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1. Introduction

Diversity reception, is an efficient communication receiver technique for mitigating the
detrimental effects of multi-path fading in wireless mobile channels at relatively low cost.
Diversity combining is the technique applied to combine the multiple received copies of
the same information bearing signal into a single improved signal, in order to increase
the overall signal-to-noise ratio (SNR) and improve the radio link performance. The most
important diversity reception methods employed in digital communication receivers are
maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC) and
switch and stay combining (SSC) (Simon & Alouini, 2005). Among these well-known diversity
techniques, MRC is the optimal technique in the sense that it attains the highest SNR of any
combining scheme, independent of the distribution of the branch signals since it results in a
maximum-likelihood receiver (Simon & Alouini, 2005).
Of particular interest is the performance analysis of MRC diversity receivers operating over
generalized fading channels, as shown by the large number of publications available in the
open technical literature. The performance of MRC diversity receivers depends strongly
on the characteristics of the multipath fading envelopes. Recently, the so-called η-µ fading
distribution that includes as special cases the Nakagami-m and the Hoyt distribution, has
been proposed as a more flexible model for practical fading radio channels (Yacoub, 2007).
The η-µ distribution fits well to experimental data and can accurately approximate the sum
of independent non-identical Hoyt envelopes having arbitrary mean powers and arbitrary
fading degrees (Filho & Yacoub, 2005).
In the context of performance evaluation of digital communications over fading channels
this distribution has been used only recently. Representative past works can be found in
(Asghari et al., 2010; da Costa & Yacoub, 2007; 2008; Ermolova, 2008; 2009; Morales-Jimenez
& Paris, 2010; Peppas et al., 2009; 2010). For example, in (da Costa & Yacoub, 2007), the
average channel capacity of single branch receivers operating over η-µ channels was derived.
In (da Costa & Yacoub, 2008), expressions for the moment generating function (MGF) of
the above mentioned channel were provided. Based on these results, the average bit error
probability (ABEP) of coherent binary phase shift keying (BPSK) receivers operating over
η-µ fading channels was obtained. Furthermore, in (da Costa & Yacoub, 2009), using an
approximate yet highly accurate expression for the sum of identical η-µ random variables,
infinite series representations for the Outage Probability and ABEP of coherent and non
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coherent digital modulations for MRC and EGC receivers are presented. The derived infinite
series were given in terms of Meijer-G functions (Prudnikov et al., 1986, Eq. (9.301)).
In this chapter we present a thorough performance analysis of MRC diversity receivers
operating over non-identically distributed η-µ fading channels. The performance metrics of
interest is the average symbol error probability (ASEP) for a variety of M-ary modulation
schemes, the outage probability (OP) and the average channel capacity. The well known MGF
approach (Simon & Alouini, 2005) is used to derive novel closed-form expressions for the
ASEP of M-ary phase shift keying (M-PSK), M-ary differential phase shift keying (M-DPSK)
and general order rectangular quadrature amplitude modulation (QAM) using MRC diversity
in independent, non identically distributed (i.n.i.d) fading channels. The derived ASEP
expressions are given in terms of Lauricella and Appell hypergeometric functions which
can be easily evaluated numerically using their integral or converging series representation
(Exton, 1976). Furthermore, in order to offer insights as to what parameters determine the
performance of the considered modulation schemes under the presence of η-µ fading, a
thorough asymptotic performance analysis at high SNR is performed. A probability density
function (PDF) -based approach is used to derive useful performance metrics such as the OP
and the channel capacity. To obtain these results, we provide new expressions for the PDF of
the sum of i.n.i.d squared η-µ random variables. The PDF is given in three different formats:
An infinite series representation, an integral representation as well as an accurate closed form
expression. It is shown that our newly derived expressions incorporate as special cases several
others available in the literature, namely those for Nakagami-m and Hoyt fading.

2. System and Channel model

We consider an L-branch MRC receiver operating in an η-µ fading environment. Assuming
that signals are transmitted through independently distributed branches, the instantaneous
SNR at the combiner output is given by

γ =
L

∑
ℓ=1

γℓ (1)

where γℓ is the instantaneous SNR of the ℓ-th branch.
The moment generating function (MGF) of γ, defined as Mγ(s) = E〈exp(−sγ)〉, with the
help of (Ermolova, 2008, Eq. (6)) can be expressed as :

Mγ(s) =
L

∏
i=1

∫ ∞

0
exp(−sγi) fγi

(γi)dγi =
L

∏
i=1

(1 + Ais)
−µi(1 + Bis)

−µi (2)

where Ai =
γi

2µi(hi−Hi)
and Bi =

γi

2µi(hi+Hi)
, i = 1 · · · L.

In the following analysis, we first address the error performance of the considered system
using an MGF-based approach. Moreover, the outage probability and the average channel
capacity will be addressed using a PDF-based approach.

3. Error rate performance analysis

In this Section, we make use of the MGF-based approach for the performance evaluation of
digital communication over generalized fading channels (Alouini & Goldsmith, 1999b; Simon
& Alouini, 1999; 2005) to derive the ASEP of a wide variety of modulation schemes when used
in conjunction with MRC.
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Performance Analysis of Maximal Ratio Diversity Receivers over Generalized Fading Channels 3

3.1 M-ary PSK

The ASEP of M-ary PSK signals is given by (Simon & Alouini, 2005, Eq. (5.78))

Ps(e) = I1 + I2 (3)

where

I1 =
1

π

∫ π−π/M

π/2
Mγ

(

gPSK

sin2 θ

)

dθ, I2 =
1

π

∫ π/2

0
Mγ

(

gPSK

sin2 θ

)

dθ (4)

and gPSK = sin2(π/M). For the integral I1 by performing the change of variable x =
cos2 θ/ cos2(π/M) and after some necessary manipulations, one obtains:

I1 =
cos

(

π
M

)

2π

∫ 1

0
x−

1
2

(

1−x cos2 π

M

)− 1
2

L

∏
i=1

(

1+
AigPSK

1 − x cos2 π
M

)−µi
(

1+
BigPSK

1−x cos2 π
M

)−µi

dx

=
1

2π
cos

( π

M

)

Mγ(gPSK)
∫ 1

0
x−1/2

(

1 − x cos2 π

M

)2 ∑
L
i=1 µi−1/2

×
L

∏
i=1

(

1 − cos2 π
M

1 + AigPSK
x

)−µi L

∏
i=1

(

1 − cos2 π
M

1 + BigPSK
x

)−µi

dx

=
1

π
cos

( π

M

)

Mγ(gPSK)F
(2L+1)
D

(

1

2
,

1

2
− 2

L

∑
i=1

µi, µ1, · · · µL, µ1, · · · µL;
3

2
; cos2 π

M

,
cos2 π

M

1 + A1gPSK
, · · · ,

cos2 π
M

1 + ALgPSK
,

cos2 π
M

1 + B1gPSK
· · · cos2 π

M

1 + BLgPSK

)

(5)

where F
(n)
D (v, k1, · · · , kn; c; z1, · · · , zn) is the Lauricella multiple hypergeometric function of

n variables defined as (Prudnikov et al., 1986, Eq. (7.2.4.57)), (Prudnikov et al., 1986, Eq.
(7.2.4.15)):

F
(n)
D (v, k1, · · · , kn; c; z1, · · · , zn) =

Γ(c)

Γ(c − v)Γ(v)

∫ 1

0
xv−1(1 − x)c−v−1

n

∏
i=1

(1 − zix)
−ki dx

=
∞

∑
l1,l2,··· ,ln=0

(v)lT

(c)lT

n

∏
i=1

(ki)li

Γ(li + 1)
zli

i , |zi| < 1

(6)

where lT = ∑
n
i=1 li, (α)β = Γ(α+ β)/Γ(α) is the Pochhammer symbol. The integral in (6) exists

for R{c − v} > 0 and R{v} > 0 where R{·} denotes the real part. If n = 2, this function
reduces to the Appell hypergeometric function F1 (Prudnikov et al., 1986, Eq. (7.2.1.41))
whereas if n = 1, it reduces to the Gauss hypergeometric function 2F1. It is seen from (5)

that the conditions for series convergence and integral existence of F
(2L+1)
D are satisfied.

For the integral I2 by performing the change of variable x = cos2 θ and after some
manipulations we obtain:

49Performance Analysis of Maximal Ratio Diversity Receivers over Generalized Fading Channels
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I2 =
Mγ(gPSK)

2π

∫ 1

0
x−

1
2 (1 − x)2 ∑

L
i=1 µi− 1

2

L

∏
i=1

(

1 − 1

1 + AigPSK
x

)−µi
(

1 − 1

1 + BigPSK
x

)−µi

dx

=
Γ
(

2 ∑
L
i=1 µi + 1/2

)

2
√

πΓ(2 ∑
L
i=1 µi + 1)

Mγ(gPSK)F
(2L)
D

(

1

2
, µ1, · · · µL, µ1, · · · µL; 2

L

∑
i=1

µi + 1;
1

1 + A1gPSK
,

· · · ,
1

1 + ALgPSK
,

1

1 + B1gPSK
, · · · ,

1

1 + BLgPSK

)

(7)

For the case of BPSK (M = 2, gPSK = 1), it can be observed that I1 = 0 and therefore the
expression for the ASEP is reduced to the following compact form:

Ps(e) =
Γ
(

2 ∑
L
i=1 µi + 1/2

)

2
√

πΓ(2 ∑
L
i=1 µi + 1)

Mγ(1)F
(2L)
D

(

1

2
, µ1, · · · µL, µ1, · · · µL; 2

L

∑
i=1

µi + 1;
1

1 + A1
,

· · · ,
1

1 + AL
,

1

1 + B1
, · · · ,

1

1 + BL

)

(8)

For independent and identically distributed (i.i.d.) fading channels, where hi = h, Hi = H,

µi = µ, Ai = A and Bi = B, using the integral representation of F
(2L+1)
D and F

(2L)
D , the

following simplified forms are obtained:

I1iid
=

1

π
cos

( π

M

)

Mγ(gPSK)F
(3)
D

(

1

2
,

1

2
− 2Lµ, Lµ, Lµ;

3

2
; cos2 π

M
,

cos2 π
M

1 + AgPSK
,

cos2 π
M

1 + BgPSK

)

(9)

I2iid
=

Γ(2Lµ + 1/2)

2
√

πΓ(2Lµ + 1)
Mγ(gPSK)F1

(

1

2
, Lµ, Lµ; 2Lµ + 1;

1

1 + AgPSK
,

1

1 + BgPSK

)

(10)

For the special case of Hoyt fading channels (µ = 0.5) and no diversity (L = 1), the expression
for the ASEP of M-ary PSK is reduced to a previously known result (Radaydeh, 2007, Eq. (18)).
Finally, for Nakagami-m fading channels and i.i.d. branches, using (10) and (Prudnikov et al.,
1986, Eq. (7.2.4.60)), a previously known result may be obtained (Adinoyi & Al-Semari, 2002,
Eq. (6)).

3.2 M-ary DPSK

The ASEP of M-ary DPSK signals is given by (Simon & Alouini, 2005, Eq. (8.200))

Ps(e) =
2

π

∫ π/2−π/2M

0
Mγ

(

ζ sin2 π

M

)

dθ (11)

where ζ =
(

1 + cos π
M − 2 cos π

M sin2 θ
)−1

. Applying the transformation x =

sin2 θ/ cos2(π/2M) and after some algebraic manipulations the ASEP of M-ary DPSK can
be expressed as:
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Ps(e) =
1

π
cos

( π

2M

)

Mγ( f (M))
∫ 1

0
x−1/2

(

1 − x cos2 π

2M

)−1/2 (

1 − x cos
π

M

)2 ∑
L
i=1 µi

×
L

∏
i=1

(

1 − cos π
M

1 + Ai f (M)
x

)−µi
(

1 − cos π
M

1 + Bi f (M)
x

)−µi

dx

=
2

π
cos

( π

2M

)

Mγ( f (M))F
(2L+2)
D

(

1

2
,

1

2
,−2

L

∑
i=1

µi, µ1, µ1, · · · , µL, µL;
3

2
; cos2 π

2M
,

cos
π

M
,

cos π
M

1 + A1 f (M)
,

cos π
M

1 + B1 f (M)
, · · · ,

cos π
M

1 + AL f (M)
,

cos π
M

1 + BL f (M)

)

(12)

where f (M) = sin2(π/M)
2 cos2(π/2M)

.

For binary DPSK signals (M = 2), using F
(N)
D (v, k1, k2, · · · , kN ; c; z, 0, · · · , 0) = 2F1(v, k1; c; z)

and 2F1

(

1
2 , 1

2 ; 3
2 ; z

)

= arcsin(
√

z)/
√

z (Prudnikov et al., 1986, Eq. (7.3.2.76)), the derived result

is reduced to the well known expression for the error probability of binary DPSK signals over
generalized fading channels, i.e. PM=2(e) =

1
2Mγ(1).

For the i.i.d. case, using the integral representation of the Lauricella function, a simplified
expression of Ps(e) may be obtained as:

Ps(e) =
2 cos

(

π
2M

)

Mγ( f (M))

π
F
(4)
D

(

1

2
,

1

2
,−2Lµ, Lµ, Lµ;

3

2
;

cos2 π

2M
, cos

π

M
,

cos π
M

1 + A f (M)
,

cos π
M

1 + B f (M)

)

(13)

3.3 General order rectangular QAM

We consider a general order rectangular QAM signal which may be viewed as two separate
Pulse Amplitude Modulation (PAM) signals impressed on phase-quadrature carriers. Let also
MI and MQ be the dimensions of the in-phase and the quadrature signal respectively and r =
dQ/dI the quadrature-to-in-phase decision distance ratio, with dI and dQ being the in-phase
and the quadrature decision distance respectively. For general order rectangular QAM, the
ASEP is given by (Lei et al., 2007, Eq. (4))

Ps(e) = 2pJ (a) + 2qJ (b)− 4pq[K(a, b) +K(b, a)] (14)

where

J (t) =
1

π

∫ π/2

0
Mγ

(

t2

2 sin2 θ

)

dθ, K(u, v) =
1

2π

∫ π/2−arctan(v/u)

0
Mγ

(

u2

2 sin2 θ

)

dθ (15)

and p = 1 − 1/MI , q = 1 − 1/MQ, a =
√

6
(M2

I−1)+r2(M2
Q−1)

, b =
√

6r2

(M2
I−1)+r2(M2

Q−1)
. Using

the result in (7), the integral J (t) can be easily evaluated in terms of the Lauricella functions
as:
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J (t) =
Γ
(

2 ∑
L
i=1 µi + 1/2

)

2
√

πΓ(2 ∑
L
i=1 µi + 1)

Mγ(t
2/2)F

(2L)
D

(

1

2
, µ1, · · · µL, µ1, · · · µL; 2

L

∑
i=1

µi + 1;
2

2 + A1t2
,

· · · ,
2

2 + ALt2
,

2

2 + B1t2
, · · · ,

2

2 + BLt2

)

(16)

To evaluate K(u, v) in (15), applying the transformation x = 1 − (v2/u2) tan2 θ and after
performing some algebraic and trigonometric manipulations, we obtain:

K(u, v) =
uvMγ(

u2+v2

2 )

4π(u2 + v2)

∫ 1

0
(1 − x)2 ∑

L
i=1 µ1− 1

2

(

1 − u2

u2 + v2
x

)−1

×
L

∏
i=1

(

1 − x
2 + Aiu

2

2 + Aiu2 + Aiv2

)−µi
(

1 − x
2 + Biu

2

2 + Biu2 + Biv2

)−µi

dx

=
uvMγ(

u2+v2

2 )

2π(u2 + v2)
(

4 ∑
L
i=1 µi + 1

) F
(2L+1)
D

(

1, 1, µ1, · · · , µL, µ1, · · · , µL; 2
L

∑
i=1

µi +
3

2
;

u2

u2 + v2
,

2 + A1u2

2 + A1u2 + A1v2
, · · · 2 + ALu2

2 + ALu2 + ALv2
,

2 + B1u2

2 + B1u2 + B1v2
, · · · ,

2 + BLu2

2 + BLu2 + BLv2

)

(17)

For i.i.d. branches (16) reduces to:

Jiid(t) =
Γ(2Lµ + 1/2)

2
√

πΓ(2Lµ + 1)
Mγ(t

2/2)F1

(

1

2
, Lµ, Lµ; 2Lµ + 1;

2

2 + At2
,

2

2 + Bt2

)

(18)

whereas (17) is reduced to:

Kiid(u, v) =
uvMγ(

u2+v2

2 )

2π(u2 + v2)(4Lµ + 1)
F
(3)
D

(

1, 1, Lµ, Lµ; 2Lµ +
3

2
;

u2

u2 + v2
,

2 + Au2

2 + Au2 + Av2
,

2 + Bu2

2 + Bu2 + Bv2

)

(19)

For the special case of Nakagami-m channels, using (Prudnikov et al., 1986, Eq. (7.2.4.60)), (18)
is reduced to a previously known result (Lei et al., 2007, Eq. 11). Moreover, using the infinite
series representation of the Lauricella function (6), (Prudnikov et al., 1986, Eq. (7.2.4.60)) and
after some necessary manipulations, (19) is reduced to a previously known result (Lei et al.,
2007, Eq. 15).

3.4 Asymptotic error rate analysis at high SNR

The asymptotic performance analysis of a diversity system at high SNR region allows one to
gain useful insights regarding the parameters determining the error performance. At high
SNR, the ASEP of a digital communications system has been observed in certain cases to be
approximated as (Simon & Alouini, 2005; Wang & Yannakis, 2003)

Ps(e) ≃ Cdγ−d (20)
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where Cd is referred to as the coding gain, and d as the diversity gain. The diversity gain
determines the slope of the ASEP versus average SNR curve, at high SNR, in a log-log scale.
Moreover, Cd (expressed in decibels) represents the horizontal shift of the curve in SNR

relative to a benchmark ASEP curve of Ps(e) ≃ γ−d.
In (Wang & Yannakis, 2003), the authors developed a simple and general method to quantify
the asymptotic performance of wireless transmission in fading channels at high SNR values.
In this work, it was shown that the asymptotic performance depends on the behavior of the
PDF of the instantaneous channel power gain denoted by β, p(β). Moreover, it was shown that
if the MGF of p(β) can be expressed for s → ∞ as |Mβ(s)| = C|s|−d + o(|s|−d), a diversity
gain equal to d may be obtained. It is noted that we write f (x) = o[g(x)] as x → x0 if

limx→x0

f (x)
g(x)

= 0. We observe that (2) can be expressed as:

Mγ(s) =
L

∏
i=1

[

s−2AiBi

(

1 +
1

Ais

)(

1 +
1

Bis

)]−µi

= Cs−d + o(s−d) (21)

for s → ∞, where C = ∏
L
i=1(AiBi)

−µi = ∏
L
i=1 h

µi

i

(

γi
2µi

)−2µi

and d = 2 ∑
L
i=1 µi. This

interesting result shows that the diversity gain of the considered system depends on the
number of the receive antennas L as well as on the parameters µi. For the special case of
i.i.d. branches, it is obvious that a diversity gain equal to 2µL may be obtained.

3.4.1 Asymptotic ASEP of M-PSK

At high SNR, using the previously derived asymptotic expression for the MGF, I1 can be
computed as:

I1asym
=

C cos π
M

2gd
PSKπ

∫ 1

0
x−1/2

(

1 − x cos2 π

M

)−1/2+d
dx =

C cos π
M

πgd
PSK

2F1

(

1

2
− d,

1

2
;

3

2
; cos2 π

M

)

(22)
Also, a simplified asymptotic expression of I2 may be obtained as:

I2asym
=

C

gd
PSKπ

∫ π/2

0
sin2d θdθ =

CΓ(d + 1/2)

2
√

πΓ(d + 1)gd
PSK

(23)

In Figure 1 the ASEP for BPSK modulation is plotted as a function of γ1 for constant η equal
to 2 and for various values of µ and L. An exponential power decay profile is considered, that
is the average input SNR of the l-th branch is given by γl = γ1 exp[−δ(l − 1)] where δ is the
decay factor. We also assume δ = 0.5. As expected, by keeping η constant, an increase in µ
and/or L results in an improvement of the system performance. For comparison purposes,
for L = 1, 2 and 3, the ASEP of the BPSK modulation for the Hoyt fading channel (µ = 0.5)
has also been plotted versus the average input SNR per branch. It is obvious that the Hoyt
channel results in the worst symbol error performance. The asymptotic performance of the
BPSK ASEP expressions is also investigated and as it can be observed, for no diversity (L = 1)
and small values of µ, the high SNR asymptotic expressions yield accurate results even for
low to medium SNR values. Moreover in Figure 2 the ASEP of M-PSK modulation is plotted
as a function of the first branch average input SNR γ1, for the η-µ fading channel, Format 1
and for different values of M and L, with ηℓ = η = 2 and µℓ = µ = 1.5, ℓ = 1, 2, 3. As one
can observe, an increase in the number of diversity branches from L = 1 to L = 3 significantly
enhances the system’s error performance. In the same figure, the exact and the asymptotic

53Performance Analysis of Maximal Ratio Diversity Receivers over Generalized Fading Channels

www.intechopen.com



8 Will-be-set-by-IN-TECH

ASEP results are also compared. As it is evident, the asymptotic results correctly predict the
diversity gain, however for large M and L, the predicted asymptotic behavior of the ASEP
curves shows up at relatively high SNR (e.g. for M = 16, L = 3 we need γ1 > 30dB).

Fig. 1. Average Symbol Error Probability of BPSK receivers with MRC diversity (L = 1, 3)
operating over n.i.d. η-µ fading channels (Format 1), for η = 2 and for different values of µ,
as a function of the First Branch Average Input SNR (δ = 0.5)

3.4.2 Asymptotic ASEP of M-DPSK

For M-DPSK, by substituting (21) to (11) and using the same methodology for the evaluation
of the corresponding integral, the following asymptotic expression of Ps(e) may be obtained
as:

Ps(e) =
C[ f (M)]−d

π
cos

( π

2M

)

∫ 1

0
x−1/2

(

1 − x cos2 π

2M

)−1/2 (

1 − x cos
π

M

)d
dx

=
2C[ f (M)]−d

π
cos

( π

2M

)

F1

(

1

2
,

1

2
,−d;

3

2
; cos2 π

2M
, cos

π

M

)
(24)

In Fig. 3 similar results for M-DPSK signal constellations are given with ηℓ = η = 2,
µℓ = µ = 1.5 and L = 1, 3, δ = 0.5. As in the case of coherent modulation, the performance of
the considered system significantly improves as the number of diversity branches increases.
Asymptotic results are also included and as it can be observed, the asymptotic approximation
predicts the diversity gain correctly and provides good approximation to the exact error
performance in the high SNR region, especially when L and/or µ are small.
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Fig. 2. Average Symbol Error Probability of M-PSK receivers with MRC diversity (L = 1, 3)
operating over n.i.d. η-µ fading channels (Format 1), for different values of M, as a function
of the First Branch Average Input SNR (η = 2, µ = 1.5, δ = 0.5)

Fig. 3. Average Symbol Error Probability of M-DPSK receivers with MRC diversity (L = 1, 3)
operating over n.i.d. η-µ fading channels (Format 1), for different values of M, as a function
of the First Branch Average Input SNR (η = 2, µ = 1.5, δ = 0.5)
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3.4.3 Asymptotic ASEP of general order rectangular QAM

For general order rectangular QAM and at high SNR values, the following asymptotic form
for J (t) may be obtained:

Jasym(t) =
2dC

t2dπ

∫ π/2

0
sin2d θdθ =

2d−1CΓ(d + 1/2)√
πΓ(d + 1)t2d

(25)

Moreover, using the integral representation of the 2F1 function, a simplified asymptotic
expression for K(u, v) may be obtained, as:

Kasym(u, v) =
2d−2Cuv

π(u2 + v2)d+1

∫ 1

0
(1 − x)d−1/2

(

1 − u2

u2 + v2
x

)−d−1

dx

=
2d−1Cuv

π(u2 + v2)d+1(2d + 1)
2F1

(

1, d + 1; d +
3

2
;

u2

u2 + v2

)

(26)

Fig. 4. Average Symbol Error Probability of 8 × 4 QAM receivers with MRC diversity
(L = 1, 2, 3) operating over η-µ fading channels (Format 1), for different values of r, as a
function of the Average Input SNR per Branch (η = 2, µ = 1.5, δ = 0.5)

In Figure 4 the error performance of a 8 × 4 QAM system is illustrated for η = 2, and µ = 1.5
with δ = 0.5. The ASEP is plotted for different values of L and r and as it is obvious, the error
performance significantly increases as L increases. Also, it can be observed that the ASEP
deteriorates substantially as r increases, for all values of µ. Moreover, asymptotic results have
been included and as it is evident, the simplified asymptotic expressions yield accurate results
at high SNR values, especially when L and/or r are small.

4. A PDF-based approach for outage probability and channel capacity evaluation

The PDF of γ in (1) may be obtained by taking the inverse Laplace transform of Mγ(s), i.e.

fγ(γ) = L
−1{Mγ(s); s; γ} (27)
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where L
−1{·; s; t} denotes inverse Laplace transform. It is noted that the PDF of L i.i.d. η-µ

channels is an η-µ distribution with parameters η, Lµ and Lγ (Yacoub, 2007). In the following
analysis analytical expressions for fγ(γ) will be obtained. This statistical result is then applied
to the evaluation of the outage probability and channel capacity of MRC receivers operating
over η-µ channels.

4.1 Infinite series representation of the PDF of the sum of independent η-µ variates
We may observe that in (2), each factor of the form (1 + sAℓ)

−µℓ is the MGF of a
gamma-distributed random variable with parameters µℓ and Aℓ. Similarly, each factor of
the form (1 + sBℓ)

−µℓ is the MGF of a gamma-distributed random variable with parameters
µℓ and Bℓ. Hence, the PDF of the sum of L independent squared η-µ variates may be obtained
as the PDF of the sum of 2L independent gamma variates with suitably defined parameters.
Using Moschopoulos (1985) and (Alouini et al., 2001, eq. (2)), the PDF of γ may be expressed
as

fγ(γ) =
L

∏
j=1

(AjBj)
−µj

∞

∑
k=0

ξk
γ2 ∑

L
ℓ=1 µℓ+k−1e−

γ
Cm

Ck
mΓ

(

k + 2 ∑
L
ℓ=1 µℓ

) , (28)

where Cm = min{Aℓ, Bℓ} and the coefficients ξk may be recursively obtained as

ξk+1 =
1

k + 1

k+1

∑
i=1

⎡

⎣

L

∑
j=1

µj

(

1 − Cm

Aj

)i

+
L

∑
j=1

µj

(

1 − Cm

Bj

)i
⎤

⎦ ξk+1−i, k = 0, 1, 2, . . . , (29)

with ξ0 = 1.

4.2 Integral representation of the PDF of the sum of independent η-µ variates
An alternative expression for the PDF of γ may be obtained by using the Gil-Pelaez result
(Gil-Pelaez, 1951) to obtain the inverse Laplace transform of (2). The cumulative distribution
function (CDF) of γ may be obtained as

Fγ(γ) = L
−1

{Mγ(s)

s
; s; γ

}

=
1

2
− 1

π

∫ ∞

0

ℑ{Mγ(jt)e−jγt}
t

dt, (30)

where j =
√
−1, and ℑ{·} is the imaginary part. By expressing Mγ(jt) in polar form and

substituting in (30), the CDF of γ may be expressed as

Fγ(γ) =
1

2
− 1

π

∫ ∞

0

sin
{

∑
L
ℓ=1 µℓ[arctan(Aℓt) + arctan(Bℓt)]− tγ

}

t ∏
L
ℓ=1[

(

1 + t2A2
ℓ

) (

1 + t2B2
ℓ

)

]
µℓ
2

dt, (31)

The corresponding PDF may be obtained by taking the derivative of (31) with respect to γ,
yielding

fγ(γ) =
∫ ∞

0

cos
{

∑
L
ℓ=1 µℓ[arctan(Aℓt) + arctan(Bℓt)]− tγ

}

dt

π ∏
L
ℓ=1[

(

1 + t2 A2
ℓ

) (

1 + t2B2
ℓ

)

]
µℓ
2

. (32)

Both integrals can be numerically evaluated in an efficient way, for example by using the
Gauss-Legendre quadrature rule (Abramovitz & Stegun, 1964, eq. (25.4.29)) over (32) or (31)
(Efthymoglou et al., 1997). Another fast and computationally efficient means to evaluate
such integrals is symbolic integration, using any of the well known software mathematical
packages such as Maple or Mathematica.
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4.3 A Closed-Form expression of the PDF of the sum of independent η-µ variates
A closed-form expression of the PDF of γ may be obtained by making use of the following
Laplace transform pair (Srivastava & L.Manocha, 1984, p. 259)

L{tα−1Φ
(n)
2 (b1, . . . bn; α; x1t, . . . , xnt) ; s; t} =

Γ(α)

sα

n

∏
j=1

(

1 −
xj

s

)−bj

, α > 0, (33)

where Φ
(L)
2 (·) is the confluent Lauricella hypergeometric function defined in (Srivastava &

L.Manocha, 1984, eq. 10, p. 62)

Φ
(n)
2 (b1, . . . bn; α; x1, . . . xn) =

∞

∑
l1,l2,··· ,ln=0

(b1)l1
. . . (bn)ln

(α)l1+...+ln

xl1

1

l1!
. . .

xln
n

ln!
, (34)

with (α)β = Γ(α + β)/Γ(α) being the Pochhammer symbol. By comparing (33) and (2), the
PDF of γ may be obtained as

fγ(γ) =
∏

L
ℓ=1(AℓBℓ)

−µℓγ2 ∑
L
j=1 µℓ−1

Γ
(

2 ∑
L
ℓ=1 µℓ

) Φ
(2L)
2 (µ1, µ1, · · · ,

µL, µL, 2
L

∑
ℓ=1

µℓ,−
γ

A1
,− γ

B1
· · · ,− γ

AL
,− γ

BL

)

.

(35)

It is noted that the both the integral and infinite series representations for the pdf of Y are much
more convenient for accurate and efficient numerical evaluation than this accurate closed
form, especially for large values of L, i.e. L > 6. (Efthymoglou et al., 2006). However, accurate
results may be obtained by expressing the series in (34) as multiple integrals (Saigo & Tuan,
1992) that can be easily evaluated numerically (Efthymoglou et al., 2006).

5. Applications to the performance analysis of MRC diversity systems

In this section, based on our previously derived results the outage probability and the
average channel capacity of MRC diversity systems will be derived. Moreover, an analytical
expression for the average error probability for binary modulation schemes will be derived in
closed-form using the PDF-based approach. As it will become evident both the PDF and the
MGF-based approach yield the same results.

5.1 Outage probability

The outage probability is defined as the probability that the instantaneous SNR at the
combiner output, γ, falls below a specified threshold γth, i.e. Pout(γth) = Pr(γ < γth) =
Fγ(γth). Using (28) and with the help of (Gradshteyn & Ryzhik, 2000, eq. (8.356.3)), an infinite
series representation of the outage probability may be obtained as

Pout(γth) = CU
m

L

∏
ℓ=1

(AℓBℓ)
−µℓ

∞

∑
k=0

ξk

⎡

⎣1 −
Γ
(

k + U, γth

Cm

)

Γ (k + U)

⎤

⎦ , (36)
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where U � 2 ∑
L
ℓ=1 µℓ. and Γ(·, ·) is the incomplete gamma function (Gradshteyn & Ryzhik,

2000, eq. 8.350.2). Moreover, using (31), an integral representation of the outage probability
may readily be obtained as

Pout(γth) =
1

2
− 1

π

∫ ∞

0

sin[V(t)− tγth]

W(t)
dt, (37)

where

V(t) �
L

∑
ℓ=1

µℓ[arctan(Aℓt) + arctan(Bℓt)], (38a)

W(t) � t
L

∏
ℓ=1

[
(

1 + t2 A2
ℓ

) (

1 + t2B2
ℓ

)

]
µℓ
2 , (38b)

Finally, by integrating (35) term-by-term, a closed form expression for Pout(γth) may be
obtained as

Pout(γth) =
∏

L
j=1(AℓBℓ)

−µℓγU
th

Γ (1 + U)
Φ

(2L)
2 (µ1, µ1, · · · , µL, µL, 1 + U,−γth

A1
,−γth

B1
· · · ,

−γth

AL
,−γth

BL

)

.

(39)

Fig. 5. Outage Probability of dual-branch MRC diversity receivers (L = 2) operating over η-µ
fading channels (Format 1, η = 2, µ = 1.5) , for different values of δ, as a function of the First
Branch Normalized Outage Threshold

In Figure 5 the outage performance of a dual-branch MRC diversity system versus the
first branch normalized outage threshold γ1/γth illustrated for η = 2, and µ = 1.5. An
exponentially power decay profile with δ = 0, 0.5, 1 is considered. The outage probability
is plotted for different values of δ and as it is obvious, the outage performance increases as
δ decreases. Note that both the integral representation, given by (36) and the infinite series
representation, given by (37) yield identical results.
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5.2 Channel capacity

For fading channels, the ergodic channel capacity characterizes the long-term achievable rate
averaged over the fading distribution and depends on the amount of available channel state
information (CSI) at the receiver and transmitter Alouini & Goldsmith (1999a). Two adaptive
transmission schemes are considered: Optimal rate adaptation with constant transmit power
(ORA) and optimal simultaneous power and rate adaptation (OPRA). Under the ORA scheme
that requires only receiver CSI, the capacity is known to be given by Alouini & Goldsmith
(1999a)

〈C〉ORA =
1

ln 2

∫ ∞

0
fγ(γ) ln(1 + γ)dγ (40)

In order to obtain an analytical expression of 〈C〉ORA for the considered DS-CDMA system,
we first make use of the infinite series representations of the PDF of γ given by (28). Then,
by expressing the exponential and the logarithm in terms of Meijer-G functions (Prudnikov
et al., 1986, Eq.(8.4.6.5)), (Prudnikov et al., 1986, Eq. (8.4.6.2)) and applying the result given
in (Prudnikov et al., 1986, Eq. (2.24.1.1)), the following expression for the capacity may be
obtained:

〈C〉ORA =
CU

m

ln 2

L

∏
ℓ=1

(AℓBℓ)
−µℓ

∞

∑
k=0

ξk

G 1,3
3,2

[

Cm

∣

∣

∣

1, 1, 1−U−k
1, 0

]

Γ (k + U)
, (41)

where G m,n
p,q [·] is the Meijer-G function (Gradshteyn & Ryzhik, 2000, Eq. (9.301)). For the

OPRA scheme, the capacity is known to be given by (Alouini & Goldsmith, 1999a, Eq. (7))

〈C〉OPRA =
∫ ∞

γ0

log2

(

γ

γ0

)

fγ (γ) dγ, (42)

where γ0 is the cutoff SNR below which transmission is suspended. By substituting (28) to
(42), expressing the logarithm and the exponential in terms of Meijer-G functions (Prudnikov
et al., 1986, Eq.(8.4.6.5)), (Prudnikov et al., 1986, Eq. (8.4.3.1)) and with the help of (Prudnikov
et al., 1986, Eq. (2.24.1.1)), 〈C〉OPRA may be obtained as

〈C〉OPRA =
CU

m

ln 2

L

∏
l=1

(AlBl)
−µl

∞

∑
k=0

ξk

G 0,3
3,2

[

Cm
γ0

∣

∣

∣

1, 1, 1−U−k
0, 0

]

Γ (k + U)
. (43)

In Figure 6 the average of a triple-branch MRC diversity system under the ORA transmission
scheme, is illustrated versus γ1 for η = 2, and µ = 1.5. An exponentially power decay profile
with δ = 0, 0.5, 1 is considered. The average channel capacity is plotted for different values of
δ and as it is obvious, the capacity improves as δ decreases.

5.3 Average bit error probability

The conditional bit error probability Pe(γ) in an AWGN channel may be expressed in unified
form as

Pe(γ) =
Γ(b, aγ)

2Γ(b)
(44)

where a and b are parameters that depend on the specific modulation scheme. For example,
a = 1 for binary phase shift keying (BPSK) and 1/2 for binary frequency shift keying (BFSK).
Also, b = 1 for non-coherent BFSK and binary differential PSK (BDPSK) and 1/2 for coherent
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Fig. 6. Average Channel Capacity of triple-branch MRC diversity receivers (L = 3) operating
over η-µ fading channels, (Format 1, η = 2, µ = 1.5), under ORA policy, for different values
of δ, as a function of the First Branch Average Input SNR

BFSK/BPSK. The average bit error probability (ABEP) for the considered system may be
obtained by averaging Pe(γ) over the PDF of γ i.e.,

Pbe =
∫ ∞

0
Pe(γ) fγ(γ)dγ. (45)

Using (28) in conjunction with (45) and with the help of (Gradshteyn & Ryzhik, 2000, eq. 6.455)
the ABEP may be obtained as

Pbe =
abCU+b

m

2Γ(b)

L

∏
ℓ=1

(AℓBℓ)
−µℓ

∞

∑
k=0

2F1

(

1, k + U + b; k + U + 1;
1

1 + aCm

)

× ξk
Γ (k + U + b)

(1 + aCm)k+U+bΓ (k + U + 1)

, (46)

where 2F1(·) is the Gauss hypergeometric function (Prudnikov et al., 1986, eq. (7.2.1.1)). Also,
by substituting (32) to (45), the ABEP is expressed as a two-fold integral. This expression may
be simplified by performing integration by parts and after some algebraic manipulations as
follows

Pbe =
1

2π

∫ ∞

0

{

cos[V(t)]
ab sin(b arctan(t/a))

(t2 + a2)b/2
+ sin[V(t)]

[

1 − ab cos(b arctan(t/a))

(t2 + a2)b/2

]}

dt

W(t)

. (47)

This integral can be efficiently evaluated by means of the Gauss-Legendre quadrature
integration rule or by symbolic integration. Finally, an alternative ABEP expression may
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be obtained by substituting (35) to (45). By integrating the corresponding infinite series
term-by-term and with the help of (Abramovitz & Stegun, 1964, eq. (6.5.37)), the ABEP may
be obtained in closed form as

Pbe =
Γ (U + b)∏

L
ℓ=1(AℓBℓ)

−µℓ

2aUΓ(b)Γ(U + 1)
F
(2L)
D (U + b, µ1, µ1, · · · , µL, µL; U + 1;

− 1

aA1
,− 1

aB1
· · · ,− 1

aAML

,− 1

aBML

)
. (48)

This expression can be easily evaluated using the integral representation of the Lauricella

function. This representation converges if
∣

∣

∣

1
aAℓ

∣

∣

∣
< 1 and

∣

∣

∣

1
aBℓ

∣

∣

∣
< 1, ∀ℓ = 1, . . . L. To guarantee

that these conditions are always be fulfilled, we may use the following identity (Exton, 1976,
p. 286)

F
(n)
D (a, b1, · · · , bn; c; x1, · · · , xn) =

[

L

∏
ℓ=1

(1 − xℓ)
−bℓ

]

× F
(n)
D

(

c − a, b1, · · · , bn; c;
x1

x1 − 1
, · · · ,

xn

xn − 1

)

.

(49)

Thus, (48) can be written as

Ps(e) =
Γ
(

2 ∑
L
i=1 µi + b

)

2Γ(b)Γ(2 ∑
L
i=1 µi + 1)

Mγ(a)F
(2L)
D

(

b − 1, µ1, · · · µL, µ1, · · · µL; 2
L

∑
i=1

µi + 1;
1

1 + aA1
,

· · · ,
1

1 + aAL
,

1

1 + aB1
, · · · ,

1

1 + aBL

)

(50)

As it can easily be observed, for BPSK modulation (a = 1, b = 1/2), (50) reduces to (8), thus
verifying the correctness of our analysis. Finally, it is worth mentioning that in Moschopoulos
(1985), a proof for the uniform convergence of the series in (28) is provided and a bound for the
truncation error is presented. Our conducted numerical experiments confirmed this bound on
the truncation error and showed that infinite series converge steadily for all the scenarios of
interest, a fact that was also established in Alouini et al. (2001).

6. Conclusions

In this chapter, a thorough performance analysis of MRC diversity receivers operating over
η-µ fading channel was provided. Using the MGF-based approach, we derived closed-form
expressions for a variety of M-ary modulation schemes. Moreover, in order to provide more
insight as to which parameters affect the error performance, asymptotic expressions for the
ASEP were derived. Based on these formulas, we proved that the diversity gain depends
only on the parameter µ in each branch whereas η affects only the coding gain. Furthermore,
we provided three new analytical expressions for the PDF of the sum of non-identical η-µ
variates. Such expressions are useful to assess the outage performance and the average
channel capacity of MRC diversity receivers under different adaptive transmission schemes.
Finally, based on this PDF-based analysis, alternative expressions for the error performance
of MRC receivers are provided. Various numerically evaluating results are presented that
illustrate the analysis proposed in this chapter.
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