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1. Introduction    

Evapotranspiration (ET) is the sum of volume of water used by vegetaion, evaporated from 
the soil, and intercepted precipitation (Singh, 1988). ET plays an important role in our 
environment at global, regional, and local scales. Water entering the evaporation phase of 
the hydrological cycle becomes unavailable and cannot be recovered for further use 
(Brutsaert, 1982). In many areas where water resources are scarce, the calculation of this loss 
becomes imperative in the planning and management of irrigation practices (Kisi, 2007). 
Evaporation and transpiration occur simultaneously and there is no easy way of 
distinguishing between the two processes (Allen et al., 1998). Transpiration consists of 
vaporization of liquid water contained in plant tissues and the vapor removal to the 
atmosphere. Evaporation occurs at the topsoil if the water is available. When the crop is 
small, water is predominantly lost by soil evaporation. Once the crop, however, is well 
developed and completely covers the soil, transpiration becomes the main process.  
ET is one of the hydrologic cycle components and the accurate estimation of ET is very 
important for the researches such as water balance, irrigation design and management, crop 
yield modeling, and water resources planning and management (Kumar et al., 2002). ET is 
observed using a lysimeter directly or can be estimated using the water balance method or 
the climatic variables indirectly. Because the measurements of ET using a lysimeter directly, 
however, requires much unnecessary time and needs correct and careful experience, it is not 
always possible in field measurements. Thus, an empirical approach based on the climatic 
variables is generally used to estimate the ET (Penman, 1948; Allen et al., 1989). In the early 
1970s, the Food and Agricultural Organization of the United Nations (FAO), Rome, 
developed practical procedures to estimate the crop water requirements (Doorenbos & 
Pruitt, 1977), which have become the widely accepted standard for irrigation studies. A 
common practice for estimating the ET from a well-watered agricultural crop is to estimate 
the reference crop ET such as the grass reference evapotranspiration (ETo) or the alfalfa 
reference evapotranspiration (ETr) from a standard surface and to apply an appropriate 
empirical crop coefficient, which accounts for the difference between the standard surface 
and the crop ET.  
The emergence of neural networks model has provided many promising results in the field 
of hydrology and water resources modeling. Due to the ease of application and simple 
architecture, the neural networks model has become a promising research field with 
surprising potential. A comprehensive review of the application of neural networks model 
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to hydrology can be found in ASCE (2000). The success using the neural networks model in 
many fields of science and engineering suggests that the neural networks model may prove 
be an effective and efficient way for the modeling of ET process. Recently, the outstanding 
results using the neural networks model in the fields of ET modeling have been obtained 
(Sudheer et al., 2003; Trajkovic et al., 2003; Trajkovic, 2005; Kisi, 2006; Kisi, 2007; Jain et al., 
2008; Kim & Kim, 2008; Kumar et al., 2008; Landeres et al., 2008; Zanetti et al., 2008; Kumar 
et al., 2009). Kumar et al. (2002) developed the neural networks models to estimate the daily 
ETo. They used proper combinations of the observed climatic variables such as solar 
radiation, temperature, relative humidity, and wind speed for the neural networks models. 
Kisi & Ozturk (2007) used the neuro-fuzzy models to estimate the FAO-56 PM ETo using the 
observed climatic variables. They used proper combinations of the observed climatic 
variables such as air temperature, solar radiation, wind speed, and relative humidity for the 
neuro-fuzzy models. Kisi (2008) investigated the potential of different neural networks 
models in the ET modeling. He used proper combinations of the observed climatic variables 
such as solar radiation, mean temperature, mean relative humidity, and wind speed for the 
neural networks models. Traore et al. (2010) developed the neural network models to 
calculate the reference ET complex process in Sudano-Sahelian zone. They proper 
combinations of the observed climatic variables such as minimum temperature, maximum 
temperature, extraterrestrial radiation, relative humidity, and wind speed for the neural 
networks models. 
This paper investigates the modeling of FAO-56 PM ETo using the neural networks models. 
The major objective of the study is to evaluate the potential of neural networks models for 
estimating the FAO-56 PM ETo using climatic data avaliable. A comparative evaluation of 
multiple linear regression model (MLRM) and neural networks models including multilayer 
perceptron neural netwprks model (MLP-NNM) and support vector machine neural 
networks model (SVM-NNM) are carried out. From this study, we evaluate the impact of 
MLP-NNM and SVM-NNM performances for the modeling of FAO-56 PM ETo. The optimal 
MLP-NNM and SVM-NNM can estimate the FAO-56 PM ETo with the least cost and 
endeavor. Finally, the FAO-56 PM ETo data can be constructed to provide the fundamental 
data for the drought analysis and irrigation networks systems, Republic of Korea.   

2. Grass reference evapotranspiration model : FAO-56 PM ETo equation 

Penman (1948) combination method links evaporation dynamics with the flux of net 
radiation and aerodynamic transport characteristics of the natural surface. Based on the 
observations that latent heat transfer in plant stem is influenced not only by these abiotic 
factors, Monteith (1965) introduced a surface conductance term that accounted for the 
response of leaf stomata to its hydrologic environment. This modified form of the Penman-
Monteith (PM) ET model. Jensen et al. (1990) measured the ET using the lysimeters at 11 
stations located in the different climatic zones of various regions around the world. They 
compared the results of the lysimeters with those of 20 different empirical equations and 
methodologies for the ET measurements. It was found that PM ET model showed the 
optimal results over all the climatic zones. If the observed/measured data for the ET does 
not exist, therefore, PM ET model can be considered as a standard methodology to estimate 
the ET. In 8 meteorological stations which were selected for this study, there are no 
observed data for the grass reference ET (ETo). The data calculated using PM ETo model can 
be assumed as the observed ETo, whose reliability was verified by many previous studies. 
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All calculation precedures as used in PM ETo model are based on the FAO guidelines as laid 
down in the publication No. 56 of the Irrigation and Drainage Series of FAO ″Crop 
Evapotranspiration – Guidelines for Computing Crop Water Requirements″ (1998). 
Therefore, FAO-56 PM ETo equation means the PM ETo equation suggested by the 
Irrigation and Drainage Paper No.56, FAO. FAO-56 PM ETo equation is given by Allen et al. 
(1998) and can be shown as the following equation (1).  

 FAO-56 PM ETo = n 2 s a

2

0.408 (R G) γ(900/(T 273))u (e e )

Δ γ(1 0.34u )

Δ − + + −
+ +

  (1) 

where FAO-56 PM ETo = the grass reference evapotranspiration (mm/day); Rn = the net 

radiation at the crop surface (MJ/m2·day); G = the soil heat flux density (MJ/m2·day); T = 

the mean daily air temperature at 2m height (˚C); u2 = the wind speed at 2m height (m/sec); 

es = the saturation vapor pressure (kPa); ea = the actual vapor pressure (kPa); es - ea = the 

saturation vapor pressure deficit  (kPa); Δ  = the slope vapor pressure curve (kPa/◦C); and γ 

= the psychometric constant (kPa/◦C). FAO CROPWAT 8.0 computer program has been 

used to calculate FAO-56 PM ETo and extraterrestrial radiation (Ra). FAO CROPWAT 8.0 

computer program allows the user to enter the climatic data available including maximum 

temperature (Tmax), minimum temperature (Tmin), mean relative hymidity (RHmean), mean 

wind speed (Umean), and sunshine duration (SD) for calculating FAO-56 PM ETo. On the 

base of climatic data available, FAO CROPWAT 8.0 computer program estimates the solar 

radiation reaching soil surface.  Fig. 1(a)-(b) show the calculation of FAO-56 PM ETo using 

FAO CROPWAT 8.0 computer program in Gunsan and Haenam stations, respectively.  

 

 
(a) Gunsan station (b) Haenam station 

Fig. 1. Calculation of FAO-56 PM ETo using FAO CROPWAT 8.0 

3. Neural networks models  

3.1 MultiLayer perceptron neural networks model (MLP-NNM) 
MLP-NNM has an input layer, an output layer, and one or more hidden layers between the 
input and output layers. Each of the nodes in a layer is connected to all the nodes of the next 
layer, and the nodes in one layer are connected only to the nodes of the immediate next 
layer. The strength of signal passing from one node to the other depends on the connection 

www.intechopen.com



 Evapotranspiration 

 

126 

weights of the interconnections. The hidden layers enhance the network’s ability to model 
complex functions. MLP-NNM is trained using the many kinds of backpropagation 
algorithms. Training performance is a process of adjusting the connection weights and 
biases so that its output can match the desired output best. Specifically, at each setting of the 
connection weights, it is possible to calculate the error committed by the networks simply by 
taking the difference between the desired and actual responses (Simpson, 1990; Specht, 1991; 
Gallant, 1993; Wasserman, 1933; Bishop, 1995; Tsoukalas & Uhrig, 1997; Haykin, 2009). In 
this study, MLP-NNM is trained with the Quickprop backpropagation algorithm (BPA). The 
QuickProp BPA is a training method that operates much faster in the batch mode than the 
conventional BPA. It has the additional advantage that it is not sensitive to the learning rate 
and the momentum. In MLP-NNM with five input nodes, the results of the output layer can 
be written as equation (2).  

 FAO-56 PM ETo =
1 5

2 kj 1 ji 1 2
k 1 j 1

Φ ( W Φ ( W X(t) B ) B )
= =

⋅ ⋅ + +∑ ∑                    (2) 

where i, j, k = the input layer, the hidden layer, and the output layer, respectively; FAO-56 
PM ETo = the grass reference evapotranspiration (mm/day); 1Φ ( )⋅ = the linear sigmoid 
transfer function of the hidden layer; 2Φ ( )⋅ = the linear sigmoid transfer function of the 
output layer; kjW = the connection weights between hidden and output layers; jiW = the 
connection weights between input and hidden layers; X(t) = the time series data of input 
nodes including mean wind speed (Umean), mean temperature (Tmean), sunshine duration 
(SD), mean relative humidity (RHmean), and max temperature (Tmax); 1B = the bias in the 
hidden layer; and 2B = the bias in the output layer. A number of MLP-NNM computer 
programs are now available. NeuroSolutions 5.0 computer program was used to develop 
MLP-NNM structure. Fig. 2 shows the developed structure of MLP-NNM with five input 
nodes. Table 1 shows the conditions of training performance for MLP-NNM.  
 

Index Assigned Value 

Stepsize 1.0 

Momentum 0.5 

Maximum Iterations 50000 

Training Threshold 0.001 

Table 1. Conditions of training performance for MLP-NNM 

3.2 Support vector machine neural networks model (SVM-NNM) 
SVM-NNM has found wide application in several areas including pattern recognition, 
regression, multimedia, bio-informatics and artificial intelligence. Very recently, SVM-NNM 
is gaining recognition in hydrology (Dibike et al., 2001; Khadam & Kaluarachchi, 2004). 
SVM-NNM implements the structural risk minimization principle which attempts to 
minimize an upper bound on the generalization error by striking a right balance between 
the training performance error and the capacity of machine. The solution of traditional 
neural networks models including MLP-NNM may tend to fall into a local optimal solution, 
whereas global optimum solution is guaranteed for SVM-NNM (Haykin, 2009). SVM-NNM 
is a new kind of classifier that is motivated by two concepts. First, transforming data into a 
high-dimensional space can transform complex problems into simpler problems that can use  
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Fig. 2. The developed structure of MLP-NNM with five input nodes 

linear discriminant functions. Second, SVM-NNM is motivated by the concept of training 
and using only those inputs that are near the decision surface since they provide the most 
information about the classification. The first step in SVM-NNM is transforming the data 
into a high-dimensional space. This is done using radial basis function (RBF) that places a 
Gaussian at each sample data. Thus, the feature space becomes as large as the number of 
sample data. RBF uses backpropagation to train a linear combination of the gaussians to 
produce the final result. SVM-NNM, however, uses the idea of large margin classifiers for 
training performance. This decouples the capacity of the classifier from the input space and 
at the same time provides good generalization. This is an ideal combination for classification 
(Vapnik, 1992, 2000; Principe et al., 2000; Tripathi et al., 2006).  
In this sudy, ε SVM-NNM regression is used. The basic ideas of ε SVM-NNM regression are 
reviewed. Consider the finite training sample pattern ( )i ix ,y , where ix n∈ℜ  is a sample 
value of the input vector x considering of N training patterns and iy n∈ℜ is the 
corresponding value of the desired model output. A nonlinear transformation function 

( )ϕ ⋅ is defined to map the input space to a higher dimension feature space, hnℜ . According 
to Cover’s theorem (Cover, 1965), a linear function, f( )⋅ , could be formulated in the high 
dimensional feature space to look for a nonlinear relationship between inputs and outputs 
in the original input space. It can be written as equation (3). 

 Ty f(x) w (x) bϕ= = +                                                            (3)     

where y  = the actual model output. The coefficient w and b are adjustable model 

parameters. In the ε SVM-NNM regression, we aim at minimizing the emprical risk. It can 

be written as equation (4).  

 
N

emp i i
i 1

1
R y y

N ε=
= −∑                                                           (4) 

where Remp = the empirical risk; and i i
y y

ε
− = the Vapnik’s ε-insensitive loss function. 

Following regularization theory (Haykin, 2009), the parameters w and b are estimated by 
minimizing the cost function. It can be written as equation (5).   
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N

T
ε i i

i 1

1ψ (w,Ǐ,Ǐ ) w w C (Ǐ Ǐ )
2

∗ ∗

=
= + +∑          (5) 

subject to the constraints | i i
y y ε Ǐi− ≤ +   i = 1, 2, ... , N, ~ i ii

y y ε Ǐ∗− + ≤ +  i = 1, 2, ... , N, 

and ¡ i iǏ ,Ǐ 0∗ ≥  i = 1, 2, ... , N. where εψ (w,Ǐ,Ǐ )∗ = the cost function; i iǏ ,Ǐ∗ = positive slack 

variables; and C = the cost constant. The first term of the cost function, which represents 

weight decay, is used to regularize weight sizes and to penalize large weights. This helps in 

improving generalization performance (Hush and Horne, 1993). The second term of the cost 

function, which represents penalty function, penalizes deviations of y  from y larger than 

ε±  using Vapnik’s ε-insensitive loss function. The cost constant C determines the amount 

up to which deviations from ε are tolerated. Deviations above ε are denoted by iǏ , whereas 

deviations below – ε are denoted by iǏ
∗ . The constrained quardratic optimization problem 

can be solved using the method of Lagrangian multipliers (Haykin, 2009). From this 

solution, the coefficient w can be written as equation (6).   

 
N

i i i
i 1

w (α α ) (x )ϕ∗

=
= −∑   (6) 

where i iα ,α∗ = the Lagrange multipliers, which are positive real constants. The data points 

corresponding to non-zero values for i i(α α )∗− are called support vectors.  
In ε SVM-NNM regression to calculate FAO-56 PM ETo, there are several possibilities for 

the choice of kernel function, including linear, polynomial, sigmoid, splines and RBF. In this 

study, RBF is used to map the input data into higher dimensional feature space. RBF can be 

written as the equation (7). 

 

2

i j2
j 1 1 j 2

x x
k(x,x ) exp(-B R ) exp

2σ

⎛ ⎞−⎜ ⎟= Φ = = −⎜ ⎟⎜ ⎟
⎝ ⎠

  (7) 

where i, j = the input layer and the hidden layer; j 1K(x,x ) = Φ = the inner product kernel 

function; 1 2

1
B

2σ
= , and has a constant value; and σ  = the width/spread of RBF, which can 

be adjusted to control the expressivity of RBF. The function for the single node of the output 
layer which receives the calculated results of RBF can be written as the equation (8). 

 
N

k j j j
j 1

G [ (α α ) K(x,x )] B∗

=
= − ⋅ +∑                                                  (8) 

where  k = the output layer; kG = the calculated value of the single output node; and B = the 

bias in the output layer. Finally, equation (8) takes the form of equation (9), which 
represents ε SVM-NNM regression for modeling of FAO-56 PM ETo.  

 FAO-56 PM ETo =
N

2 k 2 j j j
j 1

(G ) [[ (α α ) K(x,x )] B]∗

=
Φ = Φ ⋅ − ⋅ +∑      (9) 
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where  2Φ = the linear sigmoid transfer function. A number of SVM-NNM computer 

programs are now available. DTREG computer program was used to develop SVM-NNM 

structure. SVM-NNM in the DTREG computer program has been developed and modified 

using LIBSVM algorithm, a freeware program, developed by Chih-Chung Chang and Chih-

Jen Lin (Chang & Lin, 2001). The basic algorithm of LIBSVM is a simplication of both SMO 

by Platt and SVM Light by Joachims. LIBSVM is capable of C SVM-NNM classification, one-

class classification, ǎ SVM-NNM classification, ǎ SVM-NNM regression, and ε SVM-NNM 

regression, respectively. The accuracy of ε SVM-NNM regression is largely dependent on 

the selection of model parameters such as C, Gamma(γ), and P. DTREG computer program 

provides two methods, a grid search and a pattern search, for finding optimal parameters 

values. A grid search tries values of each parameter across the specified search range using 

geometric steps. A pattern search starts at the center of the search range and makes trial 

steps in each direction for each parameter. If the fit of model improves, the search center 

moves to the new point and the process is repeated. If no improvement is found, the step 

size is reduced and the search is tried again. The pattern search stops when the search step 

size is reduced to a specified tolerance. Fig. 3 shows the developed structure of SVM-NNM 

with five input nodes. Table 2 shows the conditions of training performance for SVM-NNM. 
 

Index Assigned Value 

Type of SVM-NNM ε-SVM regression 

Kernel Function RBF 

Parameter Optimization Grid search & Pattern search 

Model Parameters C, γ, P 

Training Threshold 0.001 

Table 2. Conditions of training performance for SVM-NNM 

 

 

Fig. 3. The developed structure of SVM-NNM with five input nodes 

4. Study scope and data   

The meteorological stations were selected that could represent the entire lands of the 
Republic of Korea. They were selected from among the 71 meteorological stations including 
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Jeju-do under the control of the Korea meteorological administration (KMA). The selected 
meteorological stations should be distributed over the country, and represent each 
region/county. They should possess long-term climatic data dating back for at least 30 
years. Thus, the meteorological stations, which are appropriate for these conditions, include 
a total of 8 meteorological stations. They are located in Gunsan, Daegu, Seoul, Seongsanpo, 
Ulsan, Jeonju, Tongyoung, and Haenam. Fig. 4 shows the locations of 8 meteorological 
stations. The climatic data, which was necessary for MLP-NNM and SVM-NNM application, 
were collected from the Internet homepage of water management information system 
(www.wamis.go.kr) and the Korea meteorological administration (www.kma.go.kr). The 
climatic data available including mean wind speed (Umean), mean temperature (Tmean), 
sunshine duration (SD), mean relative humidity (RHmean), and max temperature (Tmax) were 
sufficient for MLP-NNM and SVM-NNM application. Furthermore, The climatic data 
available including maximum temperature (Tmax), minimum temperature (Tmin), mean 
relative hymidity (RHmean), mean wind speed (Umean), and sunshine duration (SD) were 
sufficient for estimating FAO-56 PM ETo using FAO CROPWAT 8.0 computer program. 
Therefore, the training and testing data were composed using the climatic data in daily units 
from 01/01/1985 to 12/31/1992. 
 

 

Fig. 4. The locations of 8 meteorological stations, Republic of Korea 

5. Application of MLP-NNM and SVM-NNM 

5.1 Performance statistics 

The performance of MLP-NNM and SVM-NNM to account for calculating the daily FAO-56 

PM ETo was evaluated using a wide variety of standard statistics index. A total of three 

different standard statistics index were employed; the coefficient of correlation (CC), root 

mean square error (RMSE), and Nash-Sutcliffe coefficient (R2) (Nash & Sutcliffe, 1970; ASCE, 

1993). Table 3 shows summary of the statistics index in this study. where 
i

y (x) = the 

calculated FAO-56 PM ETo (mm/day); iy (x) = the observed FAO-56 PM ETo (mm/day); 

ui = mean of the calculated FAO-56 PM ETo (mm/day); yu = mean of the observed FAO-56 
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PM ETo (mm/day); and n  = total number of the daily FAO-56 PM ETo considered. A 

model which is effective in the modeling of FAO-56 PM ETo accurately, and efficient in 

capturing the complex relationship among the various inputs and output variables involved 

in a particular problem, is considered the best. CC, RMSE, and R2 statistics quantify the 

efficiency of MLP-NNM and SVM-NNM in capturing the extremely complex, dynamic, 

nonlinear, and fragmented rainfall-runoff relationships (Kim et al., 2009).  

5.2 Input nodes determination 
At the beggining of this study, the input nodes of MLP-NNM and SVM-NNM had to be 
determined. From the previous literatures on the ET modeling using the neural networks 
models, five kinds of climatic data available, which were used to cite frequently were 
determined. The climatic data available were mean wind speed (Umean), mean temperature 
(Tmean), sunshine duration (SD), mean relative humidity (RHmean), and max temperature 
(Tmax). Therefore, MLP-NNM and SVM-NNM was prior fed with the mean wind speed 
(Umean), which was the most frequently cited by the previous researchers. It was adopted as 
the minimum input combinations represented by MLP 1 and SVM 1 for determining the 
optimal input combinations. Then, the best network configuration determined was used to 
train and test the several other input combinations. MLP 2 and SVM 2 have two input 
nodes; mean wind speed (Umean) and mean temperature (Tmean). MLP 3 and SVM 3 have 
three input nodes; mean wind speed (Umean), mean temperature (Tmean), and sunshine 
duration (SD). MLP 4 and SVM 4 have four input nodes; mean wind speed (Umean), mean 
temperature (Tmean), sunshine duration (SD), and mean relative humidity (RHmean). Finally, 
MLP 5 and SVM 5 have five input nodes; mean wind speed (Umean), mean temperature 
(Tmean), sunshine duration (SD), mean relative humidity (RHmean), and max temperature 
(Tmax). Table 4 shows the input combinations of MLP-NNM and SVM-NNM. 
 

Statistics Index Equation 

CC 

n

yi y i
i 1

n n
2 2

yi y i
i 1 i 1

1
[y (x) u ][ y (x) u ]

n

1 1
[y (x) u ] [ y (x) u ]

n n

− −

=

− −

= =

− −

− −

∑

∑ ∑
 

RMSE 
n

2
ii

i 1

1
[ y (x) y (x)]

n

−

=
−∑  

R2 

n
2

i i
i 1

n
2

i y
i 1

[y (x) y (x)]

1

[y (x) u ]

=

=

−
−

−

∑

∑
 

Table 3. Summary of statistics index 
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Neural Networks Model 

MLP-NNM SVM-NNM 

Input Combinations 

MLP 1 SVM 1 Umean 

MLP 2 SVM 2 Umean, Tmean 

MLP 3 SVM 3 Umean, Tmean, SD, 

MLP 4 SVM 4 Umean, Tmean, SD, RHmean 

MLP 5 SVM 5 Umean, Tmean, SD, RHmean , Tmax 

Table 4. Input combinations of MLP-NNM and SVM-NNM 

5.3 Data normalization 
The data used in this study including mean wind speed (Umean), mean temperature (Tmean), 

sunshine duration (SD), mean relative humidity (RHmean), and max temperature (Tmax) were 

nomalized for preventing and overcomining problem associated with the extreme values.  

An important reason for the normalization of input nodes is that each of input nodes 

represents an observed value in a different unit. Such input nodes are normalized, and the 

input nodes in non-dimension unit are relocated. The similarity effect of input nodes is thus 

eliminated (Kim et al., 2009). According to Zanetti et al. (2007), by grouping the daily values 

into averages, ETo may be estimated due to their highest stabilization. For data 

normalization, the data of input and output nodes were scaled in the range of [0 1] using the 

equation (10).  

 i min
norm

max min

Y Y
Y

Y Y

−
=

−
  (10) 

where  normY = the normalized dimensionless data of the specific input node; iY = the 

observed data of the specific input node; minY = the minimum data of the specific input 

node; and maxY = the maximum data of the specific input node.  

5.4 Training performance 
The method for estimating parameters is generally called the training performance in the 
neural networks model category. The training performance of neural networks model is 
iterated until the training error is reached to the training tolerance. Iteration means one 
completely pass through a set of inputs and target patterns or data. In general, it is assumed 
that the neural networks model does not have any prior knowledge about the example 
problem before it is trained. A difficult task with the neural networks model is to choose the 
number of hidden nodes. The network geometry is problem dependent. This study adopted 
one hidden layer for the construction of MLP-NNM and SVM-NNM since it is well known 
that one hidden layer is enough to represent the ETo nonlinear complex relationship 
(Kumar et al., 2002; Zanetti et al., 2007). The number of hidden nodes was determined as 
five for MLP-NNM with the various input combinations (MLP 1, MLP 2, MLP 3, MLP 4, and 
MLP 5). In SVM-NNM, however, the number of hidden nodes was determined by the 
training performance of SVM-NNM with the various input combinations (SVM 1, SVM 2, 
SVM 3, SVM 4, and SVM 5). Kisi (2007) varied the hidden nodes between 2 and 6 after trial 
and error method for Claremont, Ponoma, and Santa Monica stations, respectively. For three 
stations, the optimal number of hidden nodes was found at six based on minimum mean 
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square error (MSE), minimum mean absolute error (MAE), and maximum determination 
coefficient (R2). Khoob (2008a, b) trained the neural networks models with up to thirty 
hidden nodes using similar inputs set and found optimal results at six and nine hidden 
nodes in Safiabad and Khuzestan plain, respectively. For the training data of MLP-NNM 
and SVM-NNM, the six-year data from 01/01/1985 to 12/31/1990 in 8 meteorological 
stations were used. The total amount of data used for the training performance was 
composed of 2191 data for daily time series.  

5.4.1 Results of MLP-NNM training performance 
For the training performance of MLP-NNM, NeuroSolutions 5.0 computer program was 

used to carry out the training performance. Fig. 5 shows the building processes of MLP-

NNM training performance using NueroSolution 5.0 computer program. Table 5 shows the 

summary of optimal MLP-NNM statistics results during the training performance for 8 

meteorological stations. For 8 meteorological stations, the best statistics results were found 

at MLP 4 and MLP 5 on average. In Gunsan station, the performance statistics results of 

MLP 5 were 0.968, 0.365 (mm/day), and 0.936 for CC, RMSE, and R2, respectively. In Daegu 

station, the performance statistics results of MLP 5 were 0.975, 0.364 (mm/day), and 0.950 

for CC, RMSE, and R2, respectively. In Seoul station, the performance statistics results of 

MLP 4 were 0.963, 0.413 (mm/day), and 0.927 for CC, RMSE, and R2, respectively. In 

Seonsganpo station, the performance statistics results of MLP 4 were 0.842, 0.676 (mm/day), 

and 0.710 for CC, RMSE, and R2, respectively. In Ulsan station, the performance statistics 

results of MLP 4 were 0.956, 0.412 (mm/day), and 0.914 for CC, RMSE, and R2, respectively. 

In Jeonju station, the performance statistics results of MLP 5 were 0.966, 0.383 (mm/day), 

and 0.932 for CC, RMSE, and R2, respectively. In Tongyoung station, the performance 

statistics results of MLP 5 were 0.945, 0.438 (mm/day), and 0.893 for CC, RMSE, and R2, 

respectively. In Haenam station, the performance statistics results of MLP 4 were 0.959, 

0.396 (mm/day), and 0.919 for CC, RMSE, and R2, respectively. From the evaluation of MLP-

NNM training performance, MLP 4 and MLP5 was found to show the better statistics results 

compared with MLP 1, MLP 2, and MLP 3.  

 

Station Model CC RMSE 
(mm/day)

R2 

Gunsan MLP 5 0.968 0.365 0.936 

Daegu MLP 5 0.975 0.364 0.950 

Seoul MLP 4 0.963 0.413 0.927 

Seongsanpo MLP 4 0.842 0.676 0.710 

Ulsan MLP 4 0.956 0.412 0.914 

Jeonju MLP 5 0.966 0.383 0.932 

Tongyoung MLP 5 0.945 0.438 0.893 

Haenam MLP 4 0.959 0.396 0.919 

Table 5. Summary of optimal MLP-NNM statistics results during the training performance  
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(a) Training Data (b) Hidden Layer 

  
(c) Output Layer (d) Training Performance 

Fig. 5. The building precesses of MLP-NNM training performance using NueroSolution 5.0 

5.4.2 Results of SVM-NNM training performance 
For the training performance of SVM-NNM, DTREG computer program was used to carry 
out the training performance. Fig. 6 shows the building processes of SVM-NNM training 
performance using DTREG computer program. Table 6 shows the summary of optimal 
SVM-NNM statistics results during the training performance for 8 meteorological stations.  
 

  
(a) Training Category (b) Training Performance 

Fig. 6. The building precesses of SVM-NNM training performance using DTREG 

For 8 meteorological stations, the best statistics results were found at SVM 5. In Gunsan 

station, the performance statistics results of SVM 5 were 0.982, 0.274 (mm/day), and 0.964 
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for CC, RMSE, and R2, respectively. In Daegu station, the performance statistics results of 

SVM 5 were 0.985, 0.278 (mm/day), and 0.971 for CC, RMSE, and R2, respectively. In Seoul 

station, the performance statistics results of SVM 5 were 0.979, 0.315 (mm/day), and 0.957 

for CC, RMSE, and R2, respectively. In Seonsganpo station, the performance statistics results 

of SVM 5 were 0.857, 0.670 (mm/day), and 0.715 for CC, RMSE, and R2, respectively. In 

Ulsan station, the performance statistics results of SVM 5 were 0.970, 0.336 (mm/day), and 

0.940 for CC, RMSE, and R2, respectively. In Jeonju station, the performance statistics results 

of SVM 5 were 0.979, 0.304 (mm/day), and 0.957 for CC, RMSE, and R2, respectively. In 

Tongyoung station, the performance statistics results of SVM 5 were 0.963, 0.362 (mm/day), 

and 0.927 for CC, RMSE, and R2, respectively. In Haenam station, the performance statistics 

results of SVM 5 were 0.971, 0.334 (mm/day), and 0.943 for CC, RMSE, and R2, respectively. 

From the evaluation of SVM-NNM training performance, SVM 5 was found to show the 

better statistics results compared with SVM 1, SVM 2, SVM 3 and SVM 4. Furthermore, from 

the statistics results of training peformance for MLP-NNM and SVM-NNM, we could 

conclude that the statistics results of SVM-NNM were better than those of MLP-NNM. 

 

Station Model CC RMSE 
(mm/day)

R2 

Gunsan SVM 5 0.982 0.274 0.964 

Daegu SVM 5 0.985 0.278 0.971 

Seoul SVM 5 0.979 0.315 0.957 

Seongsanpo SVM 5 0.857 0.670 0.715 

Ulsan SVM 5 0.970 0.336 0.940 

Jeonju SVM 5 0.979 0.304 0.957 

Tongyoung SVM 5 0.963 0.362 0.927 

Haenam SVM 5 0.971 0.334 0.943 

Table 6. Summary of optimal SVM-NNM statistics results during training performance  

5.5 Testing performance 
Neural networks model is tested by determining whether the model meets the objectives of 
modeling within some preestablished criteria or not. Of course, the optimal parameters, 
which are determined during the training performance, are applied in the testing 
performance of neural networks model (Kim, 2004). For the testing data of MLP-NNM and 
SVM-NNM, the two-year data from 01/01/1991 to 12/31/1992 in 8 meteorological stations 
were used. The total amount of data used for the testing performance was composed of 731 
data for daily time series. Generally, a maximum of 40% of the total training data are used as 
the testing data. The testing performance applied the cross-validation method in order to 
overcome the over-fitting problem of MLP-NNM and SVM-NNM. The cross-validation 
method is not to train all the training data until MLP-NNM and SVM-NNM reaches the 
minimum RMSE, but is to cross-validate with the testing data at the end of each training 
performance. If the over-fitting problem occurs, the convergence process over the mean 
square error of the testing data will not decrease but will increase as the training data are 
still trained (Bishop, 1994; Haykin, 2009). Furthermore, the statistics results of testing 
performance for MLP-NNM and SVM-NNM were compared with those of multiple linear 
regression model (MLRM).  
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5.5.1 Results of MLP-NNM testing performance 
For the testing performance of MLP-NNM, NeuroSolutions 5.0 computer program was used 

to carry out the testing performance based on the statistics results of training performance. 

For 8 meteorological stations, the best statistics results were found at MLP 4 and MLP 5 on 

average. In Gunsan station, the performance statistics results of MLP 5 were 0.964, 0.369 

(mm/day), and 0.928 for CC, RMSE, and R2, respectively. In Daegu station, the performance 

statistics results of MLP 5 were 0.980, 0.349 (mm/day), and 0.961 for CC, RMSE, and R2, 

respectively. In Seoul station, the performance statistics results of MLP 4 were 0.966, 0.402 

(mm/day), and 0.933 for CC, RMSE, and R2, respectively. In Seonsganpo station, the 

performance statistics results of MLP 4 were 0.955, 0.481 (mm/day), and 0.867 for CC, 

RMSE, and R2, respectively. In Ulsan station, the performance statistics results of MLP 4 

were 0.958, 0.398 (mm/day), and 0.918 for CC, RMSE, and R2, respectively. In Jeonju station, 

the performance statistics results of MLP 5 were 0.959, 0.411 (mm/day), and 0.918 for CC, 

RMSE, and R2, respectively. In Tongyoung station, the performance statistics results of MLP 

5 were 0.949, 0.435 (mm/day), and 0.896 for CC, RMSE, and R2, respectively. In Haenam 

station, the performance statistics results of MLP 4 were 0.956, 0.410 (mm/day), and 0.914 

for CC, RMSE, and R2, respectively. From the evaluation of MLP-NNM testing performance, 

MLP 4 and MLP5 was found to show the better statistics results compared with MLP 1, MLP 

2, and MLP 3. The statistics results of testing performance were similar with those of 

training performance for MLP-NNM. In Gunsan, Jeonju, Haenam stations, the statistics 

results of training performance were better than those of testing performance. In Daegu, 

Seoul, Seongsanpo, Ulsan, and Tongyoung stations, vice versa. Table 7 shows the summary 

of optimal MLP-NNM statistics results during the testing performance for 8 meteorological 

stations. And, MLP 1 using only mean wind speed (Umean) performed the worst results. 

However, adding mean temperature (Tmean) into the input combinations significantly 

increased the statistics results of testing performance. We can consider that adding the 

climatic variables into the input combinations increases the statistics results of testing 

performance for MLP-NNM. It can obviously be seen from CC, RMSE, and R2 statistics of 

MLP-NNM. Table 8 shows the statistics results of each MLP-NNM for Daegu, Ulsan, Jeonju, 

and Tongyoung stations during the testing performance. Fig. 7 shows the comparison plots 

of observed and calculated FAO-56 PM ETo for optimal MLP-NNM. Fig. 8 shows the scatter 

plots between FAO-56 PM ETo and optimal MLP-NNM ETo.   

 

Station Model CC RMSE 
(mm/day)

R2 

Gunsan MLP 5 0.964 0.369 0.928 

Daegu MLP 5 0.980 0.349 0.961 

Seoul MLP 4 0.966 0.402 0.933 

Seongsanpo MLP 4 0.955 0.481 0.867 

Ulsan MLP 4 0.958 0.398 0.918 

Jeonju MLP 5 0.959 0.411 0.918 

Tongyoung MLP 5 0.949 0.435 0.896 

Haenam MLP 4 0.956 0.410 0.914 

Table 7. Summary of optimal MLP-NNM statistics results during the testing performance  
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Model Category Station Statistics 
Index MLP 1 MLP 2 MLP 3 MLP 4 MLP 5 

CC 0.389 0.808 0.950 0.978 0.980 

RMSE (mm/day) 1.653 1.056 0.560 0.369 0.349 

 
Daegu 

R2 0.129 0.644 0.900 0.957 0.961 

CC 0.341 0.748 0.931 0.958 0.942 

RMSE (mm/day) 1.325 0.920 0.509 0.398 0.471 

 
Ulsan 

R2 0.086 0.559 0.865 0.918 0.884 

CC 0.293 0.802 0.947 0.950 0.959 

RMSE (mm/day) 1.375 0.858 0.460 0.448 0.411 

 
Jeonju 

R2 0.077 0.641 0.897 0.902 0.918 

CC 0.368 0.739 0.933 0.932 0.949 

RMSE (mm/day) 1.288 0.913 0.534 0.497 0.435 

 
Tongyoung 

 R2 0.091 0.544 0.844 0.865 0.897 

Table 8. Statistics results of each MLP-NNM during the testing performance 

5.5.2 Results of SVM-NNM testing performance 
For the testing performance of SVM-NNM, DTREG computer program was used to carry 
out the testing performance based on the statistics results of the training performance. For 8 
meteorological stations, the best statistics results were found at SVM 5. In Gunsan station, 
the performance statistics results of SVM 5 were 0.983, 0.255 (mm/day), and 0.965 for CC, 
RMSE, and R2, respectively. In Daegu station, the performance statistics results of SVM 5 
were 0.990, 0.255 (mm/day), and 0.979 for CC, RMSE, and R2, respectively. In Seoul station, 
the performance statistics results of SVM 5 were 0.985, 0.267 (mm/day), and 0.971 for CC, 
RMSE, and R2, respectively. In Seonsganpo station, the performance statistics results of SVM 
5 were 0.970, 0.332 (mm/day), and 0.937 for CC, RMSE, and R2, respectively. In Ulsan 
station, the performance statistics results of SVM 5 were 0.971, 0.329 (mm/day), and 0.944 
for CC, RMSE, and R2, respectively. In Jeonju station, the performance statistics results of 
SVM 5 were 0.976, 0.311 (mm/day), and 0.953 for CC, RMSE, and R2, respectively. In 
Tongyoung station, the performance statistics results of SVM 5 were 0.968, 0.353 (mm/day), 
and 0.932 for CC, RMSE, and R2, respectively. In Haenam station, the performance statistics 
results of SVM 5 were 0.976, 0.307 (mm/day), and 0.951 for CC, RMSE, and R2, respectively. 
From the evaluation of SVM-NNM testing performance, SVM 5 was found to show the 
better statistics results compared with SVM 1, SVM 2, SVM 3, and SVM 4. The statistics 
results of testing performance were similar with those of training performance for SVM-
NNM. In every station except for Jeonju station, the statistics results of testing performance 
were better than those of training performance. In Jeonju station, vice versa. Table 9 shows 
the summary of optimal SVM-NNM statistics results during the testing performance for 8 
meteorological stations. And, SVM 1 using only mean wind speed (Umean) performed the 
worst results. However, adding mean temperature (Tmean) into the input combinations 
significantly increased the statistics results of testing performance. We can consider that 
adding the climatic variables into the input combinations increases the statistics results of 
testing performance for SVM-NNM. It can obviously be seen from CC, RMSE, and R2 
statistics of SVM-NNM. Table 10 shows the statistics results of each SVM-NNM for Daegu, 
Ulsan, Jeonju, and Tongyoung stations during the testing performance. Fig. 9 shows 
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(a) Gunsan (b) Daegu 

 

(c) Seoul (d) Seongsanpo 

 
(e) Ulsan (f) Jeonju 

 

(g) Tongyoung (h) Haenam 

Fig. 7. Comparison plots of observed and calculated FAO-56 PM ETo    
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(a) Gunsan (b) Daegu 

  

(c) Seoul (d) Seongsanpo 

  

(e) Ulsan (f) Jeonju 

  

(g) Tongyoung (h) Haenam 

Fig. 8. Scatter plots between FAO-56 PM ETo and optimal MLP-NNM ETo  
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the comparisons of observed and calculated FAO-56 PM ETo for the testing performance of 
optimal SVM-NNM. Fig. 10 shows the scatter plots between FAO-56 PM ETo and optimal 
SVM-NNM ETo. From the comparison of testing performance for MLP-NNM and SVM-
NNM, the statistics results of SVM-NNM were better than those of MLP-NNM based on CC, 
RMSE, and R2 statistics. We can consider that the performance of SVM-NNM is better than 
that of MLP-NNM for the modeling of nonlinear time series such as the FAO-56 PM ETo, 
which includes the natural uncertainty.   
 

Station Model CC RMSE 
(mm/day)

R2 

Gunsan SVM 5 0.983 0.255 0.965 

Daegu SVM 5 0.990 0.255 0.979 

Seoul SVM 5 0.985 0.267 0.971 

Seongsanpo SVM 5 0.970 0.332 0.937 

Ulsan SVM 5 0.971 0.329 0.944 

Jeonju SVM 5 0.976 0.311 0.953 

Tongyoung SVM 5 0.968 0.351 0.932 

Haenam SVM 5 0.976 0.307 0.951 

Table 9. Summary of optimal SVM-NNM statistical results during the testing performance 
 

Model Category Station Statistics 
Index SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 

CC 0.345 0.829 0.963 0.984 0.990 

RMSE (mm/day) 1.706 1.004 0.484 0.313 0.255 

 
Daegu 

R2 0.072 0.679 0.925 0.969 0.979 

CC 0.363 0.767 0.953 0.970 0.971 

RMSE (mm/day) 1.318 0.894 0.424 0.336 0.329 

 
Ulsan 

R2 0.096 0.584 0.906 0.941 0.944 

CC 0.332 0.823 0.962 0.966 0.976 

RMSE (mm/day) 1.394 0.828 0.399 0.372 0.311 

 
Jeonju 

R2 0.052 0.665 0.922 0.933 0.953 

CC 0.378 0.781 0.946 0.966 0.968 

RMSE (mm/day) 1.321 0.856 0.473 0.352 0.351 

 
Tongyoung 

 R2 0.044 0.599 0.877 0.932 0.932 

Table 10. Statistics results of each SVM-NNM during the testing performance 

5.5.3 Application and comparison of Multiple Linear Regression Model (MLRM)  
The potential of MLP-NNM and SVM-NNM was tested for the application and comparison 
of multiple linear regression model (MLRM). The statistics result of testing performance for 
MLP-NNM and SVM-NNM were compared with those of MLRM. MLRM is important 
because the model enables more than one independent variable to be included in the 
structure. This can lead to significant increases in calculation accuracy and the ability to 
measure the effect of each X variable on Y. MLRM should provide more stable estimates of 
Y since calculations with the bivariate equation are subject to fluctuations due to extreme 
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(a) Gunsan (b) Daegu 

 
(c) Seoul (d) Seongsanpo 

(e) Ulsan (f) Jeonju 

 
(g) Tongyoung (h) Haenam 

Fig. 9. Comparison plots of observed and calculated FAO-56 PM ETo  
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(a) Gunsan (b) Daegu 

 
(c) Seoul (d) Seongsanpo 

 
(e) Ulsan (f) Jeonju 

 
(g) Tongyoung (h) Haenam 

Fig. 10. Scatter plots between FAO-56 PM ETo and optimal SVM-NNM ETo  
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variations in X. When the model includes more than one independent variable, extreme 
variation in one independent variable is less likely to cause extreme variation in the 
calculated values of Y (McCuen, 1993; Kottegoda, 1998; Salas et al., 2005). From the statistics 
results of testing performance for MLP-NNM and SVM-NNM, the best statistics results 
were found at MLP 4 and MLP 5 on average for MLP-NNM. The best statistics results, 
furthermore, were found at SVM 5 for SVM-NNM. So, two types of MLRM are adopted; 
MLRM 1 and MLRM 2. MLRM 1 has four independent variables including mean wind 
speed (Umean), mean temperature (Tmean), sunshine duration (SD), and mean relative 
humidity (RHmean). And, MLRM 2 has five independent variables including mean wind 
speed (Umean), mean temperature (Tmean), sunshine duration (SD), mean relative humidity 
(RHmean), and max temperature (Tmax). That is, MLRM 1 corresponds to MLP 4 and SVM 4, 
and MLRM 2 corresponds to MLP 5 and SVM 5. MLRM 1 and MLRM 2 can be written as the 
equation (11) and (12).  

 FAO-56 PM ETo = 0 1 mean 2 mean 3 4 meanb b U b T b SD b RH+ + + +   (11) 

 FAO-56 PM ETo = 0 1 mean 2 mean 3 4 mean 5 maxb b U b T b SD b RH b T+ + + + +     (12) 

where ib (i 1,2, ,p)= … = the slope coefficient, which is also known as the regression 

coefficient because it is claculated by the results of regression analysis, and b0 = intercept. In 
this study, the slope coefficients of MLRM 1 and MLRM 2 were calculated using the training 
data, which were used for MLP-NNM and SVM-NNM. Table 11 shows equations of MLRM 
1 and MLRM 2 calculated by the training data for Daegu, Ulsan, Jeonju, and Tongyoung 
stations, respectively.  
 

Station 
Model 
Type 

Equation 

Daegu 

MLRM 1 
 
 

MLRM 2 

FAO-56 PM ETo = 2.894+0.125Umean+0.148Tmean+0.135SD-
0.044RHmean 

 

FAO-56 PM ETo = 2.099+0.192Umean+0.041Tmean+0.100SD-
0.041RHmean+0.108Tmax 

Ulsan 

MLRM 1 
 
 

MLRM 2 

FAO-56 PM ETo = 0.834+0.204Umean+0.136Tmean+0.169SD-
0.020RHmean 

 

FAO-56 PM ETo =0.552+0.237Umean+0.094Tmean+0.156SD-
0.019RHmean+0.044 Tmax 

Jeonju 

MLRM 1 
 
 

MLRM 2 

FAO-56 PM ETo = 1.743+0.294Umean+0.119Tmean+0.157SD-
0.027RHmean 

 

FAO-56 PM ETo = 1.188+0.332Umean+0.048Tmean+0.137SD-
0.024RHmean+0.069Tmax 

Tongyoung 

MLRM 1 
 
 

MLRM 2 

FAO-56 PM ETo = 1.356+0.094Umean+0.134Tmean+0.160SD-
0.024RHmean 

 

FAO-56 PM ETo = 1.646+0.076Umean+0.182Tmean+0.169SD-
0.025RHmean -0.049Tmax 

Table 11. Equations of MLRM 1 and MLRM 2 calculated by the training data  
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It is worthwhile to compare the relative importance of the variables as indicated by the 

indendent variables correlations. Table 12 shows the correlation matrix of FAO-56 ETo data 

base for MLRM 2 of Daegu station. In Daegu station, the indendent variables correlations for 

MLRM 2 indicate that Tmax is the most important (R=0.820), with Tmean and SD being less 

important (R=0.760 & R=0.522). RHmean  is more important Umean (R=-0.169 vs 0.031). In this 

study, from the results of correlation matrix for MLRM 1 and MLRM 2 of 8 meteorological 

stations, Tmean (MLRM 1) and Tmax (MLRM 2) are the most important independent variables, 

respectively.  

 

Variable X1 X2 X3 X4 X5 Y 

mean wind speed 
mean temperature 
sunshine duration 

mean relative humidity 
max temperature 

FAO-56 ETo 

1.000 -0.245 
1.000 

0.168 
-0.024 
1.000 

-0.327 
0.426 
-0.667 
1.000 

-0.287 
0.982 
0.105 
0.330 
1.000 

0.031 
0.760 
0.522 
-0.169 
0.820 
1.000 

Table 12. Correlation matrix of FAO-56 ETo data base for MLRM 2 of Daegu station  

MLRM 1 and MLRM 2 were validated by the testing data of MLP-NNM and SVM-NNM. 

Table 13 shows statistics results of MLRM 1 and MLRM 2 calculated by the testing data for 

Daegu, Ulsan, Jeonju, and Tongyoung stations, respectively. We could consider that the 

performance of MLP-NNM and SVM-NNM was better than that of MLRM 1 and MLRM 2.  

 

Station Model 
 

CC RMSE 
(mm/day)

R2 

Daegu MLRM 1 
MLRM 2 

0.952 
0.952 

0.562 
0.561 

0.899 
0.900 

Ulsan MLRM 1 
MLRM 2 

0.932 
0.930 

0.503 
0.510 

0.869 
0.865 

Jeonju MLRM 1 
MLRM 2 

0.934 
0.938 

0.530 
0.514 

0.863 
0.871 

Tongyoung MLRM 1 
MLRM 2 

0.908 
0.908 

0.567 
0.568 

0.824 
0.823 

Table 13. Statistics results of MLRM 1 and MLRM 2 calculated by the testing data 

6. Conclusions 

Neural networks model provides a quick and flexible means for modeling of many 
hydrological processes and has showed better performance than the conventional methods. 
The hydrologic system under study may be nonlinear and multivariate, and the variables 
may have unknown interrelationships. Such problems can be efficiently explained by the 
neural networks model.  
In this study, the potential of MLP-NNM and SVM-NNM for the modeling of FAO-56 PM 
ETo using climatic data has been illustrated. The study demonstrated that the modeling of 
FAO-56 PM ETo is possible through the use of MLP-NNM and SVM-NNM technique. For 8 
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meteorological stations which were selected for this study, there are no observed data for 
the ETo. The data calculated using FAO-56 PM ETo can be assumed as the observed ETo, 
whose reliability was verified by many previous studies. The following conclusions could be 
drawn from this study.  
1. MLP 4, whose inputs are mean wind speed (Umean), mean temperature (Tmean), sunshine 

duration (SD), and mean relative humidity (RHmean) was found to perform the best 
among the input combinations for Seoul, Seongsanpo, Ulsan, and Hanam stations. And, 
MLP 5, whose input are mean wind speed (Umean), mean temperature (Tmean), sunshine 
duration (SD), mean relative humidity (RHmean), and max temperature (Tmax) was found 
to perform the best among the input combinations for Gunsan, Daegu, Jeonju, and 
Tongyoung stations. 

2. SVM 5, whose input are mean wind speed (Umean), mean temperature (Tmean), sunshine 
duration (SD), mean relative humidity (RHmean), and max temperature (Tmax) was found 
to perform the best among the input combinations for 8 meteorological stations. This 
indicates that all these variables are needed for the better modeling of FAO-56 PM ETo 
using SVM-NNM.  

3. The temperature, sunshine duration, and relative humidity were found to be more 
effective than the wind speed in the modeling of FAO-56 PM ETo.  

4. The performance statistics results of SVM-NNM were better than those of MLP-NNM. 
It can obviously be seen from CC, RMSE, and R2 statistics.  

5. The potential of MLP-NNM and SVM-NNM were tested using MLRM 1 and MLRM 2. 
From the statistics results, the performance of MLP-NNM and SVM-NNM was better 
than that of MLRM 1 and MLRM 2.  

MLP-NNM and SVM-NNM could be of use in water buget of watersheds and various other 
hydrological analysis where other models may be inappropriate. This study used only a 
single crop, grass reference crop, for a limited period and further studies using different 
crop such as alfalfa and rice reference crop may be required to strengthen these conclusions. 
FAO-56 PM ETo, furthermore, includes some errors in the estimation of many climatic 
variables. Because the ET are relatively important for the design of irrigation facilities and 
agricultural reservoirs, the spread of automatic measuring systems for the ET is important 
and urgent to ensure the reliable and accurate data from the measurements of ET, Republic 
of Korea.  
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