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1. Introduction 

Much of the previous work in developing analytical models for high performance composite 

materials has focused on representations of the heterogeneous medium as a homogenous, 

anisotropic continuum.  The development of the equivalent properties of the homogenous 

medium from the geometry of the microstructure and the fiber and matrix properties has 

been come to be known as “micromechanics” (Daniel & Ishai, 2006). The term 

“homogenization” has been applied to the process of determining the effective properties of 

the homogenous medium and for much of the past half century homogenization was the 

only task of micromechanics.  However, increases in computational capability has allowed 

for the use of micromechanics as a “de-homogenization” tool as well.  The de-

homogenization method that is the focus of the current study has been come to be known as 

“micromechanical enhancement” (Gosse & Christensen, 2001; Buchanan et al., 2009).  Here 

the deformation of the homogeneous medium is enhanced by influence functions derived 

from unit cell micromechanical models representing extremes in the packing efficiencies of 

fiber arrangements.  The motivation for development of the de-homogenization step is the 

need for an increase in the robustness and fidelity of failure theories used for these material 

systems wherein the deformation fields within the homogenized solutions are enhanced to 

reflect the actual strain field topologies within the fiber and matrix constituents.  It is these 

enhanced strain fields that are used to determine the onset of damage initiation within the 

medium. 

There are several categories of models which have been proposed to perform the 

homogenization step of micromechanics including: mechanics of materials (Voigt, 1887; 

Reuss, 1929); self-consistent field (Hill, 1965); bounding methods based on variation 

principals (Paul, 1960; Hashin & Rosen 1964); semi-empirical (Halpin & Tsai, 1967); 

numerical finite element methods (Sun & Vaidya, 1996) and experimental methods such as 

uniaxial coupon tests.  A significant amount of work has been devoted to this topic and 

more complete reviews are found elsewhere (Christensen 1979; Pindera et al., 2009).  

Although any analysis method used should be vetted against a rigorous testing program, 

accurate micromechanics models can provide a cost effective method for a priori material 

evaluation and ranking of composite systems. In the traditional composite analysis 

workflow, homogenized material properties are used in a laminate analysis of a structural 
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member to determine lamina level stresses and strains.  Stresses and strains at the lamina 

level are then used directly in a failure criterion to determine the ultimate performance of 

the member.  Some success has been achieved with this approach but the analysis fails to 

take into account the actual state of stress and strain within the constituent phases.  In 

addition, residual thermal stresses resulting from a mismatch in the coefficient of thermal 

expansion between the fiber and matrix phases are usually neglected. Others have noted 

that non-physical singularities may arise in homogenized solutions containing free-edges 

(Pagano & Rybicki, 1974; Pagano & Yuan, 2000). 

Several methods for recovery of the state of stress/strain from a homogenized solution have 

been proposed as well.  Analytic methods have been proposed base on phase averaging 

methods (Hill, 1963; Hashin 1972).  More recently, numerical methods have been employed.  

One method is to perform a global-local finite element analysis.  In this approach the forces 

or displacements obtained from a homogenized solution are applied to a domain in which 

the fiber and matrix phases are modelled explicitly (Wang et al., 2002).  With this method 

one must first determine an appropriate size for the local region, typically containing several 

fibers, using the so-called "local domain test."  It has been suggested that a single fiber local 

region is feasible for determining fiber-matrix interface stresses if the continuum is modelled 

using the micro-polar theory of elasticity (Hutapea et al., 2003).  Others have suggested the 

use of a multilevel analysis that models a homogenized region, a transition region and a 

region containing the explicit microstructure in a single finite element analysis (Raghavan et 

al., 2001).  A more computationally efficient method for recovering the stress and strain in 

the fiber and matrix phases is to use an influence function formulation (Gosse & 

Christensen, 2001).  In this method, also referred to as mircomechanical enhancement, a set 

of six canonical states of deformation and a separate thermal load are applied to a unit cell 

prior to performing an analysis of the homogeneous medium. The influence functions 

extracted from the unit cells are then used to relate the state of homogenous strain in each 

lamina to the state of strain within the representative volume element through the use of the 

enhancement matrix.  Microscopic residual thermal strains can also be recovered with a 

superposition vector (Buchanan et al., 2009). 
In a previous study (Gosse & Christensen, 2001), the homogenization step was an 
experimental one wherein the effective properties of the homogenous medium employed in 
the analysis were determined by experiments while the de-homogenization 
(micromechanical enhancement) step was carried out by a finite element analysis of a 
representative volume element. In addition to this procedure, an alternative method has 
been developed to utilize the derived effective elastic and thermal lamina properties from 
the same micromechanical models developed to assessed the strain fields within the unit 
cells.  In this paper the latter approach is investigated exclusively in order to provide the 
consistency of utilizing the same method for both homogenization and de-homogenization.  
In the current chapter, the micromechanical enhancement method is investigated in more 
detail and a self-consistent method for determining the microscopic strain field is presented.  
By using a self-consistent analysis, the inherent approximations of the method are present in 
both steps while no new uncertain quantities, such as experimental test variables, are 
introduced.  Self-consistency is assured by utilizing the same micromechanical models for 
both the homogenization and de-homogenization steps in the method. The goal is to 
provide an efficient link in a multi-scale analysis of a composite structure and to elucidate 
the analysis steps used in the current method. 
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2. Homogenization 

The homogenization process seeks to obtain equivalent homogenous continuum properties 

for a medium composed of multiple phases of varying constitutive properties. For the 

current discussion, we will limit ourselves to a heterogeneous medium consisting of 

collimated, continuous fibers within an isotropic matrix. Many methods and closed-form 

expressions have been developed to achieve this goal (Pindera et al., 2009). Among these, 

the most accurate in predicting the average response of an orthotropic medium is the finite 

element method (Daniel & Ishai, 2006).  In the finite element approach, one would like to 

determine the relationship between the average stress and average strain as expressed in 

Equation 1. 

 ( ) ( )i ij j jC T i j, 1 6σ ε α= − Δ = −  (1) 

The overbar indicates an average or homogenized quantity.  From the homogenous stiffness 

matrix ( ijC ), the effective lamina engineering constants (E1, E2, ν12, G12, etc.) can be 

calculated. Alternatively, the engineering constants can be determined directly by 

systematically performing finite element analysis corresponding to the definitions of the 

engineering constants (Sun & Vaidya, 1996).  In this approach, the average stress is related 

to the average strain through the strain energy density. Typically, a representative volume 

element, as shown in Figure 1, is used to simplify the analysis.  Equation 2 gives the stress-

strain relation for the case when ΔT = 0. 

 ( )i ij jC i j, 1 6σ ε= = −  (2) 

Where “1” coincides with the fiber direction, “2” is transverse to the fiber direction and “3” 

is normal to the 1 and 2 directions.  Also, note the use of a contracted notation such that i=1-

3 are the three normal components of stress and strain, 11, 22, and 33, respectively, while 

i=4-6 are the three engineering shear components, 23, 13 and 12, respectively.  The average 

stress is shown in Equation 3 for the case when a canonical state of deformation is applied so 

that the only active strain component is 1.ε  The superscript indicates the isolated average 

mechanical strain component.  As shown, the relationship of can be rearranged to determine 

the first column of the homogenous stiffness matrix. 

 ( ) ( ) ( )k k
i i i iC C i1 1

1 1 1 1 or  1 6
ε εσ σε ε= = −=  (3) 

The other five columns of the effective homogenous stiffness matrix are determined by 

applying the remaining five other states of canonical deformation such that each strain 

component is isolated.  A total of six finite element analyses are required to fully determine 

the effective homogenous stiffness matrix for the general anisotropic solid.  A seventh finite 

element analysis is required to determine the thermal response of the effective medium.  For 

this case, the domain is subjected to a thermal loading of ΔT with the average mechanical 

strain, { }Tε α− Δ , constrained to be zero. Equation 4 gives the calculation of the average 

coefficients of thermal expansion. As seen from Equation 1, constraining the average 

mechanical strain to be zero requires that the average stress be zero. This condition can be 

used to check the validity of the boundary conditions. 
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 { } ( ) 1 6i i T iα ε Δ= = −  (4) 

Equation 5 shows the average strain in a unit cell determined from the surface displacement, 
ui and uj with i,j = 1-3, by using Gauss' theorem and written in index notation (Sun & 
Vaidya, 1996). 

 ( )1

2
ij i j j i

SV
u n u n dSε += ∫  (5) 

Where S is the boundary surface of the representative volume element and ni is the unit 
surface normal in the ith direction.  Thus, the average strain in the unit cell can be calculated 
for a set of displacement boundary conditions. 
Specifying the components of deformation on the surface of the representative volume 
element will, in general, induce average stress components. The average stress is calculated 
in Equation 6 using the reaction forces obtained on the boundaries of the unit cell and the 
definition of stress. 

 ( )σ = = −, 1 3ij j iF n A i j  (6) 

Where index notation is used with Fj the jth component of the total force applied to a face 
with a total area of A oriented in the ith direction. In this way, all six components of the 
stress tensor that may result for a state of deformation applied to the representative volume 
element are determined. 
 

 

Fig. 1. Schematics of the square and hexagonal representative volume elements (Buchanan et 
al., 2009) 

3. De-homogenization 

Utilizing classical laminate theory in the analysis of a composite laminate represented as a 
homogenous, anisotropic solid provides accurate predictions of structural deformations 
resulting from applied forces and moments.  Although analysts have successfully used this 
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approach, there are several shortcomings, which, if overcome, may provide increasingly 
accurate predictions of ultimate properties. The most apparent shortcomings of a 
homogenized analysis are: the modeling of fictitious interfaces; stresses and strains in the 
homogenized continuum exist in neither the fiber phase nor the matrix phase and the loss of 
the residual micromechanical thermal stress field due to a temperature change.  The current 
chapter will focus on the latter two shortcomings by predicting the strain state within the 
fiber and matrix phases using a process referred to as micromechanical enhancement (Gosse 
& Christensen, 2001; Buchanan et al., 2009).  
The role of micromechanical enhancement is to provide a computationally efficient 
micromechanics analysis that includes congruent homogenization and de-homogenization 
steps.  The current approach uses a single finite element model subjected to canonical states 
of deformation to provide the information needed for both homogenization 
(micromechanics) and de-homogenization (micromechanical enhancement) and is thus 
considered to be a self-consistent approach.  This chapter is primarily focused on building a 
general framework required to obtain self-consistent results and transferring information 
between micro and macro scale composite models. Through the use of a simple example 
problem we will address the process used to recover strains at the micro-scale resulting 
from both mechanical loading and residual thermal stresses. 

First, consider a representative volume element subjected to an arbitrary state of average 

mechanical strain, { }Tε α− Δ , where ε  is the average total strain and α , the vector of 

effective coefficients of thermal expansion for the homogenized medium.  As shown in 

Equation 7, the state of strain at a prescribed point within the representative volume 

element is calculated using an influence function formulation. 

 ( ) ( )j j
k k k k
i i ij i TAT M T i j ,  1 6ε αεα Δ = Δ Δ+ =− −−  (7) 

The matrix k
ijM  and the vector k

iA  are the influence function matrix and the thermal 

superposition vector of strain for the kth point in the representative volume element, 

respectively (Gosse & Christensen, 2001; Buchanan et al., 2009).  
The components of the influence function matrix can be determined uniquely, in a fashion 
similar to determining the stiffness matrix for the effective homogeneous medium, by 
prescribing a canonical state of deformation in the representative volume element and 
carrying out three-dimensional finite element analyses to determine the components of the 

strain tensor at the specified point, k. For example, let 1 0ε ≠ , in the absence of the other five 

strain components and with no thermal loading.  Shown in Equation 8, the first column of 
the influence matrix can be determined by relating the local strain to the average axial strain 
by using Equation 7. 

 ( ) ( ) ( )k k k k
i ii iM M i1 1
1 1 1 1  1r 6o  

ε ε εε ε ε= = = −  (8) 

Note that a single finite-element analysis with boundary conditions that meet the condition, 

1 2 60 with 0ε ε −≠ = , yields six of the 36 coefficients in the influence function matrix at any 

point within the representative volume element. A total of six finite-element analyses are 

required to completely determine terms of k
ijM  at any point within the domain for a given 

representative volume element geometry.   
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Calculation of the thermal superposition vector requires an additional finite element 

analysis in which the unit cell is subjected to a temperature change with the constraint that 

the average mechanical strain vanishes, i.e. { }T 0ε α− Δ = . Equation 9 gives the thermal 

superposition vector obtained by inserting this constraint into Equation 7.  

 ( )
k k
i ik

i
T

T
A i 1 6

αε Δ
=

Δ
−

= −  (9) 

4. Representative volume element boundary conditions 

The imposition of canonical states of strain upon the representative volume element 

utilizing finite-element analyses requires the development of a corresponding set of 

displacement boundary conditions.  The representative volume element principal directions, 

(e1, e2, e3) are shown in Figure 1. Equation 10 defines the appropriate displacement 

boundary conditions for the prescribed extensional strain in the “1” direction with ui 

representing the displacement vector and xi the position vector. 
 

 ( ) ( ) ( )xy xzu x x x x x x2 3 2 3 2 30, , 0, , 0, , 0τ τ= = =  (10a) 

 ( ) ( ) ( )xy xzu L x x L L x x L x x1 2 3 1 1 1 2 3 1 2 3, , ;    , , , , 0ε τ τ= = =  (10b) 

 ( ) ( ) ( )yx yzv x x x x x x1 3 1 3 1 3,0, ,0, ,0, 0τ τ= = =  (10c) 

 ( ) ( ) ( )yx yzv x L x x L x x L x1 2 3 1 2 3 1 2 3, , , , , , 0τ τ= = =   (10d) 

 ( ) ( ) ( )zx zyw x x x x x x1 2 1 2 1 2, ,0 , ,0 , ,0 0τ τ= = =  (10e) 

 ( ) ( ) ( )zx zyw x x L x x L x x L1 2 3 1 2 3 1 2 3, , , , , , 0τ τ= = =  (10f) 

 

As an example, Equation 11 gives the canonical shearing displacements for shearing in the 
2-3 plane. 
 

 ( ) ( ) ( )xy xzu x x x x x x2 3 2 3 2 30, , 0, , 0, , 0τ τ= = =  (11a) 

 ( ) ( ) ( )xy xzu L x x L x x L x x1 2 3 1 2 3 1 2 3, , , , , , 0τ τ= = =  (11b) 

 ( ) ( ) ( )yy yxw x x x x x x1 3 1 3 1 3,0, ,0, ,0, 0σ τ== =  (11c) 

 ( ) ( ) ( )yy yxw x L x L x L x x L x1 2 3 23 1 2 3 2 32 1, , 2 ;    , , , , 0γ σ τ== =  (11d) 

 ( ) ( ) ( )zz zxv x x x x x x1 2 1 2 1 2, ,0 , ,0 , 0 0,σ τ= = =  (11e) 

 ( ) ( ) ( )zz zxv x x L L x x L x x L1 2 3 23 3 1 2 3 1 2 3, , 2 ;    , , , , 0γ σ τ== =  (11f) 
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This simple set of displacement boundary conditions are only valid for doubly periodic 
representative volume elements. In general, further constraints are required on the 
displacement field to maintain periodicity between adjacent unit cells.  However, periodicity 
is satisfied automatically in the symmetric unit cells studied here. The desired average strain 
is recovered by inserting the boundary conditions shown in Equations 10 and 11 into 
Equation 6.  The nodal forces taken from each face of the representative volume element can 
then be used in Equation 6 to determine the average stress and thereby provide the 
homogenized material properties as discussed in Section 2.   
For the case of a uniform temperature change of the representative volume element, 
boundary conditions are imposed to allow for free expansion of the representative volume 
element with the constraint that all faces must remain planar.  This condition results from 
Equation 8 that requires the representative volume element to exhibit the free thermal 
deformation TαΔ  in order that the homogenized mechanical strains vanish.  In this case, 

free thermal deformation of representative volume element is equal to that defined by the 
coefficients of thermal expansion of the homogenized unidirectional lamina, TαΔ . The 

planar constraint is required to maintain periodicity between adjacent volume elements.  
Procedures to implement these constraints are implemented in both Abaqus (© Dassault 
Sytémes) and StressCheck® (ESRD). For StressCheck® when the analysis is performed for 
any given load, the program will create constraint equations for all the degrees of freedom 
associated with the selected faces. The internal degrees of freedom (faces and edges) are 
eliminated at the element level (local constraint equations), while the equation for the nodal 
variables are written in compact form at the global level.  
 

 

Fig. 2. Constrained deformation due to thermal loading.  All faces remain planar to maintain 
periodicity 

Since each face is constrained to remain planar, no average shearing strain will be obtained.  
The normal strain components are given in Equation 12. Using the normal strain 
components, the homogenized coefficients of thermal expansion can be determined with 
Equation 4, where U, V and W are the displacement components shown in Figure 2.  It 
should be noted that these displacements are unknown prior to performing the analysis.  

 
U V W

L L L
1 2 3

1 2 3

,  ,  ε ε ε= = =  (12) 

5. Example 

First, consider a general laminate to be analysed using a self-consistent micromechanics 

method. Presented graphically in Figure 3 is the self-consistent micromechanics method 
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used herein.  A complete set of material properties for both the fiber and matrix phase are 

required.  Six canonical states of deformation, extending from Equations 10 and 11, are 

applied as boundary conditions to two representative volume elements, a square array and 

a hexagonal array shown in Figure 1. The fiber volume fraction of the representative volume 

elements is 60 percent.  For this step the finite element program Abaqus is utilized.  Six 

canonical states of deformation provide both the homogenized stiffness matrix ( ijC ) and the 

enhancement matrix ( ijM ) for the two micro-geometries.   

Both domains are subjected to a uniform change in temperature in a seventh finite element 

analysis. This thermal loading case provides the homogenized coefficients of thermal 

expansion ( iα ) and the thermal superposition vector ( iA ).  In total, seven finite element 

analyses are required for each representative volume element of interest.  
The homogenized material properties become the input for the laminate level analysis.  For 
illustration, the boundary conditions are limited to in-plane force resultants and a uniform 
change in temperature ΔT applied to symmetric, balanced laminates. The laminate level 
calculation is performed twice, once for both sets of homogenized material properties 
corresponding to the representative volume elements modelled.  
 

 

Fig. 3. Flow chart of self-consistent micromechanical enhancement.  The analysis steps are 
boxed in red while the inputs and outputs to each step are boxed in black 

The strains in each lamina of the laminate are calculated with a classical laminated plate 
theory analysis and become inputs to Equation 7.  From this step, we obtain two sets of self-
consistent states of strain at the micro-level, i.e. in the fiber and matrix phases.  This method 
is considered to be a highly efficient way to obtain micro-level information because laminate 
geometry and loading conditions can be changed independently of the micromechanics 
step. Therefore, the initial set of seven finite element analyses only need to be carried out 
once for each representative volume element. This decoupling of micro and macro level 
analysis is the characteristic that is responsible for the flexibility and computational 
efficiency of the method described herein.  The alternative approaches described in the 
introduction require explicit modelling of the fiber and matrix phases for each loading 
condition and laminate geometry. 

5.1 Prediction of homogenized properties 
In the current example, two representative volume elements are considered, the square and 
hexagonal arrays. However the self-consistent micromechanics method can be applied to 
other representative volume element geometries that meet the doubly periodic condition.  A 
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schematic of each geometry is given in Figure 1.  The first two columns in Table 1 are the 
input constituent material properties for an IM7/8552 carbon fiber, epoxy matrix composite.  
The final two columns in Table 1 give the predicted homogenized composite properties for 
the two representative volume elements.   
 

Property Matrix Fiber Square Cell Hex Cell 

E1 (GPa)
 

4.76 276.0 167.5 167.5 

E2 (GPa)
 

4.76 19.5 11.5 10.7 

E3 (GPa)
 

4.76 19.5 11.5 10.7 

G12 (GPa)
 

1.74 70.0 6.78 6.30 

G13 (GPa)
 

1.74 70.0 6.78 6.30 

G23 (GPa)
 

1.74 5.74 3.10 3.34 

ν12
 

0.37 0.28 0.31 0.31 

ν13
 

0.37 0.28 0.31 0.31 

ν23
 

0.37 0.70 0.57 0.60 

α1 (10-6/°C)
 

64.8 -0.4 0.41 0.41 

α2 (10-6/°C)
 

64.8 5.6 34.7 35.1 

α3 (10-6/°C)
 

64.8 5.6 34.7 35.1 

Table 1. Fiber, matrix and equivalent homogenized medium material properties 

The homogenzied stiffness matrix ( ijC ) is first calculated from Equation 3.  Equation 13 

shows the calculations used to determine the homogenized engineering elastic constants 

from the homogenzied stiffness matrix. Shown in Tables 2 and 3 are the homogenized 

stiffness matrix and the homogenized compliance matrix ( ijS ), respectively.  The predicted 

engineering constants are used as inputs in the laminate level analysis. 

 S C
1−

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (13a) 

 S S SE E E1 11 2 22 3 331 1,  ,  1= = =  (13b) 

 S S S S S S23 32 22 13 31 11 12 21 11,  ,  ν ν ν= − = − = −  (13c) 

 G S G S G S23 44 13 55 12 661 ,  1 ,  1= = =  (13d) 

 

Square Array, ijC  (GPa) Hexagonal Array, ijC  (GPa) 

172.8 8.7 8.7 0.0 0.0 0.0 172.8 8.6 8.6 0.0 0.0 0.0 

8.7 17.6 10.3 0.0 0.0 0.0 8.6 17.1 10.5 0.0 0.0 0.0 

8.7 10.3 17.6 0.0 0.0 0.0 8.6 10.5 17.1 0.0 0.0 0.0 

0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 

0.0 0.0 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0 6.3 0.0 

0.0 0.0 0.0 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0 6.3 

Table 2. Homogenized stiffness matrix representative volume elements 
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Square Array, ijS  (1/GPa 10-3) Hexagonal Array, ijS  (1/GPa 10-3) 

5.97 -1.86 -1.86 0.00 0.00 0.00 5.97 -1.86 -1.86 0.00 0.00 0.00 

-1.86 87.24 -50.16 0.00 0.00 0.00 -1.86 93.48 -56.07 0.00 0.00 0.00 

-1.86 -50.16 87.24 0.00 0.00 0.00 -1.86 -56.07 93.48 0.00 0.00 0.00 

0.00 0.00 0.00 322.27 0.00 0.00 0.00 0.00 0.00 299.00 0.00 0.00 

0.00 0.00 0.00 0.00 147.54 0.00 0.00 0.00 0.00 0.00 158.69 0.00 

0.00 0.00 0.00 0.00 0.00 147.54 0.00 0.00 0.00 0.00 0.00 158.69 

Table 3. Homogenized compliance matrix representative volume elements 

5.2 Determination of influence matrix and thermal superposition vector      

The influence matrix and thermal superposition vector can be extracted from the same set 
finite element analyses used to determine the effective lamina properties.  It should be 
noted that both the influence matrix and the thermal superposition vector are field 
variables. That is, each specific geometric point within a representative volume element 
yields a unique influence matrix.  Presented as field variables, the terms of the influence 
matrices and thermal superposition vectors are illustrated graphically in  Figures 4 and 5, 
respectively. 
The micro-strain field can be extracted at every node or integration point within the 
representative volume element.  The enhanced strain field at every point within a volume 
element can be used in a point failure criteria. Alternatively, a smaller set of points can be 
selected for examination in order to increase computational efficiency.  The same method is 
applicable for a stress based criteria whereby the stress state at a point is determined from 
the strain state through the appropriate constitutive relationships.   
In the current example, a single point is used to provide a numerical illustration of the 
micromechanical enhancement process. Tables 4 and 5 contain the influence matrix and 
thermal superposition vectors respectively. The data is extracted for both the square and 
hexagonal representative volume elements at the point (e1, e2, e3) = (L1/2, L2, L3/2).  
Although both points represent locations that are midway between two fiber centers, the 
influence matrix and thermal superposition vectors are different for the two representative 
volume elements.  This shows the effect of packing geometry on the local strain fields and 
the need for a comprehensive understanding of the underlying geometry contained in the 
composite material. 
 

Square Array, ijM  

( ) ( )x y z, , 0.5,1.0,0.5=  

Hexagonal Array, ijM  

( ) ( )x y z, , 0.5,1.0, (3) 2=  

1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

0.8 3.2 1.0 0.0 0.0 0.0 0.6 2.8 0.3 0.0 0.0 0.0 

-0.3 -0.6 0.5 0.0 0.0 0.0 -0.2 -0.5 0.6 0.0 0.0 0.0 

0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 

0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

0.0 0.0 0.0 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0 4.7 

Table 4. Influence matrix for both representative volume elements at the selected location 
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Influence Matrix 
Square Array 

Influence Matrix 
Hexagonal Array 

Mi1 Mi2 Mi3 Mi4 Mi5 Mi6 Mi1 Mi2 Mi3 Mi4 Mi5 Mi6 

  
  

  
  

  
  

  
  

  
  

  
  

 

Fig. 4. Influence matrix fields for both representative volume elements, square and 
hexagonal 

 

Square Array, iA  (10-6/°C), 

( ) ( )x y z, , 0.5,1.0,0.5=  

Hexagonal Array, iA  (10-6/°C), 

( ) ( )x y z, , 0.5,1.0, (3) 2=  

-64 129 -83 0 0 0 -64 90 -60 0 0 0 

Table 5. Thermal superposition vector both representative volume elements at a selected 
location 
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Square Array Hexagonal Array 

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6 

  
  

 

Fig. 5. Thermal superposition vector fields for both representative volume elements, square 
and hexagonal 

5.3 Review of classical laminated plate theory 
To illustrate the full process of using the self-consistent micromechanics method described 
herein, two laminate stacking sequences are investigated, the [0/90/90/0] cross-ply 
laminate and the [45/-45/-45/45] angle-ply laminate.  For this example, the laminate level 
analysis is preformed using classical laminate plate theory but, finite element methods can 
also be used for more complex geometries and loading conditions.   
Consider only the in-plane resultant forces, [Nx, Ny, Nxy] as defined in Figure 6, and thermal 
loading. Under these conditions, Equation 14 gives relationship between the lamina stresses 
and strains referenced to the principal material axis (1,2).  

 i ij jQ i j( , 1,2,6)σ ε= =  (14) 

Here, ijQ  is the reduced stiffness matrix in the material principal coordinate system.  

Equation 15 shows the entries in the reduced stiffness matrix written in terms of the 

homogenized stiffness matrix.  

 
i j

ij ij
C C

Q C i j
C

3 3

33

( , 1,2,6)= − =  (15) 

The stresses and strains can be written in the laminate coordinate system (x,y) obtained by 
rotating the material coordinate system through an angle, θ, about the material 3 axis, see 
Figure 6. Equation 16 gives the stress strain relation of Equation 14 written in the 
transformed coordinate system. 

 i ij j jQ T i j' ( ) ( , 1,2,6)σ ε α= − Δ =  (16) 

A primed quantity is referenced to the laminate coordinate system (x,y).  As given in 
Equation 17, the reduced stiffness matrix referenced to the laminate coordinate system (x,y) 
is obtained by applying a transformation to the reduced stiffness matrix of Equation 14. 

 
T

c sc

T T T s

s

Q Q s c

c sc c

c

ss

2 2

' 2 2

2 2

 with 

2 2

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤= = −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎢
⎣ ⎦− ⎥−

 (17a, b) 

 s csin  and cosθ θ= =  (17c, d) 

www.intechopen.com



Self-Consistent Micromechanical Enhancement of Continuous Fiber Composites 

 

619 

 

Fig. 6. Definition of laminate resultant forces 

For both the cross-ply and the angle-ply laminates being considered, the in-plane loading 

is decoupled from any out of plane curvatures. As shown in Equation 18, the laminate 

strains are related to the force resultants, [Nx, Ny, Nxy], through the extensional stiffness 

matrix Aij. 

 { } { }T
ij jN A Nε= −  (18a) 

 ( )
( )

( ) { } ( ){ }( ) ( )L

l

l L l ll lT
ij ij

l

A t NQ T Q t' ' '

11

 and α
==

⎡ ⎤Δ ⎣ ⎦==∑ ∑  (18b,c) 

Where the l index sums over the total number of lamina in the laminate and t is the 

thickness of each lamina.  The laminate strains are determined in Equation 19 by 

rearranging Equation 18a. 

 { } { }i
T

i jA N N1'ε − ⎡ ⎤= +⎣ ⎦  (19) 

For the de-homogenization step, the components of homogenized strain field must be 

referenced to the principal material axis. This is accomplished by applying the 

transformation matrix of Equation 17b to the laminate strain in Equation 19.  The 

transformation is applied for each lamina within the laminate.  The plane stress condition is 

then inserted into Equation 2 to determine the out-of-plane strain component, 3ε .  Equation 

20 gives the relationships obtained for an orthotropic material system.  The homogenized 

strain state is now fully specified and the strain state within each representative volume 

element can be determined. 

 
C C

C

13 1 23 2
3

33

ε εε +
= −  (20) 

5.4 Application of uniaxial force resultant, Nx 

First, a purely mechanical loading is considered. The lamina level homogenized material 
properties calculated in Section 5.3 are used to determine the macroscopic state of strain in a 
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both laminates subjected an axial force resultant, Nx, in the absence of other two force 
resultants, Ny and Nxy.  The laminate resultants are defined in Figure 4.   
Consider the cross-ply and angle-ply laminates under a loading case in which the 

resulting edge forces are [Nx, Ny, Nxy] = [100 kN/m, 0, 0] without a temperature change.  

The macroscopic strain state in each lamina is determined using the process described in 

Section 5.3 with a lamina thickness, t, of 0.2 mm.  The homogenized mechanical strains in 

the cross-ply and angle-ply laminates are given in Tables 6 and 7 respectively.  From these 

homogenized states of strain, the state of strain within both representative volume 

elements is found by applying the influence matrices according to Equation 8.  For this 

example, the influence matrices shown in Table 4 are used to determine the strain in the 

matrix phase at the location (e1, e2, e3) = (L1/2, L2, L3/2). Tables 8 and 9 list the strains 

within the matrix at the selected point for the cross-ply and angle-ply laminates, 

respectively. The results show that the state of strain at the point of inquiry in each 

representative volume element can be very different from the homogenized state of strain 

in each lamina. 

5.5 Application of uniform temperature change, ΔT 

Next, consider the cross-ply and angle-ply laminates subjected to a uniform temperature 

change of ΔT = -100 °C.  The macroscopic strain state in each lamina is determined using 

the classical laminate theory analysis outlined in Section 5.3 with a lamina thickness, t, of 

0.2 millimetres. The homogenized mechanical strains in the cross-ply and angle-ply 

laminates are given in Tables 10 and 11 respectively. The strain within both representative 

volume element is found from the homogenized states of strain by applying the influence 

matrices and thermal superposition vectors according to Equation 8.  Mechanical strains 

are present at the lamina level and at the micro-level for the thermal loading case.  This is 

due to a mismatch in the homogenized coefficients of thermal expansion of the lamina 

and a mismatch in the coefficients of thermal expansion of the constituents.  Again, the 

influence matrices shown in Table 4 and the thermal superposition vectors of Table 5 are 

used to determine the strain in the matrix phase at the location (x, y, z) = (Lx/2, Ly, Lz/2) 

for both representative volume elements.  Tables 12 and 13 list the strain state at the 

selected location within the matrix for the cross-ply and angle-ply laminates, respectively.  

It is obvious that identical results are obtained for the [0/90/90/0] and [45/-45/-45/45] 

laminates because the two laminates thermally identical after a rotation of 45°.  As such, 

both laminates have identical states of strain in the material principal coordinates. 

 

 Square Array, 10-6  Hexagonal Array, 10-6

 0° Ply 90° Ply  0° Ply 90° Ply 

T1 1ε α− Δ  1,390 -55  1,396 -52 

T2 2ε α− Δ -55 1,390  -52 1,396 

T3 3ε α− Δ -655 -786  -670 -825 

Table 6. Homogenized mechanical strains due to a force resultant, Nx = 100 k N/m in the 
[0/90/90/0] laminate 
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 Square Array, 10-6  Hexagonal Array, 10-6

 45° Ply -45° Ply  45° Ply -45° Ply 

T1 1ε α− Δ  667 667  672 672 

T2 2ε α− Δ 667 667  672 672 

T3 3ε α− Δ -720 -720  -748 -748 

T66ε α− Δ -9221 9221  -9921 9921 

Table 7. Homogenized mechanical strains due to a force resultant, Nx = 100 kN/m in the 
[45/-45/-45/45] laminate 
 

 
Square Array, 10-6 

( ) ( )x y z, , 0.5,1.0,0.5=

 Hexagonal Array, 10-6 

( ) ( )x y z, , 0.5,1.0, (3) 2=  

 0° Ply 90° Ply  0° Ply 90° Ply 

T1 1ε α− Δ  1,390 -55  1,396 -52 

T2 2ε α− Δ 281 3618  491 3,630 

T3 3ε α− Δ -712 -1211  -655 -1,183 

Table 8. Micro-level mechanical strain due to a force resultant, Nx = 100 kN/m at the 
selected location in the [0/90/90/0] laminate 
 

 
Square Array, 10-6 

( ) ( )x y z, , 0.5,1.0,0.5=

 Hexagonal Array, 10-6 

( ) ( )x y z, , 0.5,1.0, (3) 2=  

 45° Ply -45° Ply  45° Ply -45° Ply 

T1 1ε α− Δ  667 667  672 672 

T2 2ε α− Δ 1,948 1,948  2060 2060 

T3 3ε α− Δ -960 -960  -919 -919 

T66ε α− Δ -62,703 62,703  -46,629 46,629 

Table 9. Micro-level mechanical strain due to a shell edge traction, Nx = 100 k N/m at the 
selected location in the [45/-45/-45/45] laminate 
 

 Square Array, 10-6  Hexagonal Array, 10-6

 0° Ply 90° Ply  0° Ply 90° Ply 

T1 1ε α− Δ  -277 -277  -263 -263 

T2 2ε α− Δ 3,152 3,152  3,206 3,206 

T3 3ε α− Δ -1,708 -1,708  -1,823 -1,823 

Table 10. Homogenized mechanical strains due to thermal loading, ΔT = -100 °C in the 
[0/90/90/0] laminate 
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 Square Array, 10-6  Hexagonal Array, 10-6

 45° Ply -45° Ply  45° Ply -45° Ply 

T1 1ε α− Δ  -277 -277  -263 -263 

T2 2ε α− Δ 3,152 3,152  3,206 3,206 

T3 3ε α− Δ -1,708 -1,708  -1,823 -1,823 

Table 11. Homogenized mechanical strains due to thermal loading, ΔT = -100 °C in the    
[45/-45/-45/45] laminate 

 

 
Square Array, 10-6 

( ) ( )x y z, , 0.5,1.0,0.5=

 Hexagonal Array, 10-6 

( ) ( )x y z, , 0.5,1.0, (3) 2=  

 0° Ply 90° Ply  0° Ply 90° Ply 

T1 1ε α− Δ  6123 6123  6137 6137 

T2 2ε α− Δ -4743 -4743  -728 -728 

T3 3ε α− Δ 5638 5638  3356 3356 

Table 12. Micro-level mechanical strain due to thermal loading, ΔT = -100 °C at the selected 
location in the [0/90/90/0] laminate 

 

 
Square Array, 10-6 

( ) ( )x y z, , 0.5,1.0,0.5=

 Hexagonal Array, 10-6 

( ) ( )x y z, , 0.5,1.0, (3) 2=  

 45° Ply -45° Ply  45° Ply -45° Ply 

T1 1ε α− Δ  6123 6123  6137 6137 

T2 2ε α− Δ -4743 -4743  -728 -728 

T3 3ε α− Δ 5638 5638  3356 3356 

Table 13. Micro-level mechanical strain due to thermal loading, ΔT = -100 °C at the selected 
location in the [45/-45/-45/45] laminate 

6. Conclusions 

A computationally efficient method for estimating the microscopic strain field within the 
discrete phases of a heterogeneous medium consisting of collimated, continuous fibers 
within an isotropic matrix has been developed. The goal of the development has been to 
provide an essential link in a multi-scale analysis of a composite structure.  The structural 
loading and deformations at the macro-scale can be related to the state of strain within the 
fiber and matrix phases at the micro scale by using the self-consistent micromechanics 
method.  The model utilizes a conventional influence function formulation and considers 
thermo-mechanical deformations. Results have been presented that illustrate the utility of 
the approach in determining microscopic state of strain in the [0/90/90/0] and [45/-45/-
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45/45] laminates. Enhanced strain components within each of the lamina were calculated 
for both uniaxial loading and a uniform change in temperature. 
The present example showed results extracted for a single point within the representative 
volume element. As shown in Figure 3, the influence matrix and thermal superposition 
vector are field values. Therefore, the state of strain within the representative volume 
element can also be represented as a field value.  As such, the analysis is not limited to 
analysis of the state of strain at a single point.  However, the reader may choose as many 
interrogation points as are required in order to address de-homogenization of all of the 
phases or to meet a specific need with a minimum computational cost.     
Microstructures found in fiber reinforced composites typically consist of an irregular array 
of fibers which differ from the representative volume elements analysed herein.  An efficient 
method for dealing with variability is through the use of a statistically equivalent periodic 
unit cell.  With this approach, a computational step is used to generate an equivalent 
representative volume element that replaces the actual complex geometry.  This method has 
been applied at several length scales including a unidirectional fiber tow (Zeman and 
Sejnoha, 2007).  
The main assumption implicit in the analysis is that the representative volume element is 
subjected to a uniform state of strain.  Certainly, this is not true at all locations within a 
laminate. Examples include areas with large strain gradients or locations with 
discontinuities in the assumed periodicity such as ply interfaces. In light of these limitations, 
the described method provides a reasonable first order approximation of the state of strain 
within the constitutive phases of an ordered heterogeneous medium.  
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