coordinate of depletion region border on n-side; pW  - coordinate of depletion region 

border on p-side; 1W  - thickness of quasi-neutral n-side; 3W  - thickness of quasi-neutral p-

side; q - electron charge; 1 rη = − - quantum efficiency; γ  and r - absorption and reflection 

coefficients; F - background radiation flux density; ,n pD D - diffusion coefficient for 

electrons and holes properly; ,n pL L - diffusion length for electrons and holes properly; 

,n pS S - surface recombination rate for electrons and holes properly; coλ - cut-off wavelength. 
Majority and minority charge carrier concentrations are defined (Blakemore, 1962) 
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In n-side:  

 e bgrn n n= + ; n ne bgrp p n= + ; 
( )1/2

2 24

2 2

d id
e

N nN
n

+
= + ; bgr bgr bgr effn p g τ= = ×  (14) 

In p-side: 

 e bgrp p n= + ; p pe bgrn n n= + ; 
( )1/2

2 24

2 2

a ia
e

N nN
p

+
= + ; bgr bgr bgr effn p g τ= = ×  (15) 

Where:  

en  and ep - equilibrium electron and hole concentrations; dN  / aN  donor/acceptor dopant 

concentration; in  – intrinsic carrier concentration; bgr bgrn p=  – average concentration of 

excess charge carriers generated by infrared background flux; bgrg Fη γ= × ×  – excess charge 

carriers generation rate by background flux; effτ - resulting excess charge carriers’ lifetime.          
Energy gap value ( , )gE x T  in eV is determined by formula (Laurenti et al., 1990), where x  is 

composition of Hg1-xCdxTe:  

 { }0.303 (1 ) 1.606 0.132 (1 ) 3gE x x x x= − × − + × − × × − +  (16) 

 { }
4 26.39 (1 ) 3.25 5.92 (1 ) 10

3
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× − + × +

 (17) 

Intrinsic charge carriers concentration in Hg1-xCdxTe is given by expression (Schmit, 1970): 
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In pure non-compensated Hg1-xCdxTe material there are two band-to-band processes which 
control total recombination rate: radiative recombination and Auger recombination due to 
transitions A1 and/or A7 (Kinch et al, 1973; Gelmont, 1980; Gelmont 1981; Kinch, 2007):  
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Resulting excess charge carriers’ lifetime equals to:  
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1 7

1 1 1 1

R A Aτ τ τ τ
= + +  (21) 

Iteration procedure was used to calculate bgrn (5): 
( )i

bgr bgr
eff

n n
τ

=
=

( 1)i
bgr bgr

eff
n n

τ −=
, i = 1, 2, . .  k, 

(0) 0bgrn = . Convergence took place at number of iteration k ≤ 10. 

The following noise sources were taken into account: 
- Johnson-Nyquist thermal noise of PD’s dynamic resistance; 
- Background current shot noise;   
- Dark current shot noise. 

Noise currents densities are taken at preselected reverse bias bV (typically 0.01-0.1 V).   

 2 4
2 ( )Ff D

Ff d
dV

kT
I f q J A J A f

R
δ Σ Σ= Δ + × × × + × ×Δ  (22) 

Total density of noise current: 

 2
shI Iδ=  (23) 

Here: 

dA - geometrical area of photodiode’s p-n junction; FfA - collection area of photogenerated 

current in photodiode (“light capture” area); fΔ - operative bandwidth; dVR  - resistance of 

photodiode at preselected reverse bias V, FfJΣ  - total background current, DJΣ - total dark 

current. 
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First term in curly brackets determinates contribution of n-side to resistance of photodiode 
at reverse bias and second term the same of p-side.  
Impact of surface recombination rate on charge carriers concentration and currents densities 
was accounted correctly.  
Total density of background current:  

 ( ) ( )Ff Ff Ff
n n p pJ J W J WΣ = − +  (26) 

Total density of dark current: 

  ( ) ( )D D D
n n p pJ J W J WΣ = − +  (27) 

Let’s assume for simplicity that: 
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 d FfA A A= =      (28) 

Density of total current through photodiode will be sum of two terms: 

 Ff D
FfDJ J JΣ Σ= +      (29) 

Detectivity is calculated following to standard expression: 
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Here: ( )2sin / 2fk = Θ  where Θ  - full solid angle within that background and signal 

radiation comes in sensitive area of photodiode. 

3.3 LWIR PD performance: calculation results 

We have done calculations for model photodiodes based on asymmetric n+-p or p-n junction 
always used in practice. Data used in calculation are presented in Table 1. 
 
 PD with n+-p junction PD with p-n junction 

Operating temperature, T (K) 77 100 77 100 

Hg1-xCdxTe absorber composition, 
x (mol. fr.) 

0.234 / 0.215 0.234 / 0.215 0.234 / 0.215 0.234 / 0.215 

Energy gap, Eg (eV) 0.138 / 0.104 0.144 / 0.112 0.138 / 0.104 0.144 / 0.112 

Cut-off wavelength, ǌco (Ǎm) 9.0 / 11.9 8.6 / 11.1 9.0 / 11.9 8.6 / 11.1 

Peak wavelength, ǌp (Ǎm) ≈ 8.1 / ≈ 10.5 ≈ 7.7 / ≈ 10 ≈ 8.1 / ≈ 10.5 ≈ 7.7 / ≈ 10 

Absorption coefficient (Blue, 1964), 
γ (cm-1) 

3×103 3×103 3×103 3×103 

Quantum efficiency, η 0.7 0.7 0.7 0.7 

Junction area, A (Ǎm × Ǎm) 20 × 20 20 × 20 20 × 20 20 × 20 

Junction regions doping, n and p 
(cm-3) 

n+=1017 
p=1016 

n+=1017 
p=1016 

p=5×1016 
n=1015 

p=5×1016 
n=1015 

Junction regions thickness, t (Ǎm) 
t(n+) = 0.5 

t(p-absorber) = 
4-40 

t(n+) = 0.5 
t(p-absorber) = 

4-40 

t(p) = 0.5 
t(n-absorber) = 

4-40 

t(p) = 0.5 
t(n-absorber) 

= 4-40 

Electron mobility, Ǎn (cm2/(V×sec)) 1.9×105 1.29×105 1.9×105 1.29×105 

Hole mobility, Ǎp (cm2/(V×sec)) 600 390 600 390 

Reverse bias value, Vb (V) -0.05 -0.05 -0.05 -0.05 

Surface recombination rate, s 
(cm/sec) 

102 
107 

102 
107 

102 
107 

102 
107 

Table 1. Data used for estimation of small-size Hg0.766Cd0.234Te and Hg0.785Cd0.215Te 
photodiodes performance 
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Calculation results are presented on Fig. 1-6. Typically discussed photovoltaic case ( bV =0) 

has been studied as well. 
Obtained results presented on Fig. 1-6 say that extended LWIR PD with p-n junction will be 
potentially of 4-5 times lower dark current value than PD with n+-p junction at Top=77 K 
and 2 times lower at Top=100 K. As the result it is hoped that decrease in D* value with 
elevating of operating temperature up to 100 K will be moderate in the case of PD with p-n 
junction opposite to significant decreasing observed on LWIR PD with n+-p junction as it 
presented on Fig. 1-6. Calculated detectivity at reverse bias 0.05 V is higher than in the case 
of zero bias (photovoltaic mode). Formalism of R0A product is not suitable for the case of 
LWIR PD arrays multiplexed to Silicon ROIC.  
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Fig. 1. Calculated peak detectivity D*(ǌp) and peak responsivity SI(ǌp) of Hg0.785Cd0.215Te 
photodiodes with n+-p junction versus thickness of p-absorber tab at FOV=1800 – (1 and 3) 
and FOV=300 – (2 and 4). Surface recombination rate s=102 cm/sec (1 and 2) and s=107 
cm/sec (3 and 4). Operating temperature 77 K. Background temperature equals to 293 K. 
Doping of p-absorber p77=1016 cm-3, n+-p junction area 20 Ǎm × 20 Ǎm  
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Fig. 2. Calculated peak detectivity D*(ǌp) and peak responsivity SI(ǌp) of Hg0.785Cd0.215Te 
photodiodes with n+-p junction versus thickness of p-absorber tab at FOV=1800 – (1 and 3) 
and FOV=300 – (2 and 4). Surface recombination rate s=102 cm/sec (1 and 2) and s=107 
cm/sec (3 and 4). Operating temperature 100 K. Background temperature equals to 293 K. 
Doping of p-absorber p77=1016 cm-3, n+-p junction area 20 Ǎm × 20 Ǎm  
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Fig. 3. Calculated peak detectivity D*(ǌp) and peak responsivity SI(ǌp) of Hg0.785Cd0.215Te 
photodiodes with p-n junction versus thickness of n-absorber tab at FOV=1800 – (1 and 3) 
and FOV=300 – (2 and 4). Surface recombination rate s=102 cm/sec (1 and 2) and s=107 
cm/sec (3 and 4). Operating temperature 77 K. Background temperature equals to 293 K. 
Doping of n-absorber n77=1015 cm-3, p-n junction area 20 Ǎm × 20 Ǎm 
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Fig. 4. Calculated peak detectivity D*(ǌp) and peak responsivity SI(ǌp) of Hg0.785Cd0.215Te 
photodiodes with p-n junction versus thickness of n-absorber tab at FOV=1800 – (1 and 3) 
and FOV=300 – (2 and 4). Surface recombination rate s=102 cm/sec (1 and 2) and s=107 
cm/sec (3 and 4). Operating temperature 100 K. Background temperature equals to 293 K. 
Doping of n-absorber n77=1015 cm-3, p-n junction area 20 Ǎm × 20 Ǎm  
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Fig. 5. Calculated peak detectivity D*(ǌp) and peak responsivity SI(ǌp) of Hg0.766Cd0.234Te 
photodiodes with n+-p junction versus thickness of p-absorber tab at FOV=1800 – (1 and 3) 
and FOV=300 – (2 and 4). Surface recombination rate s=102 cm/sec (1 and 2) and s=107 
cm/sec (3 and 4). Operating temperature 77 K. Background temperature equals to 293 K. 
Doping of p-absorber p77=1016 cm-3 , n+-p junction area 20 Ǎm × 20 Ǎm  
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Fig. 6. Calculated peak detectivity D*(ǌp) and peak responsivity SI(ǌp) of Hg0.766Cd0.234Te 
photodiodes with n+-p junction versus thickness of p-absorber tab at FOV=1800 – (1 and 3) 
and FOV=300 – (2 and 4). Surface recombination rate s=102 cm/sec (1 and 2) and s=107 
cm/sec (3 and 4). Operating temperature 100 K. Background temperature equals to 293 K. 
Doping of p-absorber p77=1016 cm-3 , n+-p junction area 20 Ǎm × 20 Ǎm  

4. Surface recombination impact on currents in LWIR Hg1-xCdxTe photodiode  

4.1 Approach and formalism 

Cross-section of model photodiode (pixel) is shown on Fig. 7. 
Dependences of dark and background currents in reverse-biased LWIR Hg1-xCdxTe 

photodiode on surface recombination rate S  at back surface of p  base ( t LP= ) were 

studied.  
Basing on parameters of considered photodiode let’s assume that: 
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1. Hole current inflowing into space charge region is negligible. 
2. Generation-recombination current in space charge region is negligible.   
 

                                       0                                         t  

pSCR F n+

 

Fig. 7. Cross-section of model photodiode pixel. Here: n+  is n+ - region of n p+ −  junction; 

p  is base region common for all pixels of PV array. SCR is space-charge (depletion) region 

of n p+ −  junction. Front surface of photodiode is irradiated by background photon flux F  

that is absorbed and generates photocurrent in photodiode. Zero point on t -axis means the 

boundary between space-charge region and quasi-neutral part of p  base region. Point 

t LP=  is coordinate of p  base region back surface 

Concentration profiles of non-equilibrium dark and background generated charge carriers 

in p  base versus t  coordinate were analyzed theoretically in reversed-biased Hg1-xCdxTe 

photodiode at different Field-Of-View (FOV) and surface recombination rate S  values. It is 

shown that growth of concentration of non-equilibrium dark charge carriers near SCR 

depends significantly on S  that differs essentially from behavior of non-equilibrium 

background generated charge carriers. It gives in the result high growth of dark current 

with increasing of surface recombination rate. At the same time background current is 

varied low. Calculations based on obtained analytic expressions were done at temperature 

T = 77 K. 
Continuity equation of electron current in p  base of photodiode is defined by expression: 

 ( )
( ) 0n

n

i t
q g t q R

t

∂
+ × − × =

∂
 (32) 

Where, ( )ni t - electron current density, ( )g t – specific (per cubic centimeter) photogeneration 

rate of electron-hole pairs which is defined by formula: 

 ( ) exp( )g t F tγ η γ= × × × − ×  (33) 

Where: 

/n pR R n τ= = Δ - specific band-to-band recombination rate of non-equilibrium electrons and 

holes; d bgrn n nΔ = + and τ - non-equilibrium electrons and holes concentrations and lifetime; 

dn  and bgrn - concentration of non-equilibrium dark and background radiation generated 

charge carriers.  

Dark and background generated currents flowing through photodiode were calculated at 

short-circuit mode of operation under low reverse-biased bV ≤ 0.05 V. 
Boundary conditions of the task are stated as follows: 

 ( ) ( )ni LP q S n LP= − × ×Δ ; (0) exp 1p

qV
n n

kT

⎧ ⎫⎡ ⎤⎪ ⎪Δ = × −⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 (34) 

LP

www.intechopen.com



 Advances in Photodiodes 

 

106 

Where,  

S - surface recombination rate of non-equilibrium minority charge carriers (electrons) at 

back surface of photodiode p  base (at coordinate t LP= ; (0)nΔ - non-equilibrium charge 

carriers concentration at the boundary between space charge region and quasi-neutral part 

of p  base region; pn - concentration of equilibrium minority charge carriers (electrons) in p  

base and V - bias across space charge region of photodiode that is independent on 

illumination.                        

Total current I  flowing through photodiode in considered conditions is formed by 

electrons inflowing into space charge region from quasi-neutral part of p  base region: 
 

 (0) (0)n pd nI I A i= = ×  (35) 

 

Where:  

pdA - area of photodiode where current is formed. Please note that for the case of 

photodiode sensitive area and area of photodiode where current is formed are matched. 

Let’s assume that there is no built-in electric field in quasi-neutral parts of n p+ −  junction. 

Solving equation (32) in diffusion approximation we find that: 
 

 (0) (0) (0)n bgr di i i= +  (36) 

 
2 2

2 2

1
(0) 1

1
n

bgr n
nn

L M P
i q Q q F

LL

γη η
γγ

⎛ ⎞ ⎛ ⎞×
= × × = × × × × −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ×× − ⎝ ⎠⎝ ⎠

 (37) 

 

( ) exp( )

1

n
n

n n

n

n n n

D LP LP
sh S ch D S LP

L L L
M P

D LP LP
ch S sh

L L L

γ γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

× + × + × − × − ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (38) 

 (0) (0) n n nn
d

n n

n n n

D LP LP
sh S ch

L L LD
i q n

L D LP LP
ch S sh

L L L

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
× + ×⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠= − × ×Δ × ⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥× + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

   (39) 

 
Where:  

(0)bgri  and (0)di  - background and dark components of electron current density (0)ni ;  

nD  and nL - electrons’ diffusion coefficient and ambipolar diffusion length of charge 

carriers in p  base defined via ambipolar diffusion coefficient of electrons in p  base;  

nQ  - collection coefficient of non-equilibrium photogenerated charge carriers in p  base and 

LP  - thickness of quasi-neutral part of p  base region. 

Concentration profiles of non-equilibrium dark ( )dn t  and photogenerated ( )bgrn t  charge 

carriers are defined by expressions (40) and (41) properly: 
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 ( ) (0)

n n
n n

d

n n
n n

LP t LP t
D ch S L sh

L L
n t n

LP LP
D ch S L sh

L L

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
× + ×⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠= Δ × ⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥× + ×⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (40) 

 ( )2 2
( ) exp 2

1
bgr

n

F
n t t M

L

γ η τ γ
γ

⎛ ⎞× × × ⎡ ⎤= × − × +⎜ ⎟ ⎣ ⎦⎜ ⎟− ×⎝ ⎠
 (41) 

 

( )
2

n
n

n n n n

n

n n n

Dt LP t LP t
D S sh S sh ch

L L L L
M

DLP LP
S sh ch

L L L

γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −

× − × − × − ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞
× + ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (42) 

4.2 LWIR PD currents: calculation results 

Data used in calculation are given in Table 2. 
Data used for estimation of dark and background generated currents in small-size 
Hg0.776Cd0.224Te photodiode: 

 

 PD with n+-p junction 

Operating temperature, T 77 K 

Hg1-xCdxTe absorber composition, x 0.224 

Energy gap, Eg 0.12 eV 

Cut-off wavelength, ǌco 10.3 Ǎm 

Peak wavelength, ǌp ≈ 9.2 Ǎm 

Absorption coefficient, γ 3×103 cm-1 

Quantum efficiency, η 0.7 

Photodiode collection area, Apd 20 Ǎm × 20 Ǎm = 4×10-6 cm2 

Thickness of quasi-neutral part of p-base, LP 10 Ǎm=10-3 cm 

Junction regions doping, n and p n+=1017 cm-3; NA= p=5×1015 cm-3 

Bias across space charge region, Vb -0.05 V 

Minority charge carriers lifetime in p-base, τ 7.95×10-8 sec 

Electron mobility, Ǎn 1.67×105 cm2/(V×sec) 

Hole mobility, Ǎp 600 cm2/(V×sec) 

Electron diffusion coefficient, Dn 1.15×103 cm2/sec 

Hole diffusion coefficient, Dp 4.14 cm2/sec 

Ambipolar diffusion length, L 48 Ǎm 

Table 2. Data used for estimation of dark and background generated currents in small-size 
Hg0.776Cd0.224Te photodiode 

Developed approach (32) - (42) was applied to calculate non-equilibrium dark and 
background generated concentration of minority charge carriers in p base and dark and 
background generated currents flowing through small-size Hg0.776Cd0.224Te photodiode at 
low reverse bias.  

www.intechopen.com



 Advances in Photodiodes 

 

108 

Calculated dependences of non-equilibrium dark ( )dn t  and background generated 

( )bgrn t concentration of minority charge carriers in p  base on surface recombination rate S  

and cold shield Field-Of-View (FOV) are shown on Fig. 8. As it is seen from Fig. 8 calculated 

non-equilibrium dark concentration of minority charge carriers at back boundary of p  base 

t LP=  increases up to two orders in comparison with concentration at SCR 

boundary 0t = with growing S . At the same time background generated concentration of 

minority charge carriers varies not so significantly in a few times only.  

Respectively dark dI  and background generated bgrI  currents are varied with growing 

S analogously to variation of non-equilibrium dark and background generated 

concentrations of minority charge carriers (Fig. 9). To do comparison of ( )dI S  and ( )bgrI S  

dependencies more convenient we present on Fig. 9 graphs in arbitrary units as well. Every 

curve is specified to its minimum. Minimum value of dI  responds S = 102 cm/sec and for 

bgrI  it responds S = 107 cm/sec. It is obvious that dark component varies in a few orders 

and background component near to constant. 

Physical reason of that result becomes clear if we address to Fig. 8. Independently to surface 

recombination rate value at back surface of p  base gradient of concentration of background 

generated minority charge carriers is practically the same near SCR (near 0t = ). But 

gradient of concentration of non-equilibrium dark minority charge carriers increases rapidly 

with increasing S . Proper currents are proportional to gradients of proper concentrations at 

0t = . Therefore background current is varied slightly and dark current increases 

significantly when surface recombination rate grows. 
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Fig. 8. Calculated concentration profiles of non-equilibrium dark ( )dn t  - (a) and background 

generated ( )bgrn t - (b) minority charge carriers in quasi-neutral p base versus thickness t of 

p  base at different surface recombination rate S  and cold shield formed Field-Of-View (Θ) 

in Hg1-xCdxTe (x=0.224) photodiode described by data given in Table 2  
 

The reason of different reaction of non-equilibrium dark and background generated charge 

carriers’ concentration profiles on surface recombination rate’s variation is as follows. In 

accepted conditions major share of infrared radiation is absorbed in part of p  base joining 

to space charge region (nearby point 0t = ). Thickness of that absorbing part is a few times 

smaller than total thickness LP  of p  base. Again thickness of p  base is almost order of 

value less than ambipolar diffusion length nL ≈ 10-2 cm. In addition background 

(a) (b)
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concentration in zero point ( 0t = ) is always equal to zero i.e. (0)bgrn =0. As the result 

concentration profile of photogenerated charge carriers nearby to point 0t =  is formed 

preferably by their photogeneration with subsequent extraction into SCR. On the other hand 

due to disparity nLP L<<  extraction of dark minority carriers into SCR takes place from 

whole thickness of p base where they have existed initially (at bV =0). Furthermore value of 

concentration (0) (0) 0dn n= Δ <  is fixed according to expression (34) by applied bias and 

algebraic value ( ) 0dn LP ≤  grows with increasing of S . In other words ratio ( ) / (0)d dn LP n  

is raised. This entire means that gradient of concentration of non-equilibrium dark minority 

charge carriers along axis t  grows with increasing of S  (Fig. 8a). 
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Fig. 9. Dark dI - (a) and background generated bgrI - (b) currents versus S  in Hg1-xCdxTe 

(x=0.224) photodiode described by data given in Table 2. On graph (a) currents are given in 

absolute units and on graph (b) – in arbitrary units when curves (a) are specified to 

minimum photocurrent values 

5. Photocurrent generation and collection in small-pitch high-density IRFPA 

Theoretical approach was developed for the case of front-side illuminated IRFPA based on 

regular structure of n p+ −  junctions enlaced by grn+ - guard ring around, Fig. 10. 

5.1 PV IRFPA design model 

Cross-section of model PD array fragment (pixel) is shown on Fig. 10. 

5.2 Photocurrent generated by sideways δ-shaped light beam 

For estimation purpose let’s consider one-dimensional (along line A) gr m grn p n p n+ + +− − − −  

fragment (Fig. 10) of model PD array illuminated by δ -shaped light beam perpendicularly 

to surface of array, where mn+  is n+ - region of n p+ −  junction, grn+  is n+ - guard ring 

around n p+ −  junction and p  is layer (substrate) common for all pixels of PD array. Pixel is 

area including n p+ −  junction and limited by guard ring (Fig. 11). Model array fragment is 

symmetrical regarding mn+ - region (Fig. 11). For simplicity word photocurrent will mean 

further photocurrent generated by pixel illuminated by proper light. Photocurrent generated 

in pixel is calculated at short-circuit between lead V and Ground (Fig. 11). 
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Fig. 10. Cross-section of model PD array fragment (pixel). 1 - mn+  is n+ - region of n p+ −  

junction with width 0W ; 2 - grn+  is n+ - guard ring with width grW ; 3 - p  is thin layer 

(substrate) common for all pixels of PD array. Spacing between periphery of n p+ −  junction 

and guard ring is marked as W . Front surface of array is irradiated by photon flux hν  (δ -

shaped light beam or uniform flux or spotlight) that is absorbed and generates photocurrent   
 

 

Fig. 11. Front view of model PD array fragment. 1 - mn+  is n+ - region of n p+ −  junction with 

width 0W ; 2 - grn+  is n+ - guard ring with width grW ; 3 - p  is thin layer (substrate) 

common for all pixels of PD array. Spacing between periphery of n p+ −  junction and guard 

ring is marked as W . Front surface of array is irradiated by photon flux hν  (δ -shaped 

light beam or uniform flux or spotlight) that is absorbed and generates photocurrent in 

pixel. One-dimensional consideration is developed along line A (illumination moves along 

that line). Common p  thin layer and grn+ - guard ring grid are grounded.  Photocurrent 

generated in pixel is calculated between Ground and V diode lead connected to mn+  - region 

of n p+ −  junction   
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Let’s assume: 
Recombination rates of excess electrons and holes are equal to each other. 

 n p

n
R R

τ
Δ

= =  (43) 

Where: nR  and pR - recombination rates, nΔ - concentration and τ - lifetime of excess 

electrons and holes.   
Drift of excess charge carriers in electric field in p - region is negligible.  

Band-to-band photogeneration of charge carriers at point gy y= , i.e. specific rate of 

photogeneration is described by formula: 

 ( ) ( )gg y G y yδ δ= × −  (44) 

Where: ( )gy yδ − - delta-function and Gδ - total photogeneration rate of charge carriers. 
In analyzed conditions distribution of ( )n yΔ  in p - region is defined by diffusion equation: 

 
2

2
( )g

n n
D G y y

y
δ δ

τ
∂ Δ Δ

× − = − × −
∂

 (45) 

Where: D - coefficient of ambipolar diffusion.  

Do solve equation (45) in intervals / 2o gW y y< ≤  and 7 0 / 2gy y y W W≤ ≤ ≡ +  assuming 

boundary conditions: 

  ( / 2) exp 1o p

qV
n W n

kT

⎡ ⎤⎛ ⎞Δ = × −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 and 7( ) 0n yΔ =  (46) 

And stitching conditions are: 

 ( 0) ( 0)g gn y n yΔ − = Δ +  and 
0 0g gy y y y

n n
D G

y y
δ

= + = −

⎛ ⎞
∂Δ ∂Δ⎜ ⎟× − = −⎜ ⎟∂ ∂⎜ ⎟

⎝ ⎠

 (47) 

Where: pn - concentration of equilibrium minority charge carriers (electrons) in p - region.  
Condition (46) means continuity of excess charge carriers’ concentration, and condition (47) 
is derived relation resulted from integration of equation (45) in neighborhood of point 

gy y= . Photocurrent value phIδ  at 0 / 2y W=  is defined by formula: 

 phI q G Kδ
δ= × ×  (48) 

Where: K - coefficient of one-sided sideways photoelectric conversion defined as: 

 
[( ) / ]

( / )

sh W d L
K

sh W L

−
= . (49) 

Where: L D τ= × - ambipolar diffusion length of charge carriers.  
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Graph of K  versus normalized distance d W between δ -shaped light beam and periphery 

of mn+ - region of n p+ −  junction is presented on Fig. 12. 

If sideways δ -shaped light beam illumination is symmetrical in relation to n+ - region of 

n p+ −  junction (i.e. junction is illuminated from left and right sides, Fig. 10) then total 

photocurrent value will be two times higher than got from expression (48).  
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Fig. 12. Dependence of one-sided sideways photoelectric conversion coefficient K  on 

normalized distance d W between δ -shaped light beam and periphery of mn+ - region   

5.3 Photocurrent generated by uniform sideways and front illumination 

To calculate photocurrent value lat
phI  under symmetrical regarding mn+ - region sideways 

illumination we need integrate expression (48) with respect to y between / 2oW  and 

W and than multiply result by coefficient 2. 
In the case of uniform illumination ( ( )G x constδ = ) we get: 

 2
lat lat
ph W totI q G K= × × . (50) 

 Where: 2WG - total sideways photogeneration rate (taking into account both left and right 

sides) is defined as: 

 2 2WG G Wδ= ×
       (51) 

And sideways photoelectric conversion coefficient lat
totK  if defined by: 

 
2

lat
tot

L W
K th

W L

⎛ ⎞= × ⎜ ⎟
⎝ ⎠

. (52) 

Assuming that photoelectric conversion coefficient is equal to 1 under front-side 

illumination we can write photocurrent value fr
phI in this case as follows: 

 0
fr
phI q G Wδ= × × . (53) 
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As it follows from expressions (50) - (53) ratio of photocurrents generated by n p+ −  junction 

under uniform sideways and front-side illumination is defined by: 

 0 0

1
2 2

2 2

lat
ph

fr
oph

I L W
R th a th a Y

W L aI

⎛ ⎞ ⎛ ⎞≡ = × × = × × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (54) 

 /o oa L W=  , /a L W=  and 
1

2
2

Y th
a

⎛ ⎞= × ⎜ ⎟
⎝ ⎠

. (55) 

Graph of calculated universal dependence 
1

2
2

Y th
a

⎛ ⎞= × ⎜ ⎟
⎝ ⎠

 versus /L W  is given on Fig. 13. 

Herein: 

 ( / )oR a Y L W= × .   (56) 
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Fig. 13. Graph of universal dependence 
1

2
2

Y th
a

⎛ ⎞= × ⎜ ⎟
⎝ ⎠

 versus /L W  following to (55) 

5.4 Photocurrent generated by moving small-diameter uniform spotlight 

Basic relation (48) allows estimating of photocurrent phI  variation when small diameter 

( )spotD  uniform spotlight is moving along surface of PD array.  

To calculate photocurrent value we need integrate expression (48) with respect to y  within 

uniformly illuminated region except guard ring region ( grW ). Further we will limit 

consideration by condition (57): 

 spot oD W≤ . (57) 

Within uniform spotlight area dependence of photocurrent phI  on spot center position cy  

will be described by formulae given further.  

Case (a): Gap between mn+ - region border and grn+ - guard ring is higher than spot diameter: 
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 spotW D≥ . (58) 

Generation of photocurrent when spot illuminates right half of central pixel.  

Let’s mark ( )c
phI  photocurrent generated in central pixel when spot moves within interval 

0 02 2W W y W W− − ≤ ≤ + . 

1a. Spot center moves within the interval: 

 1 00 2cy y W r≤ ≤ ≡ − . (59) 

In this case spot is located within mn+ - region of n p+ −  junction totally. Photocurrent ( )c
phI  is 

frontal only that is: 

  ( ) frc
spotph phI I q G Dδ= = × × . (60) 

2a. Spot center moves within the interval: 

  1 2 0 2 / 2c spoty y y W D≤ ≤ ≡ + . (61) 

Spot light is appearing on the side of mn+ - region and at 2cy y> get it away.   
In the interval (61) we get: 

 
( )

( )

3
1 2 3 2

( )
( , )

c
cph c

c c c

I y y yL W
F y y y y y y ch ch

q G sh W L L Lδ

⎡ ⎤−⎛ ⎞⎛ ⎞= − − ≡ − + × −⎢ ⎥⎜ ⎟⎜ ⎟⋅ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (62) 

 ( )3 0 2 / 2spoty W W D≡ + −  (63) 

3а. Spot center moves within the interval: 

 2 3cy y y≤ ≤ . (64) 

Spotlight is located totally between mn+ - and grn - regions, therefore  0fr
phI =  and 

   ( ) ( )
( )

( )

7
2 7

2( )
2

c
spotcph c

c

sh D LI y y y
F y y L sh

q G sh W L Lδ

−⎛ ⎞= − ≡ × × ⎜ ⎟⋅ ⎝ ⎠
. (65) 

Case (a1): Let’s impose some condition - width of guard ring is narrower than spotlight 
diameter: 

 gr spotW D< . (66) 

4а1. Spot center moves within the interval: 

 ( )3 5 0 2 / 2c spoty y y W W D≤ ≤ ≡ + + . (67) 

Spotlight gets away gradually from considered central pixel. Photocurrents generated in 

central pixel and neighbor right side pixel will be equal to each other when cy  will coincide 

to mid 4y of right side guard ring (68): 
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 ( ) ( )4 0 2 2gry W W W≡ + + . (68) 

In the interval (67): 

 ( )
( )
( )

( ) 2
5

3 5

2( )
2

c
ccph

c

sh y y LI y
F y y L

q G sh W Lδ

⎡ ⎤−⎣ ⎦= − ≡ ×
⋅

. (69) 

5a. Spot center moves beyond coordinate 5y  

 5cy y≥ . (70) 

In this case spotlight leaves central pixel entirely and no photocurrent will be generated  

 ( )( ) 0c
cphI y = . (71) 

Generation of photocurrent when spot illuminates left half of neighbor right side pixel. 

Photocurrent generation in right side pixel phI>  will take place when edge of spotlight 

appears in that pixel, i.e. at condition (72): 

 ( )6 0 2 / 2c gr spoty y W W W D≥ ≡ + + − . (72) 

It means that till spot’s edge hasn’t reach periphery of right side pixel and no photocurrent 
is generated 

6a. 6cy y≤ ;  ( ) 0ph cI y> = . (73) 

Photocurrent ( )ph cI y>  and ( )( )c
cphI y  values are symmetrical about mid line of guard ring 

region 4y , i.e.:  

 ( ) ( )4( ) 2
c

ph c cphI y I y y> = − .  (74) 

Therefore we do have the following cases:  

7а1. ( )6 11 0 2 / 2c gr spoty y y W W W D≤ ≤ ≡ + + + ;  3 6( )
ph

с
I

F y y
q Gδ

>

= −
×

. (75) 

8а1. ( )11 10 0 2 2 / 2c gr spoty y y W W W D≤ ≤ ≡ + + − ;  ( )2 9

( )ph c
c

I y
F y y

q Gδ

>

= −
⋅

. (76) 

Where: 

 ( )9 0 2 gry W W W= + + . (77) 

9а1. ( )10 12 0 2 2c gry y y W W W r≤ ≤ ≡ + + + ;  ( )1 10 11

( )
,

ph c
c c

I y
F y y y y

q Gδ

>

= − −
×

.   (78)  
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10а1.  12 8cy y y≤ ≤ ;  
( )ph c

spot

I y
D

q Gδ

>

=
×

.                                  (79) 

Where distance between centers of mn+ - regions of central and right side pixels: 

  8 0 2 gry W W W= + + . (80) 

Generation of photocurrent when spot illuminates left half of central pixel.  

Let’s mark photocurrent at negative and positive coordinate cy  as ( )ph cI y−  and ( )ph cI y  

properly. Values ( )ph cI y−  and ( )ph cI y  are the same in respect to zero point 0cy = , i.e. 

  ( ) ( )ph c ph cI y I y− = − . (81) 

Therefore we do have the following cases: 

11a. 1 0cy y− ≤ ≤ ; ( )ph c spotI y q G Dδ− = × × .                  (82) 

12а. 2 1cy y y− ≤ ≤ − ; ( )1 2 3( ) ,ph c c cI y q G F y y y yδ− = × × + + .   (83)  

13а. 3 2cy y y− ≤ ≤ − ; ( )2 7( )ph c cI y q G F y yδ− = × × + . (84)  

14а. 5 3cy y y− ≤ ≤ − ; ( )3 5( )ph c cI y q G F y yδ− = × × + . (85) 

15a. 5cy y≤ − ;  ( ) 0ph cI y− = .                (86) 

Generation of photocurrent when spot illuminates right half of neighbor left side pixel. 

16a. 6 0cy y− ≤ ≤ ; ( ) 0ph cI y− = .               (87) 

17а1. 11 6cy y y− ≤ ≤ − ; ( )3 6( )ph c cI y q G F y yδ− = × × − − .               (88) 

18а1. 10 11cy y y− ≤ ≤ − ; ( )2 9( )ph c cI y q G F y yδ− = × × − − .               (89) 

19а1.   12 10cy y y− ≤ ≤ − ; ( )1 10 11( ) ,ph c c cI y q G F y y y yδ− = × × − − − − .               (90) 

20а1.       8 12cy y y− ≤ ≤ − ; ( )ph c spotI y q G Dδ− = × × .               (91) 

Case (b): Gap between mn+ - region border and n+ - guard ring is less than spot diameter: 

 / 2spotW D≤ .        (92) 

Generation of photocurrent when spot illuminates right half of central pixel. 

21b.   10 cy y≤ ≤ ;  ( ) frc
spotph phI I q G Dδ= = × × .                (93) 
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22b. 1 3cy y y≤ ≤ ;  ( )
( )

1 2 3

( )
,

c
cph

c c

I y
F y y y y

q Gδ
= − −

⋅
.                (94) 

In interval (96) part of spot is located in mn+ - region but spot edge does not reach guard ring. 
Case (b1): Let’s impose some condition: 

b1. 2 ( / 2 )gr spotW D W≤ − .                (95) 

23b1. 3 2cy y y≤ ≤ ; ( )
( )

4 2 2

( )

2

c
cph

c c

I y W
F y y y y L th

q G Lδ

⎛ ⎞= − ≡ − + × ⎜ ⎟⋅ ⎝ ⎠
.                (96) 

24b1. 2 5cy y y≤ ≤ ; ( )
( )

3 5

( )c
cph

c

I y
F y y

q Gδ
= −

⋅
.                                       (97) 

25. 5 8cy y y≤ ≤ ; ( ) 0c
phI = .                                (98) 

Generation of photocurrent when spot illuminates left half of neighbor right side pixel. 

26. 60 cy y≤ ≤ ; ( ) 0ph cI y> = .                (99) 

27b1.   6 10cy y y≤ ≤ ; ( )3 6

( )ph c
c

I y
F y y

q Gδ

>

= −
×

. (100) 

28b1. 10 11cy y y≤ ≤ ; ( )4 10

( )ph c
c

I y
F y y

q Gδ

>

= −
×

.              (101) 

29b1. 11 12cy y y≤ ≤ ; ( )1 10 11

( )
,

ph c
c c

I y
F y y y y

q Gδ

>

= − −
×

.              (102) 

30b1. 12 8cy y y≤ ≤ ; 
( )ph c

spot

I y
D

q Gδ

>

=
⋅

.              (103) 

Generation of photocurrent when spot illuminates left half of central pixel. 

31. 1 0cy y− ≤ ≤ ;  ( )ph c spotI y q G Dδ− = × × .              (104) 

32b.    3 1cy y y− ≤ ≤ − ; ( )1 2 3( ) ,ph c c cI y q G F y y y yδ− = × × + + .              (105) 

33b1.           2 3cy y y− ≤ ≤ − ; ( )4 2( )ph c cI y q G F y yδ− = × × + .              (106) 

34b1. 5 2cy y y− ≤ ≤ − ; ( )3 5( )ph c cI y q G F y yδ− = × × + .                            (107) 
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35. 8 5cy y y− ≤ ≤ − ; ( ) 0ph cI y− = .              (108) 

Generation of photocurrent when spot illuminates right half of neighbor left side pixel. 

36. 6 0cy y− ≤ ≤ ; ( ) 0ph cI y− = .              (109) 

37b1. 10 6cy y y− ≤ ≤ − ; ( )3 6( )ph c cI y q G F y yδ− = × × − − .              (100) 

38b1. 11 10cy y y− ≤ ≤ − ; ( )4 10( )ph c cI y q G F y yδ− = × × − − .              (111) 

39b1. 12 11cy y y− ≤ ≤ − ; ( )1 10 11( ) ,ph c c cI y q G F y y y yδ− = × × − − − − . (112) 

40b1.      8 12cy y y− ≤ ≤ − ;  ( )ph c spotI y q G Dδ− = × × .              (113) 

5.5 LWIR PD array: calculation of photocurrent collection profiles 
Data used in calculation of photocurrent generated in small-pitch high-density 
Hg0.776Cd0.224Te PD array are given in Table 2. Junction regions thickness t was taken t(n+) = 
0.5 Ǎm and t(p-absorber) = 6 Ǎm. Surface recombination rate 102 cm/sec.  

Developed approach (57) - (113) was applied to calculate photocurrent generated in small-

pitch Hg0.776Cd0.224Te PD array. Calculated dependences of photocurrent phI   generated by 

spotlight in Hg1-xCdxTe (x=0.224) PD array are shown on Fig. 14 and ratio of photocurrents 

generated at uniform frontal and sideways illumination can be estimated easily from Fig. 14. 

It is seen clearly that developed approach allows analytical estimation of photocurrent 

generation in different close-packed PD arrays. Following to dependence presented on Fig. 

13 contribution of photocurrent generated by sideways uniform illumination to total 

photocurrent of pixel can be too much high at not reasonable ratios between L , W and 0W . 

Dependences of photocurrent value phI  are calculated as function of spot center position 

coordinate cy  for central and neighbor pixels of array. Condition 0cy =  means that in start 

position Zero of coordinate system and spot center are matched. Length (distance) is given 

in units spotD  (spot diameter). Photocurrent is calculated in units spotq G Dδ× × . It is accepted 

in calculation that width of mn+  - region of n p+ −  junction oW = 20 µm; width of grn+  - guard 

ring grW = 5 µm; spot diameter spotD = 15 µm; operating temperature 77opT K= ; ambipolar 

diffusion length in p  layer L = 48 µm. Spacing between periphery of n p+ −  junction and 

guard ring  W = 20 µm (a) and W = 5 µm (b). Photocurrent in central, neighbor right-side 

and neighbor left-side pixels are presented on graphs by solid curves, dashed curves and 

dash-and-dot curves properly 

6. Conclusion 

We have attempted to develop some general approach for simulation MWIR and LWIR PD 
IRFPA including estimation of major electro-optical parameters. Estimations have shown 
that extended LWIR Hg1-xCdxTe PD with p-n junction will be potentially of 4-5 times lower 
dark current value than PD with n+-p junction at T=77 K and 2 times lower at T=100 K. 
Additionally extended LWIR Hg1-xCdxTe PD with p-n junction will be seriously lower 

www.intechopen.com



Simulation of Small-pitch High-density Photovoltaic Infrared Focal Plane Arrays   

 

119 

sensitive to operating temperature increasing than PD with traditional n+-p junction. We 
have shown that surface recombination rate value at back surface of thin p absorber can 
have serious effect on dark current in small-size LWIR Hg1-xCdxTe PD. We have developed 
analytical expressions describing collection of photogenerated charge carriers in small-pitch 
IRFPA for practical cases: uniform and small-size spotlight illumination.  
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Fig. 14. Graphs of photocurrent generated in Hg1-xCdxTe (x=0.224) PD array following to 
expressions (57)-(113)  
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