
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



23 

Electromagnetic Waves Generated 
by Line Current Pulses 

Andrei B. Utkin 
INOV - INESC Inovação 

Portugal 

1. Introduction 

Solving electromagnetic problems in which both the source current and the emanated wave 
have complicated, essentially nonsinusoidal structure is of paramount interest for many real-
word applications including weaponry, communications, energy transportation, radar, and 
medicine (Harmuth, 1986; Fowler at al., 1990; Harmuth et al., 1999; Hernández-Figueroa et al., 
2008). In this chapter we will focus on electromagnetic fields produced by source-current 
pulses moving along a straight line. The explicit space-time representation of these fields is 
important for investigation of man-made (Chen, 1988; Zhan & Qin, 1989) and natural (Master 
& Uman, 1984) travelling-wave radiators, such as line antennas and lightning strokes. 
Traditional methods of solving the electromagnetic problems imply passing to the 
frequency domain via the temporal Fourier (Laplace) transform or introducing retarded 
potentials. However, the resulted spectra do not provide adequate description of the 
essentially finite-energy, space-time limited source-current pulses and radiated transient 
waves. Distributing jumps and singularities over the entire frequency domain, the spectral 
representations cannot depict explicitly the propagation of leading/trailing edges of the 
pulses and designate the electromagnetic-pulse support (the spatiotemporal region in which 
the wavefunction is nonzero). Using the retarded potentials is not an easy and 
straightforward technique even for the extremely simple cases, such as the wave generation 
by the rectangular current pulse — see, e.g., the analysis by Master & Uman (1983), re-
examined by Rubinstein & Uman (1991). In the general case of the sources of non-trivial 
space-time structure, the integrand characterizing the entire field via retarded inputs can be 
derived relatively easily. In contrast, the definition of the limits of integration is intricate for 
any moving source: one must obtain these limits as solutions of a set of simultaneous 
inequalities, in which the observation time is bounded with the space coordinates and the 
radiator's parameters. The explicit solutions are thus difficult to obtain. 
In the present analysis, another approach, named incomplete separation of variables in the wave 
equation, is introduced. It can be generally characterized by the following stages: 

• The system of Maxwell's equations is reduced to a second-order partial differential 
equation (PDE) for the electric/magnetic field components, or potentials, or their 
derivatives.  

• Then one or two spatial variables are separated using the expansions in terms of 
eigenfunctions or integral transforms, while one spatial variable and the temporal 
variable remain bounded, resulting in a second-order PDE of the hyperbolic type, 
which, in its turn, is solved using the Riemann method.  
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• Sometimes these solutions, being multiplied by known functions of the previously 

separated variables, result in the expressions of a clear physical meaning (nonsteady-

state modes), and for these cases we have explicit description of the field in the space-

time representation. When it is possible, we find the explicit solution harnessing the 

procedure that is inverse with respect to the separation of variables, summing up the 

expansions or doing the inverse integral transform. In this case the solution yields the 

space-time structure of the entire transient field rather than its modal expansion or 

integral representation. 

2. Electromagnetic problem 

As far as the line of the current motion is the axis of symmetry, it is convenient to consider 

the problem of wave generation in the cylindrical coordinate system , ,zρ ϕ , for which the 

direction of the z -axis coincides with the direction of the current-density vector, zj=j e . 

Following the concept discussed above, we suppose that the space-time structure of the 

source corresponds to a finite-energy pulse turned on in some fixed moment of time. 

Introduction of the time variable in the form ctτ = , where t  is time reckoned from this 

moment and c  is the speed of light, results in the conditions 

 0, 0, 0 for 0zj τ≡ ≡ ≡ <E B . (1) 

Here E  and B  conventionally denote the force-related electromagnetic field vectors — the 

electric field intensity and the magnetic induction. The current pulse is supposed to be 

generated at one of the radiator's ends, 0z = , to travel with constant front and back velocity 

v cβ=  ( 0 1β< ≤ ) along the radiator and to be completely absorbed at the other end, z l= , 

as illustrated in Fig. 1. 
 
 

 
 

Fig. 1. Space-time structure of the source current. 
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Introducing, along with the finite radiator length l , the finite current pulse duration T , one 

can express the current density using the Dirac delta function ( )δ ρ  and the Heaviside step 

function ( )
1 for 0

0 for 0

z
h z

z

>⎧
= ⎨ <⎩

 as 

 ( ) ( ) ( ) ( ), , , ( )
2

z z
j z J z h h T h z h l z

δ ρ
ρ τ τ τ τ

πρ β β
⎛ ⎞ ⎛ ⎞

= − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (2) 

where ( ),J z τ  is an arbitrary continuous function describing the current distribution. 

Bearing in mind the axial symmetry of the problem, let us seek the solution in the form of a 

TM wave whose components can be expressed via the Borgnis-Bromwich potential W  

(Whittaker, 1904; Bromwich, 1919) as 

 
2 2 2 2

02 2
0 0

1 1
, , ,z

W W W W
E E B

c z c z
ρ φ μ

ε ρ ε ρ ττ

⎛ ⎞∂ ∂ ∂ ∂
= = − + = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠

 (3) 

where 0ε  and 0μ  are the electric and magnetic constants. Substitution of representation (3) 

into the system of Maxwell’s equations yields the scalar problem 

 
( ) ( )

2 2

2 2

1
, , , , ,

0 for 0

z j z
z

ρ ρ τ ρ τ
ρ ρ ρτ

τ

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
− − Ψ =⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ⎝ ⎠⎝ ⎠

Ψ ≡ <

 (4) 

with respect to the function ( ), ,
W

zρ τ
τ

∂
Ψ =

∂
. 

3. Solving algorithm 

3.1 Transverse coordinate separation 

Let us separate ρ  by the Fourier-Bessel transform 

 
( )
( )

( )
( ) ( ) ( )

( )
( )
( )

( )0 0

0 0

, , , ,, , , ,
d , d

, , , ,, , , ,

s z s zz z
J s J s s s

j z j zj s z j s z

τ τρ τ ρ τ
ρ ρ ρ ρ

ρ τ ρ ττ τ

∞ ∞⎛ ⎞ ⎛ ⎞Ψ Ψ⎛ ⎞ ⎛ ⎞Ψ Ψ
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫ ∫

# #
# # , (5) 

( 0J  is the Bessel function of the fist kind of order zero) which turns problem (4) into one for 

the 1D Klein-Gordon equation 

 ( ) ( )
2 2

2
2 2

, , , , ,s s z j s z
z

τ τ
τ

⎛ ⎞∂ ∂
− + Ψ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

##  (6) 

with the initial conditions 

 0 for 0,τΨ ≡ <#  (7) 

where, in accordance with representation (5), 
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 ( ) ( ) ( ) ( )1
, , , , ( ).

2

z z
j s z j z J z h h T h z h l zτ τ τ τ τ

π β β
⎛ ⎞ ⎛ ⎞

= = − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

# #  (8) 

3.2 Riemann (Riemann–Volterra) method 
Problem (6) can easily be solved for arbitrary source function by the Riemann (also known 
as Riemann–Volterra) method. Although being very powerful, this method is scarcely 
discussed in the textbooks; a few considerations (see, for example, Courant & Hilbert, 1989) 
treat one and the same case related to the first canonical form of a more general equation 

 ( ) ( ) ( ) ( ) ( ) ( )
2

1ˆ , , ; , , , , , , , ,L a b c u a b c u f a b c Cξ η ξ η ξ η ξ η ξ η
ξ η ξ η

⎛ ⎞∂ ∂ ∂
= + + + = ∈⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

, (9) 

aiming to represent the solution at a point ( )0 0,P ξ η  in terms of f  and the values of u  and 

its normal derivative 
u

n

∂
∂

 on the initial-data curve Σ  as depicted in Fig. 2(a). 

 

 

                                        (a)                                                                 (b) 

Fig. 2. Characteristic ,ξ η  diagrams representing the initial-data curve Σ  and the integration 

domain Ω  for the standard (a) and ad hoc (b) Riemann-method procedures. 

As far as our objectives are limited to solving problem (6), (7), we will consider simplified ad 
hoc Riemann-method procedure involving the differential operator 

 ( ) ( )
2

2ˆ , ,L u s u s constξ η
ξ η

⎛ ⎞∂
= + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

, (10) 

and the extension of this procedure to the case of the second canonical form of the 1D Klein-

Gordon equation (6). Corresponding diagram on the ,ξ η  plane is represented in Fig. 2(b); 

the initial data are defined on the straight line η ξ= − . The procedure is based on the fact 

that for any two functions u  and R  the difference ( ) ( )ˆ ˆRL u uL R−  is a divergence 

expression 

 
( ) ( )

2 2 1ˆ ˆ ,
2

, .

A Au R
RL u uL R R u

R u u R
A u R A R u

η ξ

ξ η

ξ η ξ η ξ η

ξ ξ η η

∂ ∂⎛ ⎞∂ ∂
− = − = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂

 (11) 

η

ξ

η

ξ
0

0η 0η

0ξ

0ξ

τ ′

z′

M

PP

M

Q Q

Σ

n

Ω Ω

Σ
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Thus, integrating over the domain Ω  with boundary ∂Ω , one obtains by the Gauss-

Ostrogradski formula 

 ( ) ( ) ( )1ˆ ˆ d d d d
2

def

I RL u uL R A Aξ ηξ η ξ ηΩ
Ω ∂Ω

⎡ ⎤= − = +⎢ ⎥⎣ ⎦∫∫ ∫] , (12) 

where the contour integration must be performed counterclockwise. Applying formula (12) 
to the particular case in which: 

a. the integration domain Ω  corresponds to that of Fig. 2(b); 
b. the function u  is the desired solution of the inhomogeneous equation 

 ( ) ( ) ( )
2

2ˆ , ,L u s u fξ η ξ η
ξ η

⎛ ⎞∂
= + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

; (13) 

c. the function R  is the Riemann function corresponding to the linear differential operator 

(10) and the observation point ( )0 0,P ξ η , that is 

 ( )ˆ 0, 1
QP MP

L R R R= = = ; (14) 

 

we have 

 ( ) ( )ˆ ˆ d d d dI RL u uL R Rfξ η ξ ηΩ
Ω Ω

⎡ ⎤= − =⎣ ⎦∫∫ ∫∫ . (15) 

 

On the other hand 

 

1
d d

2

1
d d .

2
QM MP PQ

R u u R
I u R R u

R u u R
u R R u

ξ η
ξ ξ η η

ξ η
ξ ξ η η

Ω
∂Ω

+ +

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ⎟⎟ ⎜⎜⎢ ⎥⎟⎟= − + −⎜⎜ ⎟⎟⎢ ⎥⎜⎜ ⎟ ⎟⎜ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ⎟⎟ ⎜⎜⎢ ⎥⎟⎟= − + −⎜⎜ ⎟⎟⎢ ⎥⎜⎜ ⎟ ⎟⎜ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫

∫

]
 (16) 

For the contour ∂Ω  of Fig. 2(b) d 0ξ =  on MP while d 0η =  on PQ and d dη ξ= −  on QM, 

which reduces the integral to 

 

1
d

2

1 1
d d .

2 2

QM

MP PQ

R u u R
I u R R u

u R R u
R u u R

ξ
ξ ξ η η

η ξ
η η ξ ξ

Ω
⎛ ⎞∂ ∂ ∂ ∂

= − − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫

∫ ∫
 (17) 

 

Noticing that 

 ( )1 1 1
d 2 d d

2 2 2

P

MMP MP MP

u R R R
R u Ru u Ru uη η η

η η η η η
⎛ ⎞ ⎡ ⎤∂ ∂ ∂ ∂ ∂

− = − = −⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦
∫ ∫ ∫ , (18) 
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( )

1 1
d d

2 2

1 1
2 d d

2 2

PQ QP

P

QQP QP

R u u R
u R R u

R R
Ru u Ru u

ξ ξ
ξ ξ ξ ξ

ξ ξ
ξ ξ ξ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤∂ ∂ ∂
= − = −⎢ ⎥∂ ∂ ∂⎣ ⎦

∫ ∫

∫ ∫
 (19) 

and, due to the second of properties (14), 

 0, 1,
P

MP QP

R R
R

η ξ
∂ ∂

= = =
∂ ∂

 (20) 

one has 

 ( )1 1
d

2 2P Q M
QM

u u R R
I R R u u u Ru Ruξ

ξ η ξ ηΩ
⎛ ⎞∂ ∂ ∂ ∂

= − + − − + − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∫ . (21) 

Substituting the LHS of Eq. (21) by the RHS of Eq. (15) and solving the resulting equation 

with respect to 
P

u  yield the Riemann formula corresponding to operator (10) 

 ( )1 1
d d d ,

2 2P Q M
QM

u u R R
u Ru Ru R u Rfξ ξ η

ξ η ξ η Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= + + + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫∫  (22) 

with the Riemann function (Courant & Hilbert, 1989) 

 ( ) ( )( )( )0 0 0 0 0, ; , 4 .R J sξ η ξ η ξ ξ η η= − −  (23) 

To apply this result to problem (4), let us postulate that the variables 0,ξ ξ  and , oη η  are 

related to the longitudinal-coordinate ,z z′  and time ,τ τ ′  variables via the expressions 

 ( ) ( ) ( ) ( )0 0

1 1 1 1
, , , .

2 2 2 2
z z z zξ τ ξ τ η τ η τ′ ′ ′ ′= + = + = − = −  (24) 

Axes corresponding to the variables z′  and τ ′  are shown in Fig. 2(b) as dotted lines while 

the entire ,z τ′ ′  diagram of the Riemann-method procedure is represented in Fig. 3. 

In the new variables 

 ( ) ( ) ( )2 2
0, ; , ,R z z J s z zτ τ τ τ⎛ ⎞′ ′ ′ ′= − − −⎜ ⎟
⎝ ⎠

 (25) 

 
( )
( )

, 1
d d d d d d ,

, 2
z z

z

ξ η
ξ η τ τ

τ
∂

′ ′ ′ ′= =
′ ′∂

 (26) 

 , 2
z zξ τ η τ ξ η τ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = − + ⇒ + =

′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (27) 

and the differential operator (10) takes the second canonical form 
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Fig. 3. A ,z τ′ ′  plane diagram representing the initial 2D integration domain Ω  eventually 

reduced to the segment of the hyperbola ( ) ( )2 2 2z zτ τ ρ′ ′− − − = , the support of kernel (36). 

while on the integration segment QM 

 ( ) ( ) ( ) ( ) ( ) ( )0 0

2 2
2

1 10 02 2 ,
2 2

ˆ , , , , ,
z z

L u s u z u z u
z ξ τ η τ

τ τ ξ τ
τ = + = −

⎛ ⎞∂ ∂
= − + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

# # #  (28) 

 
1

d d .
2

zξ ′=  (29) 

In view of (28)-(29), the Riemann formula for the second canonical form of the 1D Klein-
Gordon equation reduces to 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 0

1
, , ; ,0 ,0 , ; ,0 ,0

2

, , ; ,1 1
2 , ; ,0 2 ,0 d

2 2

1
, ; , , d d ,

2

QM

z R z z u z R z z u z

u z R z z
R z z u z z

R z z f z z

τ τ

τ τ τ τ τ τ τ

τ τ τ
τ

τ τ

τ τ τ τ

′ ′= =

Ω

Ψ = ⎡ − − + + + ⎤⎣ ⎦

⎡ ⎤′ ′ ′ ′∂ ∂
′ ′ ′+ −⎢ ⎥

′ ′∂ ∂⎢ ⎥⎣ ⎦

′ ′ ′ ′ ′ ′+

∫

∫∫

# #

#
#  (30) 

whose explicit representation for the problem 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2

2
02 2

, , , ,0 , ,0
u

s u z f z u z u z z u z
z

ττ τ
ττ

⎛ ⎞∂ ∂ ∂
− + = = =⎜ ⎟⎜ ⎟ ∂∂ ∂⎝ ⎠

## #  (31) 

is 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0

0

0

1
, , ; ,0 , ; ,0

2

1 1
, ; ,0 , ; ,0 d , ; , , d d ,

2 2

z zz z

z z

u z R z z u z R z z u z

R
R z z u z u z z z z R z z f z z

ττ τ

τ
τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ τ
τ

′− −+ +

− −

= ⎡ − − + + + ⎤⎣ ⎦

∂⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − +⎢ ⎥′∂⎣ ⎦∫ ∫ ∫

#

 (32) 

where the Riemann function is defined by Eq. (25). 

τ ′

z′z0τ−z

τ
( ) ( ) 222 ρττ =−′−−′ zz

ρτ −

22 ρτ −−z

τ+z
22 ρτ −+z

ττ ++′−=′ zzττ +−′=′ zz

Ω

δΓ
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3.3 Space-time domain solution 

In the particular case of problem (6)-(8) with the homogeneous initial conditions, the 
Riemann method yields 

 ( ) ( ) ( ) ( )2 2
0

0

1
, , , d d .

2

z zz

z

s z J s z z j z z

ττ

τ

τ τ τ τ τ
′− −+

−

⎛ ⎞′ ′ ′ ′ ′ ′Ψ = − − −⎜ ⎟
⎝ ⎠∫ ∫ ##  (33) 

To obtain the explicit representation of the solution to the original problem (4), let us 
perform the inverse Fourier-Bessel transform (5) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

2 2
0 0

0 0

, , , , d

1
, d d d .

2

z zz

z

z s z J s s s

J s z z j z z J s s s

ττ

τ

ρ τ τ ρ

τ τ τ τ ρ

∞

′− −∞ +

−

Ψ = Ψ

⎛ ⎞⎛ ⎞⎜ ⎟′ ′ ′ ′ ′ ′= − − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

∫ ∫ ∫

#

#
 (34) 

Changing the order of integration, one gets the source-to-wave integral transform 

 ( ) ( ) ( )
0

1
, , , , , , , d d ,

2

z zz

z

z K z z j z z

ττ

τ

ρ τ ρ τ τ τ τ
′− −+

−

′ ′ ′ ′ ′ ′Ψ = ∫ ∫ #  (35) 

where 

 ( ) ( ) ( ) ( )2 2
0 0

0

, , , , d .
def

K z z J s z z J s s sρ τ τ τ τ ρ
∞

⎛ ⎞′ ′ ′ ′= − − −⎜ ⎟
⎝ ⎠∫  (36) 

Crucial reduction of the integral wavefunction representation (35) can be achieved using the 
closure equation (Arfken & Weber, 2001, p. 691) 

 ( ) ( ) ( )0 0

0

1
d ,J s J s s sρ ρ δ ρ ρ

ρ

∞

′ ′= −∫  (37) 

which enables kernel (36) to be represented in the form 

 ( ) ( ) ( )2 21
, , , , .K z z z zρ τ τ δ ρ τ τ

ρ
⎛ ⎞′ ′ ′ ′= − − − −⎜ ⎟
⎝ ⎠

 (38) 

A more explicit relationship can be obtained treating the kernel as a function of τ ′  and 

using the representation of the delta function with simple zeros { }iτ  on the real axis (Arfken 

& Weber, 2001, p. 87) 

 ( )( ) ( )

( )
.i

i
i

g
g

δ τ τ
δ τ

τ
τ

′ −
′ =

∂
′∂

∑  (39) 

Two zeros must be taken into account 

 ( )22
1,2 ,z zτ τ ρ ′= + −∓  (40) 
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but ( )22
2 z zτ τ ρ τ′= + + − >  results in the delta function whose support always lies 

outside the integration domain and therefore corresponds to zero input. Thus we can write 

 ( )
( )

( )

22

22
, , , , ,

z z

K z z
z z

δ τ τ ρ
ρ τ τ

ρ

⎛ ⎞′ ′− + + −⎜ ⎟
⎝ ⎠′ ′ =

′+ −
 (41) 

 

which, together with Eq. (8), yields 

( ) ( ) ( ) ( )
0

1
, , , ( )d d ,

4

z zz

z

r z z
z J z h h T h z h l z z

r

ττ

τ

δ τ τ
ρ τ τ τ τ τ

π β β

′− −+

−

′ ′− + ′ ′⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′Ψ = − − + −⎜ ⎟ ⎜ ⎟′ ⎝ ⎠ ⎝ ⎠
∫ ∫  (42) 

 

where 

 ( )22r z zρ′ ′= + −  (43) 

denotes the distance between the observation point , zρ  and the source location 0,z′ . The 

integration domain, now reduced to the inlying support of the delta function, a segment of 

the hyperbolic curve 

 
( ) ( ){ }

( ) ( ) ( ) ( ){ }
2 2 2

2 2 2

, :

, : , 0, 0 ,

def

z z z

z z z z z

δ τ τ τ ρ

τ τ τ ρ τ τ τ

′ ′ ′ ′Γ = Ω∩ − − − =

′ ′ ′ ′ ′ ′ ′= − − − = − + − < >
 (44) 

is shown in Fig. 3. 

4. Explicit representations 

4.1 Preliminary considerations 

Formula (42) requires further examination in order to resolve inequalities implicitly 
introduced by the step functions in the integrand and obtain analyzable expressions. 

Although it is possible to consider one-dimensional inequalities that bound only the 

longitudinal variable z′  — just using the property of the delta function while performing 

integration with respect to τ ′  and passing to the single-integral relation 

 ( ) ( ) ( )
2 2

2 2

,1
, , ( ) d

4

z

z

J z r z z
z h r h r T h z h l z z

r

τ ρ

τ ρ

τ
ρ τ τ τ

π β β

+ −

− −

′ ′− ′ ′⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′Ψ = − − − + + −⎜ ⎟ ⎜ ⎟′ ⎝ ⎠ ⎝ ⎠
∫  (45) 

— a more convenient study can be done using basic expression (42) and the two-

dimensional ,z τ′ ′  plane diagrams, in which the inequalities bound both z′  and τ ′ , have a 

linear form, and admit illustrative graphical representation.  

This study results in a set of particular expressions for certain interrelations between the 

spatiotemporal coordinates , ,zρ τ , the radiator length l , and the current pulse duration T . 
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For each observation point , zρ , the set of expression may have one of two distinct forms, 

depending on what information reaches the observer first: one concerning the finiteness of 

the current pulse or one about the radiator finiteness. The finiteness of the current pulse 

comes into the scene at the spatiotemporal point 0, 0,z Tρ τ= = =  (see Fig. 4). 

Corresponding information is carried by the back of the electromagnetic pulse with the 

speed of light and arrives at the point , zρ  

 2 2r zρ= +  (46) 

time units after, that is, at the moment T r+ . The stopping of the source-current motion 

along the z  axis due to the finiteness of the radiator is first manifested at 

0, , /z l lρ τ β= = = . Related information is propagated through the distance 

 ( )22
lr z lρ= + −  (47) 

with the speed of light and reaches the point , zρ  at the moment / ll rβ + . 

From here on the source current pulse will be called short provided that 

 l

l
r T r

β
+ < +  (48) 

and long in the opposite case. This definition depends on ,zρ , so a current pulse considered 

to be short for one observation point may appear as long for another, and vice versa. 
 

 

Fig. 4. On definition of the short and long pulse types. 

4.2 Definition of the integration limits 

The ,z τ′ ′  plane diagrams for the case of a short source-current pulse are shown in Fig. 5. 

The step-function factors in formula (42) define the parallelogram area hΩ  within which the 

integrand differs from zero, and the eventual integration domain is the intersection of hΩ  

and the segment of hyperbola δΓ  defined by Eq. (44). Progression of the observation time τ  

unfolds the following concretization of the general formula: 

• Case aS: rτ−∞ < < , Fig. 5(a). 

ØδΓ =  (for τ ρ<  the hyperbola branch resides below 0τ ′ = ) or there is no intersection 

between hΩ  and δΓ , Øh δΩ ∩Γ = , so 

z

ρ

l
r

0

lr ρ,z

Current pulse is finite

Radiator is finite

Current pulse at T=τ  

Current pulse at βτ /l=  
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 ( ) ( ), , , , 0.aSz zρ τ ρ τΨ = Ψ =  (49) 

This is in a complete accord with the casualty principle, as any effect of the light-speed-

limited process initiated at the spatiotemporal point 0, 0, 0zρ τ= = =  cannot reach the 

point , zρ  prior to rτ = . 

• Case bS: r r Tτ< < + , Fig. 5(b). 

h δΩ ∩Γ  is a segment of δΓ  limited by 0z =  and 0z z= , where 

 

( ) ( )

2 2

0
22 21

r
z

z z

τβ
τ β β ρ βτ

−
=

− + − + −
 (50) 

is defined by the intersection of δΓ  and the line / 0zτ β′ ′− = . 

• Case cS: /lr T r lτ β+ < < + , Fig. 5(c). 

h δΩ ∩Γ  is a segment of δΓ  limited by Tz z=  and 0z z= , where 

 ( )

( ) ( )

2 2

0
22 21

T T

T r
z z

T z z T
τ τ

τ
β
τ β β ρ β τ

−

− −
= =

− − + − + ⎡ − − ⎤⎣ ⎦
U

 (51) 

is defined by the intersection of δΓ  and the line / 0z Tβ τ′ ′− + = . 

• Case dS: / /l lr l r l Tβ τ β+ < < + + , Fig. 5(d). 

h δΩ ∩Γ  is a segment of δΓ  limited by Tz z=  and z l= . 

• Case eS: /lr l Tβ τ+ + < < ∞ , Fig. 5(e). 

The hyperbola branch resides above hΩ , Øh δΩ ∩Γ = , and as in Case aS 

 ( ) ( ), , , , 0.eSz zρ τ ρ τΨ = Ψ =  (52) 

This situation relates to the epoch after passing of the electromagnetic-pulse back, 

corresponding to complete disappearance of the source current pulse at the spatiotemporal 

point 0, , /z l l Tρ τ β= = = + , which manifests itself lr  units of time later, at 

/lr l Tτ β= + + . 
Diagrams for a long source-current pulse are shown in Fig. 6. They correspond to the 
following set of cases: 
 

• Case aL: rτ−∞ < < , Fig. 6(a). 

This case is identical to Case aS: Øh δΩ ∩Γ = , and 

 ( ) ( ), , , , 0.aLz zρ τ ρ τΨ = Ψ =  (53) 

• Case bL: /lr r lτ β< < + , Fig. 6(b). 

Apart from the condition imposed on τ , this case is identical to Case bS; the limits are 0z =  

and 0z z= . 

• Case cL: /lr l r Tβ τ+ < < + , Fig. 6(c). 

h δΩ ∩Γ  is a segment of δΓ  limited by 0z =  and z l= . 
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Fig. 5. Definition of the integration limits for a short source-current pulse. 
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Fig. 6. Definition of the integration limits a long source-current pulse. 
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• Case dL: /lr T r l Tτ β+ < < + + , Fig. 6(d). 

h δΩ ∩Γ  is a segment of δΓ  limited by Tz z=  and z l= . Apart from the condition imposed 

on τ , this case is identical to Case dS. 

• Case eL: /lr l Tβ τ+ + < < ∞ , Fig. 6(e). 

This case is identical to Case eS: Øh δΩ ∩Γ =  and 

 ( ) ( ), , , , 0.eLz zρ τ ρ τΨ = Ψ =  (54) 

4.3 General solutions 
The results obtained for the integration limits are summarized in Table 1. With all the 
integration limits defined, for cases corresponding to nonvanishing solution, the explicit 
representation of the wavefunction takes the general form akin to (45) 

( ) ( ) ( )2

1

0 case ,
for short pulse

,, , ,1
, , d case , , for long pulse

4

C

C

z

C

z

a e
S

J z rz C
z z b c d L

r

λ

λ

λ

λ

τρ τ
ρ τ λ

π

=⎧ ⎫
⎪ ⎪ ⎧⎪ ⎪′ ′−Ψ = =⎨ ⎬ ⎨′Ψ = = ⎩⎪ ⎪′⎪ ⎪⎩ ⎭

∫
 (55) 

where the case choice λ  depends on the current value of time variable, see the column 

( )Cond Cλ  of Table 1. 
One can notice from the diagrams or proof by direct calculations that the piecewise solution 
(55) provides continuous joining, that is, 

 

, ,

, ,

0, , ,

, , 0.

l l

l l l l

l lbS L aS L cS bS cL bLr T r T r rr r

l l l ldS cS dL cL eS L dS Lr r r T r T r r

τ τ τ ττ τ
β β

τ τ τ τ τ τ
β β β β

= + = + = + = += =

= + = + = + = + = + = +

Ψ = Ψ = Ψ = Ψ Ψ = Ψ

Ψ = Ψ Ψ = Ψ Ψ = Ψ =
 (56) 

Relation (55) represents the solution of the scalar problem (4). With this solution 
constructed, one can readily find the magnetic induction using relation (3) 

 
2

0 0,
W

B B Bφ φ μ μ
ρ τ ρ
∂ ∂Ψ

= = = − = −
∂ ∂ ∂

B e  (57) 

while the definition of the electric field components in the near zone requires calculation of 

the Borgnis–Bromwich potential itself, which leads to integration with respect to the time 

variable. Due to the initial conditions for which the charge distribution must be specified, 

such a procedure requires consideration that is specific to physical realization of the model 

(wire antenna, lightning, macroscopic current pulse accompanying absorption of hard 

radiation by a medium, etc.) and will not be discussed in the scope of the present work. 

Notably, E  (and, consequently, the entire electromagnetic field and the electromagnetic 

energy density) in the far field, r l>> , can be found from the known magnetic induction B  

(Dlugosz & Trzaska 2010; Stratton, 2007). 
Solutions (55), (57) describe emanation of finite transient electromagnetic pulses by line 

source-current pulses of arbitrary shape ( ),J z τ . They constitute the most practical and 
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illustrative concretization of general solution (35), (41) for the pulsed sources whose front 

and back propagate with the same constant velocity ν . The ,z τ′ ′  plane diagrams admit 

definition of the actual integration limits in (35) for arbitrary temporal dependence of the 
velocities of the current-pulse front and back. In this case the limiting straight lines 

/ 0zτ β′ ′− =  and / 0z Tβ τ′ ′− + =  must be replaced by curves ( )fz z τ′ ′=  and ( )bz z τ′ ′=  

characterizing the front/back motion. 

Models based on infinitely long source-current pulses, T →∞ , results into the set of cases 

aL, bL, and cL. Electromagnetic problems describing waves generated by exponentially 

decaying current pulses are discussed in (Utkin 2007, 2008). 
 

Case Condition Limits of integration 

λC  ( )Cond λC  1 Cz λ , 2 Cz λ  

aS,L rτ−∞ < <  not applicable, ( ), , , 0aS L zρ τΨ =  

bS r r Tτ< < +  

bL l

l
r rτ

β
< < +  ( ) ( )

1 1

2 2

2 2 0
22 2

0

1

bS bL

bS bL

z z

r
z z z

z z

τβ
τ β β ρ βτ

= =

−
= = =

− + − + −

 

cS l

l
r T rτ

β
+ < < +  

( )

( ) ( )

( ) ( )

2 2

1
22 2

2 2

2 0
22 2

1

1

cS T

cS

T r
z z

T z z T

r
z z

z z

τ
β
τ β β ρ β τ

τβ
τ β β ρ βτ

− −
= =

− − + − + ⎡ − − ⎤⎣ ⎦

−
= =

− + − + −

 

cL l

l
r r Tτ

β
+ < < +  1

2

0cL

cL

z

z l

=
=

 

dS l l

l l
r r Tτ

β β
+ < < + +  

dL l

l
r T r Tτ

β
+ < < + +  

( )

( ) ( )

2 2

1 1
22 2

2 2

1
dS dL T

dS dL

T r
z z z

T z z T

z z l

τ
β
τ β β ρ β τ

− −
= = =

− − + − + ⎡ − − ⎤⎣ ⎦
= =

 

eS,L l

l
r T τ

β
+ + < < ∞  not applicable, ( ), , , 0eS L zρ τΨ =  

Table 1. Conditions and parameters of the wavefunction representation via explicit 
formula (55). 

5. Current pulse with high-frequency filling 

Of special interest is investigation of waves launched by a pulse with high-frequency filling, 
which was stimulated by the problem of launching directional scalar and electromagnetic 
waves (missiles) as well as by results of experimental investigation of superradiation 
waveforms (Egorov et al., 1986). The model in question can roughly describe a number of 
traditional artificial as well as natural line radiators and, being characterized by two different 
velocities -- the phase velocity of the carrier wave and the source-pulse velocity, — explains 
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characteristic features observed in the laboratory and natural conditions for waves emanated 
by sources with high-frequency filling: their directionality, frequency transform, and beats. 

5.1 Specific solutions 

The problem of wave generation by the current pulse with high-frequency filling corresponds 
to a particular case of the electromagnetic problem discussed in Section 2, for which the 
continuous function describing the current distribution can be expressed in the form 

 ( ) ( ) ( ), , , ,J z U z M zτ τ τ±= #  (58) 

where a differentiable function ( ),U z τ#  represents the source-current envelope and 

 ( )( ) ( )( )exp i exp iph phM k v t z k zβ τ± = ± = ±  (59) 

the factor corresponding to the cosinusoidal (the real part) and sinusoidal (the imaginary 

part) modulating wave with the spatial period 2 / kπ  and the phase velocity ph phv cβ= . 

The minus sign corresponds to propagation of the modulating wave in the positive z  

direction (in the same direction as the source-current pulse front and back, case of 

copropagation) while the plus sign describes the situation in which the modulating wave 

propagates in the negative z  direction, opposite to the direction of propagation of the pulse 

front and back (case of counterpropagation).  

As far as superluminal phase velocity phv  is readily admissible for a much wider range of 

real-world models than the superluminal front velocity v , the values of phβ  are supposed 

to vary from 0 to infinity. To be able to pass to spatiotemporal coordinates in the frame 

moving with velocity v , we will assume that v c< , that is, 1β < . All the final results 

obtained in this chapter are easy to extend to the case of luminal source-current pulse taking 

the limit 1β → . 

To make the solutions easier to analyze, let us express ( ),U z τ#  as a function of zτ ±  

 ( ) ( ), , .
def

U z z U zτ τ τ− + = #  (60) 

Then, substituting (58) into general solution (55), one has 

 ( ) ( ) ( ) ( )( )
2

1

,1
, , exp i d .

4

C

C

z

phC

z

U r z r z
z k r z z

r

λ

λ

λ
τ τ

ρ τ β τ
π

± ′ ′ ′ ′− − − + ⎡ ⎤′ ′ ′Ψ = − ±⎣ ⎦′∫  (61) 

In the case of copropagation of the modulating wave ( M− ), changing the integration 

variable in representation (61) to r zζ τ ′ ′= − −  yields 

 

( ) ( ) ( )( )

( )
( )

( )( )

2

1

2

1

2 2

,1
exp i d

4

1
, exp i d ,

4 i

C

C

C

C

C

U S
K S

z

z
U S K S

K z

λ

λ

λ

λ

ζ

λ
ζ

ζ

ζ

ζ
ζ ε ζ ζ

π τ ζ

τ ζζ ζ ε ζ ζ
π ζτ ζ ερ

−Ψ = ⎡ + ⎤⎣ ⎦− −

− − ∂
= ⎡ + ⎤⎣ ⎦∂− − −

∫

∫

 (62) 
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where 

 
( )

2 1
1 2' '

2

, ,

1 1
, , .

1 2

C C
C Cz z z z

ph ph

ph

S r z z K k
z

λ λ
λ λζ ζ ζ ζ

β βρζ τ τ ε
τ ζ β

= == =

− +
′ ′= − + = + − = =

− − +

 (63) 

Assuming that ( )( ),U Sζ ζ  is a slowly varying function of ζ , 

( ) ( )
( )2 2

,
z

q U S
z

τ ζζ ζ
τ ζ ερ

− −
=

− − −
 is the continuous function and ( )q ζ′  is the absolutely 

integrable function, one gets by integration by parts the following estimation 

 

( ) ( )( )
( )

( )( )

( )( )
( )

( )( )

2
2 2 2 22 2

2

1
1 1 1 12 2

1

1
, exp i

4 i

1
, exp i o .

C
C C C CC

C

C
C C C C

C

z
U S K S

K z

z
U S K S

Klz

λ
λ λ λ λλ

λ

λ
λ λ λ λ

λ

τ ζζ ζ ζ ε ζ
π τ ζ ερ

τ ζζ ζ ζ ε ζ
τ ζ ερ

−
⎧ − −⎪ ⎡ ⎤Ψ = +⎨ ⎣ ⎦

− − −⎪⎩
⎫− − ⎪ ⎛ ⎞⎡ ⎤− + +⎬ ⎜ ⎟⎣ ⎦ ⎝ ⎠− − − ⎪⎭

 (64) 

Neglecting terms of order ( ) 1
Kl

−
 and higher, we readily get the following magnetic 

induction approximation 

( )
( )

( )( )( )
( )

( )( ) ( )( )

( )( )( )
( )

( )( ) ( )( )

0

2 2 20 2
2 2 22 2

2

1 1 1 1
1 1 12 2

1

,
exp i

4

,
exp i .

C
C

C C C C
C C C

C

C C C C
C C C

C

B

U S z
S K S

z

U S z
S K S

z

λ
λ

λ λ λ λ
λ λ λ

λ

λ λ λ λ
λ λ λ

λ

μ
ρ

ζ ζ τ ζμ ζ ε ζ ζ ε ζ
π ρ ρτ ζ ερ

ζ ζ τ ζ ζ ε ζ ζ ε ζ
ρ ρτ ζ ερ

−
− ∂Ψ
= −

∂

⎧ − − ⎡ ⎤∂ ∂⎪ ⎡ ⎤≅ − + +⎨ ⎢ ⎥ ⎣ ⎦∂ ∂− − − ⎣ ⎦⎪⎩
⎫− − ⎡ ⎤∂ ∂ ⎪⎡ ⎤+ + + ⎬⎢ ⎥ ⎣ ⎦∂ ∂− − − ⎣ ⎦ ⎪⎭

 (65) 

Finally, using the explicit representation of ( )1,2 CS λζ  and making the differentiation, 

Eq. (65) can be reduced to 

 ( ) ( ) ( ) ( ) ( )2 1C CCB B Bλ λλ ζ ζ− − −≅ −  (66) 

where 

( ) ( ) ( )( )
( )

( )( )0
2 2

1 2
, exp i .

4

def

B U S K S
z z

μ ρε ε
π τ ρ τ ερ

−
⎡ ⎤⎛ ⎞∂Φ⎢ ⎥Φ = Φ Φ − + ⎡Φ + Φ ⎤⎜ ⎟ ⎣ ⎦− −Φ ∂⎢ ⎥− −Φ −⎝ ⎠⎣ ⎦

 (67) 

Application of a similar procedure in the case of counterpropagation of the modulating 

wave ( M+ ), which harness a new integration variable ( )2 / z z rρ ′ ′− − , yield 

approximations for the wavefunction ( )
Cλ
+Ψ  and the magnetic induction ( )

CBλ
+

.  

Making routine calculations for each case, one can express the final result in the form 
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 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0,

0

,

Case bS, bL:

Case cS:

, , Case cL:

Case dS, dL:

otherwise: 0

bS L

TcS

cL l

TdS L l

B B B

B B B

B z B B B

B B B

β

β

ρ τ

± ± ±

± ± ±

± ± ±

± ± ±

⎧ = −
⎪
⎪ = −
⎪⎪= ⎨ = −
⎪
⎪ = −
⎪
⎪⎩

 (68) 

where all RHS terms are of the structure 

 ( ) ( ) ( )0 , 0, , , .
4

U
B R T l

r
α

α α α
α

μ χ α β
π

± ± ±= =  (69) 

The part depending on the source-current shape is represented by the factors Uα  and 1rα
− , 

which are the same for both modulation types: 

 

( )

( ) ( )

( ) ( )

( )

0 0
, ,

1 1
, ,

1 1

1 1
, ,

1 1

, ,

T T T T T

l l l

U U U r r

U U r r

U U r T r T

U U r l r l

β β

β β β β β

τ τ

β βτ τ
β β

β βτ τ
β β

τ τ

=
= = − −

⎛ ⎞− +
= − −⎜ ⎟⎜ ⎟+ −⎝ ⎠

⎛ ⎞− +
= − + − +⎜ ⎟⎜ ⎟+ −⎝ ⎠
= − − − +

 (70) 

 
( )

2 2
0

2 2

2 2

2 2

2 2

2 2

,

, , ,
1 1

, , ,
1 1

, .

T T T T

l l l

r r z

z z
r z z

z TT z
r z z

r z z z l

β β β β

ρ
τ β βττ ρ

β β
β ττ βτ ρ

β β

ρ

= = +
− −

= = + =
− −

− −− −
= = + =

− −

= + = −

 (71) 

The factor ( )Rα
±

 defines the characteristic angular structure of the emanated wave due to 

given parameters of the wave excitation , ,ph Tβ β  and l  

 ( )

( )
( )

sin
0,

1 cos

sin
, ,

1 cos

ph

ph

ph

ph ph

l

R

T

α

α

λ
α

α

β θ
α

β θ

β β θ
α β

β β β β θ

±

⎧
⎪ =
⎪ ±⎪= ⎨

±⎪
=⎪

± ± ±⎪⎩

 (72) 

where the angle αθ  is a part of spheric-coordinate representation of ,zαρ  via rα : 

 sin , cos .r z rα α α α αρ θ θ= =  (73) 
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The modulation factor ( )
αχ
±

, 

 

( ) ( )

( )

( )

( ) ( ) ( )

00

0
2

0 0
2

0

i
exp ,

i
exp 1 ,

1

i i
exp exp 1 ,

1

i
exp i exp ,

ph

T T
T

ph

ll

r
c

r

c

r
T

c c

kl r
c

β β
β

χ ω τ

τβχ ω
β β

β τχ ω ω
β β

χ ω τ

±

±

±

±

⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥⎜ ⎟= ±

⎜ ⎟⎜ ⎟⎢ ⎥ −⎝ ⎠⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤⎛ ⎞ −⎛ ⎞ ⎜ ⎟⎢ ⎥⎜ ⎟= ±⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ −⎝ ⎠⎣ ⎦⎝ ⎠

⎛ ⎞= ± −⎜ ⎟
⎝ ⎠

 (74) 

where 
0 ph phkv k cω β= =  is the source modulation frequency, characterize the local high-

frequency modulation, so the product ( )0

4

U
R

r
α

α
α

μ
π

±  may be treated as the wave envelope. 

5.2 Directionality of the emanated waves 

Inherent directionality of the waves produced by the current pulse with high-frequency 

filling in question is defined by the terms of the type 
sin

1 cos

ph

ph

α

α

β θ

β θ±
 in the case of ( )

0B
±

, ( )
lB
±

 

and those of the type ( )
( )

sin

1 cos

ph

ph ph

α

α

β β θ

β β β β θ

±

± ± ±
 in the case of ( )Bβ

±
, ( )

TB
±

. 

In the case of the luminal phase velocity, phv c= , 1phβ =  the factors ( )Rα
±

 get much simpler 

forms (Borisov et al., 2005) 

 ( ) ( )
1 1

sin sin
cot , tan ,

1 cos 2 1 cos 2ph ph

R Rα α α α
α α

β βα α

θ θ θ θ
θ θ

− +

= =
= = = =

− +
 (75) 

indicating that in the case of M−  modulation the electromagnetic wave is predominantly 

emanated along the direction of the source-current pulse propagation, 0αθ ≅ , while the 

case of M+  is characterized by the opposite wave directionality, αθ π≅ . That is, it is the 

direction of propagation of the modulating wave, rather than the carrier, that defines the 

angular localization of the emanated radiation. In spite of the apparent divergence of the 

terms due to the presence of the tangent/cotangent factors, their sums composing the 

magnetic induction remains finite everywhere except for the source domain. For example, in 

the case of /lr T r lτ β+ < < +  the radiation intensity for a short source-current pulse ( )
cSI
±

 in 

the far field is given by 

 

( )

( )

2

2 2 2
0

2

2 2 2
0

cot sin sin ,
2 1 2

tan sin cos ,
2 1 2

cS

cS

U
I I kT

r

U
I I kT

r

β β β

β

β β β

β

θ θβ
β

θ θβ
β

−

+

⎛ ⎞ ⎛ ⎞
≅ ⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠
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 (76) 
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while for a long pulse we have 

 

( )

( )

2
2 2 20 0 0

0

2
2 2 20 0 0

0

cot sin sin ,
2 2

tan sin cos ,
2 2

cL

cL

U
I I k l

r

U
I I k l

r

θ θ

θ θ

−

+

⎛ ⎞ ⎛ ⎞≅ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞≅ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (77) 

where ( ) 12
0 8 mI cπ ε

−
= , mε  is the permittivity of the medium. 

For subliminal and superluminal phase velocities, 1phβ ≠ , the angular factors of the field 

components ( )Rα
±

 have more complicated form (72); their dependence on phβ  and 0,lθ  is 

illustrated in Fig. 7. 

As seen from the figure, for subluminal phase velocity the tendency of ( )
0,lB
−

 to be directed at 

0, 0lθ =  and ( )
0,lB
+

 at 0,lθ π= , clearly manifested at 1phβ = , holds down to 0.7phβ ≈ . For 

superluminal phase velocities the angular factors demonstrate lateral (towards 0, / 2lθ π= ) 

shift of the propagation directionality, which is observed in the vicinity of the  singularity 

curves, 1
0, arccosl phθ β −=  for ( )

0, lR
−

 and 1
0, arccosl phθ π β −= −  for ( )

0, lR
+

. 

For analysis of more complicated factors ( )
,TRβ
±

 let us represent them in a two-parameter form 

 ( )
( )

( ),
,

,

1sin
, .

cos

def
phT

T
phT

R
β

β
β

β βθ
β βθ

± ±
±

±
= Θ =

±Θ ±
 (78) 

As functions of β  and phβ , the parameters ( )−Θ  and ( )+Θ  demonstrate different behaviour: 

( )−Θ  varies from −∞  to ∞  and has the area of singularity phβ β=  while the sign of ( )+Θ  is 

always positive and the area of singularity is limited to the point 0phβ β= = , see Fig. 8. 

Note that ( )
1

lim 1
β

±

→
Θ = ± , ( )lim

phβ
β±

→+∞
Θ = ± , and ( )

1
1

phβ

±

=
Θ = . The angular factors ( )

,TRβ
±

 are 

finally plotted as functions of ( )±Θ  and ,Tβθ  in Fig. 9. 

5.3 Frequency transform 

The modulation frequencies corresponding to the terms ( )
0, , ,T lB β
±

 composing the magnetic 

field strength are defined by the arguments of the modulation factors ( )
0, , ,T lβχ ±

. As 

( ) ( )00

i
exp r

c
χ ω τ± ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 and ( ) ( ) ( )0

i
exp i exp ll kl r

c
χ ω τ± ⎛ ⎞= ± −⎜ ⎟

⎝ ⎠
 always oscillate with the 

initial modulation frequency 0ω , the frequency transform is observed only in ( )
,TBβ
±

. The 

frequency transform range can be found considering wave propagation in the two limiting 

directions: parallel ( , 0Tβθ = ) and anti-parallel ( ,Tβθ π= ) to the direction of propagation of 

the source current. In the case , 0Tβθ =  one has , , , ,T T T Tr zβ β β βτ τ− = −  and, coming back to 

the initial frame of reference ,zτ , one can express the modulation factors as 
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Subluminal phase velocity, 1phβ <  

 

 
Superluminal phase velocity, 1phβ >  

Fig. 7. Dependence of the factors ( )
0, lR
±

 on the dimensionless modulation phase velocity phβ  

and the angular parameter 0,lθ . 

 

 

Fig. 8. Parameters ( )±Θ  plotted versus the dimensionless velocities phβ  and β . 
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Fig. 9. The angular factors ( )
,TRβ
±

 plotted as functions of ( )±Θ  and ,Tβθ . 

 ( ) ( )0 ,,

1 /i
exp , cos 1.

1

ph

TT const r
c

ββ

β β
χ ω τ θ

β
±

⎛ ⎞⎡ ⎤±
⎜ ⎟⎢ ⎥= × − =
⎜ ⎟⎢ ⎥−

⎣ ⎦⎝ ⎠
 (79) 

The other case ,Tβθ π= , corresponding to , , , ,T T T Tr zβ β β βτ τ− = + , results in 

 ( ) ( )0 ,,

1 /i
exp , cos 1.

1

ph

TT const r
c

ββ

β β
χ ω τ θ

β
±

⎛ ⎞⎡ ⎤±
⎜ ⎟⎢ ⎥= × − = −
⎜ ⎟⎢ ⎥+

⎣ ⎦⎝ ⎠
 (80) 

This shows that for different directions of wave propagation θ  the magnetic-induction 

components ( )
,TBβ
±

 are subjected to the modulation-frequency transform with respect to the 

initial modulation frequency of the source current ( ) ( )0 0 ,: Tβω ω ω θ±→ . The range of this 

transformation is defined by the inequality 

 ( ) ( ) ( ) ( ) ( ) ( )0 0, , ,

1 / 1 /
0 .

1 1

ph ph

T T Tβ β β

β β β β
ω ω π ω θ ω ω

β β
± ± ±± ±

= ≤ ≤ =
+ −

 (81) 

In the particular case of a nearly luminal or luminal phase velocity, 

 1 , 0 1,ph ph phβ ε ε= − ≤ <<  (82) 

inequality (81) takes the form 

 ( ) ( )0 0 0,

1
1

1 1 1
ph phTβ

β β βε ω ω θ ε ω ω
β β β

−⎛ ⎞ ⎛ ⎞−
− ≤ ≤ − ≤⎜ ⎟ ⎜ ⎟+ + −⎝ ⎠ ⎝ ⎠

 (83) 

for ( )
,Tβω
−

, describing a red shift at copropagation of the modulating wave, and the form 

 ( ) ( )0 0 0,

1
1 ,

1 1 1
ph phTβ

β β βω ω ε ω θ ω ε
β β β

+⎛ ⎞ ⎛ ⎞+
≤ + ≤ ≤ +⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠

 (84) 
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demonstrating a blue shift at counterpropagation of the modulating wave, phenomena 

described for the particular case of luminal phase velocity ( 0phε = ) by Borisov et al. 

(2005). 

5.4 Beats 

One more phenomenon discussed by Borisov et al. (2005) for the case of luminal phase 
velocity is the appearance of low-frequency modulated envelopes (beats) due to the 
excitation of two wave components modulated with slightly different frequencies. As seen 
from Eqs. (68), (69) and (74) this situation may occur in Cases bS, bL and dS, dL and results 

in frequency subtraction ( )
0 ,~ph Tββ ω ω ±Δ −  at mixing the wave components ( )

0B
±

 and ( )Bβ
±

 

(Cases bS, bL) or ( )
lB
±

 and ( )
TB
±

 (Cases dS, dL). Remarkably, for 1phβ <  one more type of 

beats can be observed in Cases bS, bL, cS, and dS, dL for ~phβ β  in a single component, 

( )Bβ
−

 or ( )
TB
−

, due to interference of the carrier and modulating waves propagating with 

nearly the same speed in the same direction: as seen from Eq. (74), ( ) ( ),lim 0
ph

Tββ β
ω θ−

→
= . 

6. Conclusion 

The theoretical basics of incomplete separation of variables in the wave equation discussed 

in this chapter can be applied for a wide range of problems involving scalar and 

electromagnetic wave generation, propagation and diffraction. The use of Riemann method 

and the ,z τ′ ′  plane diagrams provides rigorously substantiated and easy-to-follow 

procedures resulting in construction of analyzable signal solutions (Harmuth et al., 1999) of 

essentially nonsinusoidal nature. Concretization of the general solutions for source currents 

of particular shape often leads to analytical expressions. Practically important analytical 

solutions describing waves generated by a linear combination of exponentially decaying 

current pulses propagating in lossy media are constructed in (Utkin, 2008).  

Although the present discussion is constrained to the line sources, its extension to the more 
complicated source configurations is straightforward: for instance, the multipole expansion 
and introduction of the Debye potential result, in the spherical coordinate system, to the 
Euler–Poisson–Darboux equation of known Riemann function with respect to the transient 
spherical-harmonic expansion coefficients of the desired wavefunction (Borisov et al., 1996). 
Less complex solutions were obtained by Borisov and Simonenko for sources located on 
moving and expanding circles (Borisov & Simonenko, 1994, 1997, 2000). An example of 
application of the method in the case of superluminal source pulses can be found in 
(Borisov, 2001). 

The procedure of constructing the Riemann function ( ), ; , 'R z zτ τ′  to the equation 

 ( ) ( ) ( )
2 2

1 22 2
, 0p z p z

z
τ τ

τ

⎡ ⎤∂ ∂
− + + Ψ =⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 (85) 

on the basis of known Riemann functions ( )1,2 , ; , 'R z zτ τ′  for the reduced equations 
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 ( ) ( )
2 2

12 2
, 0p z z

z
τ

τ

⎡ ⎤∂ ∂
− + Ψ =⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 and ( ) ( )

2 2

22 2
, 0p z

z
τ τ

τ

⎡ ⎤∂ ∂
− + Ψ =⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 (86) 

via the integral formula 

 ( ) ( ) ( ) ( )1 1 2, ; , ' , ; , ' , ; ,0 , ;0, ' d
z z

R z z R z z R z z R
τ τ

τ τ τ τ ζ ζ τ τ ζ
ζ

′−

′−

∂′ ′ ′= +
∂∫  (87) 

proposed by Olevskii (1952) enables the applicability of the method of incomplete 
separation of variables to be extended to more complicated conditions. In particular, some 
processes of wave generation in dispersive media can be described via integral formulas 
(Borisov, 2002, 2003, 2008). 

More specific results obtained for the current pulses with high-frequency filling 

demonstrate how some non-stationary phenomena can be investigated even within the 

framework of the high-frequency asymptotic approach. Abandoning the immediate 

separation of the time variable, that is, the enforcement of the temporal dependence 

( )0exp i tω−  — a well grounded cornerstone of the physical theory of diffraction and stealth 

technology (Ufimtsev, 2007), but not at all a universal technique — results in direct 

spatiotemporal representation of the emanated electromagnetic pulses. Using this 

representation, one can analytically describe transformation of the frequency of the 

electromagnetic wave carrier with respect to the initial frequency of the source current 

modulation, which is manifested as the red or ultraviolet shift for the modulation factors 

M−  and M+  correspondingly. In certain space-time domains, the waves of two different 

frequencies, fundamental and shifted, are excited, which leads to low-frequency modulated 

envelopes (beats). One more type of beats can be observed in the case of M−  modulation 

when the modulating-wave velocity comes close to the source-current pulse propagation 

velocity. 

Spatiotemporal description of transients also gains increasing importance for localized wave 

generation, anti-stealth radar applications, electronic warfare and radio-frequency 

weaponization (Fowleret al., 1990). Formation of localized waves by source pulses with 

Gaussian transverse variation is discussed in (Borisov & Utkin, 1994). Having the space-time 

structure akin to Brittingham’s focus wave modes (Brittingham, 1993), such waves can be 

expressed via Lommel’s functions of two variables. 

The first steps towards creating the theory of diffraction and guided propagation of 

transient waves were made in monographs by Harmuth (1986), Harmuth et al. (1999) and 

Borisov (1987). The practical needs of the ultra-wideband technology are believed to give 

rise to further advances in this area. 
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