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1. Introduction      

Signal analysis is a field of study that attempts to extract information features from various 

physical phenomena. Fourier transform (FT), wavelet transform (WT), and Hilbert-Huang 

transformation (HHT) are the 3 major approaches used in signal analysis (Huang et al., 

1998) (Yan & Gao, 2007). FT is a global energy-frequency distribution approach that is 

suitable for analyzing linear, strictly periodic, and stationary signals. In contrast, HHT is a 

good method for analyzing non-linear and non-stationary signals, such as those associated 

with wind, earthquakes, electrocardiographs (ECGs), and electroencephalograms (EEGs). 

This method can also used to describe the local features of dynamic signals, and illustrate 

the energy-frequency-time distribution of these signals. The 2 principal steps employed in 

HHT are empirical mode decomposition (EMD) and Hilbert spectral analysis, EMD is used 

to decompose local signals to finite data sets, which are referred to as intrinsic mode 

functions (IMFs), and Hilbert transforms (HTs) are used in conjunction with the obtained 

IMFs to determine the instantaneous frequencies (IFs), time-frequency-energy distributions 

of the local time signals. A number of studies have been performed to elucidate various 

aspects of signal analysis. Cohen reviewed the fundamental ideas, methods, and 

characteristics of the time-frequency analysis approaches employed until 1989 (Cohen, 

1989).  Blanco et al., used the Gabor transform (GT) time-frequency analysis approach to 

facilitate identification of the source of epileptic seizures (Blanco et al., 1997). The GT 

approach is similar to the fast FT approach, but GT offers the advantage of allowing the 

analysis of the frequencies and their time evolution. Blanco et al., adopted GT to achieve 

maximal concentration of the time and frequency characteristics for epilepsy and obtain 

accurate information on the time evolution of the frequency epileptic activity. Tzallas et al., 

used short-time Fourier transform and 12 different time-frequency distributions for 

studying epilepsy classification problems and discussed the obtained sensitivity, accuracy, 

and selectivity results, and the characteristic data features for the detection of epilepsy 

(Tzallas et al., 2009). However, they did not use the HHT-based time-frequency analysis 

approach to define epileptic sharps. Sharabaty et al., used the HHT signal-analysis approach 

to determine the alpha and theta localizations for estimation of the vigilance level, and 
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proposed an alpha/theta localization algorithm for EEG signal analysis (Sharabaty et al., 

2006). Wang et al., extracted the data features from C3 and C4 EEG signals to design a Brain-

Computer Interface (BCI) (Wang & Xu et al., 2008). They discussed the accuracy of a 

classification system based on imagery-movement tasks and analyzed the average marginal 

spectra at electrode C3 and C4 during each imagery task. Wang et al., also used HHT to 

automatically remove ocular artifacts in contaminated EEGs (Wang & Liu et al., 2008). The 

authors described EEGs contaminated with ocular artifacts, IMFs and the residual artifacts 

from FP2, and also elucidated the differences between the contaminated FP2 EEGs and the 

corrected EEGs. Further, they determined the differences between the power spectra for the 

corrected EEGs and the contaminated FP2 EEGs. In our previous studies, we have discussed 

the design concept for mobile telemedicine and chaos-based encryption mechanisms for 

biomedical signals (Lin & Chang et al., 2006)(Lin & Chang et al., 2007)(Lin & Chang, 

2008)(Lin & Li, 2008)(Lin & Chung et al., 2008)(Lin & Chen et al., 2008)(Lin et al., 2009)(Lin, 

2010)(Lin et al., Online First) (Lin, Online First) (Lin & Wang, Accept). In 3 previous studies, 

we have described the HHT-based time-frequency characteristics of the FP1 EEG signals 

recorded from normal and alcoholic observers watching a single picture and 2 different 

pictures (Lin et al., 2008) (Lin et al., 2010)(Lin et al., Online Book, 2010). In this paper, we 

analyzed the sharp and normal waves with a transmission bit error rate (BER) of 10-7 in the 

EEGs obtained for epilepsy patients. The IMFs, IFs, and the time-frequency-energy 

distributions of these EEG signals are studied. In section II, the concept of HHT is presented, 

and in section III we describe the simulation results and discuss the application of HHT in 

the analysis the sharp waves of EEG signals obtained from patients with epilepsy. In section 

IV and V, we present our discussions and conclusions, respectively. 

2. Method 

In the HHT temporal frequency-energy-time signal analysis technique, EMD is used to 
perform IMFs decomposition, and HT is used to obtain the IFs, and time-frequency-energy 
distributions of these EEG signals.  
The following procedure is employed for analyzing the IMF using EMD:  

Step 1. initially assume ( )or x t=  and i=1; 

Step 2. analyze the ith IMF; 

a. initially assume ( 1)i k ih r− = , k=1; 

b. analyze the local maximum and minimum for ( 1)i kh − ; 

c. construct the upper-limit and lower-limit envelope for ( 1)i kh −  by performing 

additional sampling; 

d. calculate the-mean ( 1)i km −  of the upper-limit and lower-limit envelope for 

( 1)i kh − ; 

e. ( 1) ( 1)ik i k i kh h m− −= − ; 

f. if ikh  is the IMF, then i ikIMF h= ; alternatively, refer to step (b) and consider k 

= k+1; 

Step 3. define 1i i ir r IMF+ = − ; 

Step 4. if 1ir +  has at least 2 extreme values, 

refer to step 2 or consider that the analysis procedure is complete and that 1ir +  is 

the residual signal; 
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In such cases, IMF is defined by 2 conditions: 
Condition 1: The difference between the crossing with zero and the local extreme value of 

the entire data shall be equal or the difference with 1. 
Condition 2: The mean of any point is the average of the local maximum and minimum 

envelope. 
In addition, the HHT-based time-frequency analysis scheme is performed on the basis of 4 
assumptions: 
Assumption 1: At least 2 extreme value for the signals, i.e. maximum and minimum values, 

are present. 
Assumption 2: The scale size of the characteristic time is selected according to the extreme 

values and the temporal interval. 
Assumption 3: If that the data to be analyzed have no extreme values but contain identifiable 

points that can be expressed as extreme points of single or multiple analyses, 
and accompany with an increase in the number of analyses, the 
maximum/minimum points gain significance. 

Assumption 4: The final result should be the sum of the above stated composition. Thus, the 
single channel EEG wave can be defined as function x(t), and  function x(t) can 
be expressed as the following empirical mode function to analyzes the IMF. 

 
1

( ) ( ) ( )
n

i
i

x t IMF t r t
=

= +∑  (1) 

                           where, ( ) :iIMF t  the ith IMF 

                           r(t): attribution function(residual) 
                           Then 

( )( ) ( ) ( ) ( ) { ( )} ( ) j tz t x t jy t x t jHT x t a t e θ= + = + =  

                           HT{}:Hilbert Transformation 

2 2( ) ( ) ( )a t x t y t= +  

 
( )

( ) arctan( )
( )

y t
t

x t
θ =   (2) 

Thus, the IF of a single channel EEG signal can be analyzed using the following equation: 

 
1 ( )

( )
2

d t
f t

dt

θ
=

π
 (3) 

Using the HHT-based time-frequency analysis technique, the time-frequency characteristic 
vector of the EEG signal for epilepsy can be acquired, and the frequency characteristics, 
amplitude characteristics, time-dependent temporal-spatial frequency correlation, and 
correlation of the EEG signal to the clinical characteristics can be analyzed. Furthermore, this 
approach can allow determination of statistically common and abnormal points, 
generalization of a standard by comparison with a normal sample, augmentation the 
efficiency of observation, and analysis of the HHT time-frequency-energy characteristics 
corresponding to sharp wave. 
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3. Simulation results 

We have used an HHT-based time-frequency analysis to analyze the sharp waves in the 

EEG obtained for epilepsy. A sharp EEG signal was obtained from the T3 channel from a 

clinical patient presenting with epilepsy; the transmission BER of the EEG was 10-7. Figure 1 

and Figure 2 show the sharp and normal waves, respectively. Two hundred and fifty 

samples per second were used to generate the sharp and normal waves. The sharp wave 

was generated in the interval of 0.324 and 0.444 s, its length was 120 ms, and its amplitude 

was 73.63 mV. Tables 1, and 2 show the statistical characteristics of the IMFs of the sharp 

and normal waves, respectively; we assume that the received EEG signals had a 

transmission BER of 10-7. The maximum amplitude of the sharp wave (76.64 uV) was larger 

than that of the normal wave (20.7 uV). We analyzed the IMFs, IFs, and time-frequency-

energy distributions for the sharp and normal waves.  Figure 3 and Figure 4 show the IMFs 

and residual function for the sharp and normal waves, respectively; these IMFs were 

obtained using EMD. In these examples, 4 IMFs and a residual function were decomposed 

for the sharp and normal waves. In these IMFs, the amplitudes of the sharp signals were 

higher than those of the normal waves. The analysis results show that the ratios of the 

energy of a sharp wave to its total energy for IMF3 and IMF4 were 34.55%, and 33.73%, 

respectively. Further, the ratios of a normal wave to its total energy for IMF4, and the 

residual function were 43.25%, and 37.63%, respectively. The ratio of the energy of a sharp 

wave to its IMF4 energy for δ (0.5 Hz-4 Hz) band was 98.4%, the similar ratio of a normal 

wave was 82.2%. Figure 5 and Figure 6 show the IFs corresponding to the sharp and normal 

waves, respectively. Tables 3 and 4 show the statistical characteristics of the IFs of the sharp 

and normal waves, respectively. The mean frequencies of the IFs of the normal waves were 

larger than those of the IFs of the sharp waves. The frequency-energy distributions 

corresponding to the sharp and normal waves in the IMF3, IMF4, and the residual function 

are shown in Tables 5, 6, and 7, respectively. From Table 5, the maximum energy of the 

sharp and normal waves in IMF3 appeared in the θ and ǅ bands, and they are 25374.79 2uV  

and 1336.66 2uV , respectively. From Table 6, the maximum energies of the sharp and 

normal waves are 40853 2uV  and 7696 2uV , respectively, and they appeared in IMF4 in the 

ǅ bands. From Table 7, the maximum energies of the sharp and normal waves in the 

residual function are 14421.09 2uV , and 7714.66 2uV , respectively, in the ǅ bands. The time-

frequency-energy distributions of sharp waves in IMF3, and IMF4 are listed in Table 8 and 9, 

respectively, while those of normal waves in IMF4, and the residual function are listed in 

Table 10 and 11, respectively. This is because the maximum energy distributions of sharp 

and normal waves are in IMF3, and IMF4, and IMF4, and the residual function, respectively. 

For IMF3, the energies of the sharp wave in the δ  band and the interval of 0.3-0.5 s, and the 

θ  band in the interval of 0.4-0.7 s, are 15247.30 2uV , and 22203.43 2uV , respectively, as 

shown in Table 8. The energies of IMF4 of the sharp wave in the δ  band in the intervals of 

0.1-0.2 s, 0.3-0.4 s, and 0.7-0.9 s are 6789.34 2uV , 6003.27 2uV , and 11534.98 2uV , 

respectively, as shown in Table 9. In contrast, the energies of IMF4 of the normal wave in the 

δ  band in the interval of 0-0.1 s, 0.1-0.3 s, 0.8-0.9 s, and 0.9-1 s are 1940.13 2uV , 2554.11 
2uV ,  1056.87 2uV  and 2614.52 2uV , respectively, as shown in Table 10. The energies of 

the residual function of the normal wave in the δ  band in the intervals of 0.1-.0.2 s, 0.3-0.4 s, 

0.5-0.6 s, and 0.7-0.9 s are 1348.84 2uV , 1045.06 2uV , 1229.81 2uV , and 2307.81 2uV , 

respectively, as shown in Table 11. These results indicate the distinct differences between 
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the time-frequency-energy distributions of sharp and normal waves with a transmission 

BER of 710−  in the EEG for epilepsy. 

 

 

Fig. 1. Sharp wave with a transmission BER of 710− . 

 

Fig. 2. Normal wave with a transmission BER of 710− . 
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Fig. 3. IMFs and the residual function of the sharp wave with a transmission BER of 710− . 
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Fig. 4. IMFs and the residual function of the normal wave with a transmission BER of 710− . 
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Fig. 5. IFs of the sharp wave with a transmission BER of 710− . 
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Fig. 6. IFs of the normal wave with a transmission BER of 710− . 
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Mean
( uv ) 

Std 
( uv ) 

Max 
( uv ) 

Min 
( uv ) 

Eng 

( 2uv )

Eng 
(%) 

sharp 
wave 

1.95 22.72 76.64 -46.22
12334

0 
100 

IMF1 0.02 2.2 8.35 -11.07 1208.3 0.98 

IMF2 -0.71 9.06 31.84 -27.68 20604 16.7 

IMF3 0.79 13.08 29.55 -32.98 42764 34.67 

IMF4 0.95 12.87 18.05 -19 41510 33.75 
residual 
function 0.89 8.27 10.47 -15.57 17256 13.99 

 

Table 1. Statistical characteristics of the sharp wave IMFs with a transmission BER of 710− . 

 
 
 

 
Mean
( uv ) 

Std 
( uv ) 

Max 
( uv ) 

Min 
( uv ) 

Eng 

( 2uv )

Eng 
(%) 

normal
wave 

-0.48 8.53 20.70 -10.60 20499 100 

IMF1 0.02 1.08 2.67 -2.75 293.8 1.43 

IMF2 0.14 2.32 7.65 -8.49 1349.2 6.57 

IMF3 -0.36 2.98 7.07 -8.13 2253.3 10.99 

IMF4 -0.62 5.93 11.65 -9.16 8877.8 43.31 
residual 
function -0.02 5.57 8.02 -7.90 7726.9 37.69 

 

Table 2. Statistical characteristics of the normal wave IMFs with a transmission BER of 710− . 

 
 
 

 
Mean
(Hz) 

Std 
(Hz) 

Max 
(Hz) 

Min 
(Hz) 

IF1 42.04 34.37 116.40 -121.49 

IF2 16.25 12.55 106.70 -41.33 

IF3 4.89 7.52 42.84 -43.76 

IF4 1.94 0.73 3.75 0.23 

residual 
function 

0.91 0.67 8.6 -0.16 

 
 

Table 3. Statistical characteristics of the sharp wave IFs with a transmission BER of 710− . 
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Mean
(Hz) 

Std 
(Hz) 

Max 
(Hz) 

Min 
(Hz) 

IF1 49.04 28.28 124.40 -112.08 

IF2 21.96 11.57 63.22 -75.62 

IF3 10.10 4.83 22.04 -26.8 

IF4 3.93 1.90 7.48 0.52 

residual 
function 

2.04 0.55 5.53 0.05 

Table 4. Statistical characteristics of the normal wave IFs with a transmission BER of 710− . 

 
 

IMF3 <0.5Hz ǅ θ ǂ ǃ Ǆ 

sharp 0.31 16497.95 25374.79 381.41 509.35 0.17 

Normal 773.28 1336.66 117.95 25.45 0.00 0.00 

sharp (%) 0.00 38.58 59.34 0.89 1.19 0.00 

normal (%) 34.32 59.32 5.23 1.13 0.00 0.00 
 

Table 5. Frequency-energy distributions of IMF3 of the sharp and normal waves with a 

transmission BER of 10-7. 

 
 

IMF4 <0.5Hz ǅ θ 

sharp 663.00 40853.00 0.00 

normal 0.00 7696.00 1580.89

sharp(%) 1.60 98.40 0.00 

normal(%) 0.00 82.20 17.80 
 

Table 6. Frequency-energy distributions of IMF4 of the sharp and normal waves with a 

transmission BER of 710− . 

 
 

residual function <0.5Hz ǅ θ 

sharp 2356.10 14421.09 236.54 

normal 3.73 7714.66 8.52 

sharp(%) 13.65 83.57 1.37 

normal(%) 0.05 99.84 0.11 
 

Table 7. Frequency-energy distributions of the residual function of the sharp and normal 

waves with a transmission BER of 710− . 
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sharp IMF3 
(sec) 

<0.5
Hz 

ǅ θ ǂ ǃ Ǆ 

0-0.1 0.31 5.63 4.51 21.60 0.23 0 

0.1-0.2 0 0.20 0 76.66 25.07 0.06 
0.2-0.3 0 0 2217.07 41.63 0 0 

0.3-0.4 0 11983.3 96.602 0 0 0 

0.4-0.5 0 3264.05 8076.35 0 0 0 
0.5-0.6 0 0 11104.50 0 0 0 

0.6-0.7 0 427.44 3022.18 0 0 0 
0.7-0.8 0 166.66 741.86 0 0 0 

0.8-0.9 0 3.88 22.00 9.85 1.99 0.11 

0.9-1.0 0 646.75 89.73 231.66 482.06 0 

Table 8. Time-frequency-energy distributions of IMF3 of the sharp waves with a 

transmission BER of 710− . 

 

sharp IMF4 
(sec) 

<0.5Hz ǅ 

0-0.1 0 4429.30
0.1-0.2 0 6789.34

0.2-0.3 0 1288.18

0.3-0.4 0 6003.27
0.4-0.5 0 1870.42

0.5-0.6 0 5935 
0.6-0.7 0 1232.43

0.7-0.8 0 6105.55
0.8-0.9 0 5429.43

0.9-1.0 662.79 1764.27

Table 9. Time-frequency-energy distributions of IMF4 of the sharp waves with a 

transmission BER of 710− . 

 

Normal IMF4 
(sec) 

ǅ θ 

0-0.1 1940.13 0 

0.1-0.2 1125.07 0 

0.2-0.3 1429.04 17.67 
0.3-0.4 0 409.96 

0.4-0.5 0 201.27 
0.5-0.6 0 239.73 

0.6-0.7 0 401.12 
0.7-0.8 188.11 158.76 

0.8-0.9 1056.87 0 

0.9-1.0 1557.65 152.39 

Table 10. Time-frequency-energy distributions of IMF4 of the normal waves with a 

transmission BER of 710− . 
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normal residual 
function 

(sec) 
<0.5Hz ǅ 

0-0.1 3.73 523.16 

0.1-0.2 0 1348.84

0.2-0.3 0 358.32 

0.3-0.4 0 1045.06

0.4-0.5 0 439.20 

0.5-0.6 0 1229.81

0.6-0.7 0 329.76 

0.7-0.8 0 1138.58

0.8-0.9 0 1169.23

0.9-1.0 0 132.69 

 

Table 11. Time-frequency-energy distributions of the residual function of the normal waves 

with a transmission BER of 710− . 

4. Discussion 

Hilbert-Huang transformation (HHT) is one of the major time-frequency analysis methods 

and is suitable for the analysis of local time signals. In this article, we use HHT-based 

method to analysis the signal deemed of the sharp wave. In addition, we describe the 

features of a sharp wave recorded and a normal wave recorded with a transmission bit error 

rate (BER) of 710−  for patients with epilepsy by using HHT analysis method. Simulation 

results shows that the performance of the sharp wave based HHT time-frequency 

characteristics is not affected under the transmission BER of 710−  assumptions. We present 

the intrinsic mode functions (IMF), instantaneous frequencies (IF), time-frequency-energy 

distributions for the sharp and normal waves. Clear energy-frequency-time variations of the 

sharp waves and normal waves with a transmission BER of 710−  are shown. There are 4 

IMFs and a residual function of the sharp and normal waves by using the HHT analysis. 

Analysis results show that the ratio of the energy of a sharp wave with the IMF3 and the 

total energy of a sharp wave, the ratio of the energy of a sharp wave with the IMF4 and the 

total energy of a sharp wave, the ratio of the energy of a normal wave with the IMF4 and the 

total energy of a normal wave, the ratio of the energy of a normal wave with the residual 

function and the total energy of a normal wave are 34.55%, 33.73%, 43.25%, and 37.63%, 

respectively. The ratio of the energy of the IMF4 of a sharp wave with δ (0.5Hz-4Hz) band 

and the total energy of the IMF4 of a sharp is 98.4%. The ratio of the energy of the IMF4 of a 

normal wave with δ (0.5Hz-4Hz) band and the total energy of IMF4 of a sharp is 82.2%. The 

mean IF of the IMF4 of a sharp wave is smaller than the mean IF of the IMF4 of a normal 

wave. From these analysis results, we observe that the HHT-based time-frequency 

characteristics of the sharp waves with a transmission BER of 710− . 
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5. Conclusion 

The HHT-based time-frequency analysis approaches are suitable for studying the local and 

non-stationary normal waves and sharp waves in EEGs for epilepsy. We obtained the IMFs, 

and IFs to analyze the energy-frequency-time distributions of normal waves and sharp 

waves with a transmission BER of 710−  in the EEG.  The mean IF of IMF4 of a sharp wave is 

smaller than the mean IF of IMF4 of a normal wave. In addition, the substantial energies of 

IMF3 of the sharp wave are the δ  band in the interval of 0.3-0.5 s, and the θ  band in the 

interval of 0.4-0.7 s. The substantial energies of IMF4 of the sharp wave are the δ  band in 

the intervals of 0.1-0.2 s, 0.3-0.4 s, and 0.7-0.9 s. In contrast, the substantial energies of IMF4 

of the normal wave are the δ  band in the intervals of 0-0.1 s, 0.1-0.3 s, and 0.8-1 s. The 

substantial energies of the residual function of the normal wave are the δ  band in the 

intervals of 0.1-.0.2 s, 0.3-0.4 s, 0.5-0.6 s, and 0.7-0.9s. These observations show that the sharp 

signal characteristics and the IMFs, IFs, time-frequency-energy distributions of sharp-related 

and normal signals can be distinguished from each other, thereby ensuring more accurate 

diagnosis of patients with an epilepsy-related sharp.  

6. Acknowledgements 

The authors acknowledge the support of National Taiwan Ocean University, Center for 

Marine Bioscience and Biotechnology and the Chang Cung Memorial Hospital, Keelung 

Branch Research Project 98529002k8, The Ministry of Education of Cross fields learning 

projects of personnel training of 99A1 in NTOU, Taiwan, National Taiwan Ocean 

University, Center for Teaching and Learning, Telemedicine Teaching and Learning 

Probject, the grant from the National Science Council of Taiwan NSC 98-2221-e-022-018, 

NSC 93-2218-e-019-024, and the valuable comments of the reviewers. 

7. References 

Huang, N. E.; Shen, Z.; Long,  S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N. C.; Tung  

C. C. & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert 

spectrum for non- linear and non-stationary time series analysis. Proceedings of the 

Royal Society of London Series A—Mathematical Physical and Engineering Sciences, 903-

995.  

Yan, R. & Gao R. X. (2007). A tour of the Hilbert-Huang transform: an empirical tool for 

signal analysis. IEEE Instrumentation & Measurement Magazine, 11-15. 

Cohen, L. (1989). Time-frequency distributions-a review. I Proceedings of the IEEE,  

941–981. 

Blanco, S.; Kochen, S.; Rooso, O. A.& Salgado, P. (1997). Applying time-frequency analysis to 

seizure EEG activity. IEEE Engineering in Medicine and Biology, 64-71. 

Tzallas, A. T.; Tsipouras, M. G. & Fotiadis, D. I. (2009). Epileptic seizure detection in EEGs 

using time-frequency analysis. IEEE Trans. Information Technology in Biomedicine, 

703-710.  

www.intechopen.com



Sharp Wave Based HHT Time-frequency Features with Transmission Error   

 

163 

Exarchos, T. P.; Tzallas, A. T.; Fotiadis, D. I.; Konitsiotis, S. & Giannopoulos, S. (2006). EEG 

transient event detection and classification using association rules. IEEE Trans. Inf. 

Technol. Biomed, 451–457.  

Williams, W. J.; Zaveri, H. P. & Sackellares, J. C. (1995). Time-frequency analysis of 

electrophysiology signals in epilepsy. IEEE Eng. Med. Biol, 133–143.  

Sharabaty, H.; Martin, H. J.; Jammes, B. & Esteve, D. (2006). Alpha and theta  

wave localisation using Hilbert-Huang transform: empirical study of the accuracy, 

Proceedings of IEEE Int. Conf. Information and Communication Technologies, 1159- 

1164. 

Wang, L.; Xu, G.; Wang, J.; Yang, S. & Yan, W. (2008). Application of Hilbert-Huang 

transform for the study of motor imagery tasks, Proceedings of IEEE Int. Conf. EMBS, 

3848-3851. 

Wang, Y. L.; Liu, J. H. & Liu, Y. (2008). Automatic removal of ocular artifacts from 

electroencephalogram using Hilbert-Huang transform, Proceedings of IEEE Int. Conf. 

ICBBE,2138-2141. 

Lin, C. F.; Chang, W. T.; Lee, H. W.  & Hung, S. I. (2006). Downlink power control in multi-

code CDMA mobile medicine system. Medical & Biological Engineering & Computing, 

437-444.  

Lin, C. F.; Chang, W. T. & Li, C. Y. (2007). A chaos-based visual encryption mechanism in 

JPEG2000 medical images. J. of Medical and Biological Engineering, 144-149.  

Lin, C. F. & Chang, K. T. (2008). A power assignment mechanism in Ka band OFDM-based 

multi-satellites mobile telemedicine.  J. of Medical and Biological Engineering, 17-22.  

Lin, C. F. & Li, C. Y. (2008). A DS UWB transmission system for wireless telemedicine. 

WSEAS Transactions on Systems, 578-588.  

Lin, C. F.; Chung, C. H.; Chen, Z. L.; Song, C. F. & Wang, Z. X. (2008). A chaos-based 

unequal encryption mechanism in wireless telemedicine with error decryption.  

WSEAS Transactions on Systems, 49-55.  

Lin, C. F.; Chen, J. Y.;  Shiu, R. H. & Chang, S. H. (2008). A Ka band WCDMA-based LEO 

transport architecture in mobile telemedicine, In: Telemedicine in the 21st Century, 

Lucia Martinez and Carla Gomez, (Ed.), 187-201, Nova Science Publishers, USA. 

Lin, C. F.; Chung, C. H. & Lin, J. H. (2009). A Chaos-based visual encryption mechanism for 

EEG clinical signals. Medical & Biological Engineering & Computing, 757-762.  

Lin, C. F. (2010). An Advance Wireless Multimedia Communication Application: Mobile 

Telemedicine. WSEAS Transactions on Communications, 206-215.  

Lin, C. F.; Hung, S. I.; & Chiang, I. H. (Online First). 802.11n WLAN Transmission Scheme 

for Wireless Telemedicine Applications. Proceedings of the Institution of Mechanical 

Engineers, Part H, Journal of Engineering in Medicine.  

Lin, C. F. (Online First). Mobile Telemedicine:A Survey Study. Journal of Medical Systems.  

Lin, C. F. & Wang, B. S. H. (Accept). A 2D Chaos-based Visual Encryption Scheme for 

Clinical EEG Signals. Journal of Marine Science and Technology.  

Lin, C. F.; Yeh S. W.; Peng, T. I.; Chien, Y. Y.; Wang, J. H. & Chang, S. H. (2008). A HHT-

based time frequency analysis scheme in clinical alcoholic EEG signals. WSEAS 

Transactions on Biology and Biomedicine, 249-260.  

www.intechopen.com



 Advances in Telemedicine: Technologies, Enabling Factors and Scenarios 

 

164 

Lin, C. F.; Yeh, S. W.; Chang, S. H.; Peng, T. I. & Chien, Y. Y.  (2010). An HHT-based time-

frequency scheme for analyzing the EEG signals of clinical alcoholics. In: Advances 

in Medicine and Biology, Volume 11, Leon V. Berhardt, (Ed.), Nova Science 

Publishers, USA. 

Lin, C. F.; Yeh, S. W.; Chang, S. H.; Peng, T. I. & Chien, Y. Y.  (2010). An HHT-based Time-

frequency Scheme for Analyzing the EEG Signals of Clinical Alcoholics, Online Book, 

Nova Science Publishers, USA. 

www.intechopen.com



Advances in Telemedicine: Technologies, Enabling Factors and

Scenarios

Edited by Prof. Georgi Graschew

ISBN 978-953-307-159-6

Hard cover, 412 pages

Publisher InTech

Published online 16, March, 2011

Published in print edition March, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Innovative developments in information and communication technologies (ICT) irrevocably change our lives

and enable new possibilities for society. Telemedicine, which can be defined as novel ICT-enabled medical

services that help to overcome classical barriers in space and time, definitely profits from this trend. Through

Telemedicine patients can access medical expertise that may not be available at the patient's site.

Telemedicine services can range from simply sending a fax message to a colleague to the use of broadband

networks with multimodal video- and data streaming for second opinioning as well as medical telepresence.

Telemedicine is more and more evolving into a multidisciplinary approach. This book project "Advances in

Telemedicine" has been conceived to reflect this broad view and therefore has been split into two volumes,

each covering specific themes: Volume 1: Technologies, Enabling Factors and Scenarios; Volume 2:

Applications in Various Medical Disciplines and Geographical Regions. The current Volume 1 is structured into

the following thematic sections: Fundamental Technologies; Applied Technologies; Enabling Factors;

Scenarios.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Chin-Feng Lin, Bing-Han Yang, Tsung-Ii Peng, Shun-Hsyung Chang, Yu-Yi Chien, and Jung-Hua Wang

(2011). Sharp Wave Based HHT Time-frequency Features with Transmission Error, Advances in

Telemedicine: Technologies, Enabling Factors and Scenarios, Prof. Georgi Graschew (Ed.), ISBN: 978-953-

307-159-6, InTech, Available from: http://www.intechopen.com/books/advances-in-telemedicine-technologies-

enabling-factors-and-scenarios/sharp-wave-based-hht-time-frequency-features-with-transmission-error



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


