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1. Introduction 

Theoretical investigations of parametric interaction between the electrodynamics waves and 
space-time periodic filling of the waveguide of arbitrary cross section are reviewed. The 
cases of dielectric, anisotropic and magnetodielectric periodically modulated filling are 
considered. The analytical method of solution of the problems of electrodynamics of space-
time periodic mediums in a waveguide is given. The propagation of transverse-electric (TE) 
and transverse-magnetic (TM) waves in the waveguide mentioned above are investigated. 
Physical phenomena of electrodynamics of space-time periodic mediums in the region of 
“weak” and “strong” interactions between the travelling wave in the waveguide and the 
modulation wave are studied.  
Propagation of electromagnetic waves in the medium whose permittivity and permeability 
are modulated in space and time with help of pump waves of various nature 
(electromagnetic wave, ultrasonic wave, etc.) under the harmonic law, represents one of the 
basic problem of the electromagnetic theory. In the scientific literature the most part of such 
researches concerns to electrodynamics of periodically non-stationary and non-uniform 
mediums in the unlimited space [1-15], while the same problems in the limited modulated 
mediums, for example, in the waveguides of arbitrary cross section remain still 
insufficiently studied and there is no strict analytical theory of the propagation of 
electromagnetic waves in similar systems (although in the scientific literature already 
appeared the articles on the problems, mentioned above [16-25]. 
Meanwhile the investigation of the propagation of electromagnetic waves in the waveguides 
with space-time periodically modulated filling represents a great interest not only from 
point of view of development of theory but also from point of view of possibility of practice 
application of similar waveguides in the ultrahigh frequency electronics. For example, the 
waveguides with periodically non-stationary and non-uniform filling can be applied for 
designing of multifrequency distributing back-coupling lasers (DBS lasers), Bragg reflection 
lasers (DBR lasers), mode transformers, parametric amplifiers, multifrequency generators, 
transformers of low and higher frequency, Bragg resonators and filters, prismatic polarizer, 
diffraction lattices, oscillators, mode converters, wave-channeling devices with a fine 
periodic structure, etc [14], [26-30].  
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2. Electromagnetic waves in a waveguide with space-time periodic filling 

Let us consider the regular ideal waveguide of arbitrary cross section which axis coincides 

with the OZ axis of certain Cartesian frame. Let the permittivity and permeability of the 

filling of the waveguide with help of pump wave are modulated in space and time under 

the periodic law (Fig.1.1) [23, 25] 

 ( ) ( )0 0 0 01 cos ,  1 cosm k z ut m k z utε με ε μ μ ⎡ ⎤= ⎡ + − ⎤ = + −⎣ ⎦ ⎣ ⎦  (1.1) 

 

where mε  и mμ  are the modulation indexes, u  is the modulation wave velocity , 0k  is the 

modulation wave number, 0k u  is the modulation wave frequency, 0ε  и 0μ  are the 

permittivity and permeability of the filling in the absence of modulation. The signal wave 

with frequency 0ω   
 

 

Fig. 1.1. Geometry of cross section of a waveguide with harmonically modulated filling. 

propagates in a similar waveguide along their axis in the positive direction. Suppose that 

the signal wave doesn’t change the quantities of ε and μ . It is mean that we have the 

approximation of small signals. The field in similar waveguide represents the superposition 

of transverse-electric (TE) and transverse-magnetic (TM) waves, which in this consideration 

are described with help of longitudinal components of magnetic ( )zH  and electric  ( )zE  

vectors. These components satisfy to partial differential equations with variable coefficients 

which are obtained from the Maxwell equations taking into account that the charge density 

and the current density are equal to zero. These wave equations have a form [23-25], [31] 

TE field 

 
2

( ) ( )1 1
0z z

z

H H
H

z z t tc

μ μ
ε

μ⊥
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂

Δ + − =⎜ ⎟ ⎜ ⎟
∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

, (1.2) 
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TM field 

 
( ) ( )

2

1 1
0z z

z

E E
E

z z t tc

ε ε
μ

ε⊥
⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂

Δ + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
, (1.3) 

where 2 2 2 2x y⊥Δ = ∂ ∂ + ∂ ∂  is the two-dimensional Laplace operator, c  is the velocity of 

light in vacuum.  

The solution of wave equations (1.2) and (1.3) we look for the form of decomposition by 

orthonormal eigenfunctions of the second and first boundary-value problems for the cross 

section of the waveguide ( ) ( )( ), , ,n nx y x yψ ψ&
. These functions satisfy to the following 

Helmholtz equations with corresponding boundary conditions on the surface of the 

waveguide [23], [31]: 

second boundary-value problem 

 ( ) ( )2, , 0, 0n
n n nx y x y

n
λ⊥

Σ

∂Ψ
Δ Ψ + Ψ = =

∂

&&& &
f , (1.4) 

first boundary-value problem 

 ( )2( , ) ( , ) 0, , 0n n n nx y x y x yλ⊥ Σ
Δ Ψ + Ψ = Ψ = , (1.5) 

where nλ
&

 and nλ  are the eigenvalues of the second and first boundary-value problems for 

the transverse cross section of the waveguide, Σ  is the contour of the waveguide’s cross 

section, n
f

 is the normal to Σ . From Maxwell equations the transverse components of 

transverse-electric (TE) and transverse-magnetic (TM) fields can be represented in terms of 

 ( ) ( ) ( )
0

, , , , , ,z n n
n

H x y z t H z t x y
∞

=
= ⋅Ψ∑

&
( ) ( ) ( )

0

, , , , ,z n n
n

E x y z t E z t x y
∞

=
= ⋅Ψ∑  (1.6) 

as follows [23]: 
TE field 

 ( ) ( )
( ) ( ) ( )2

0

, ,1
, , , , ,

,

n
n n

n

z t H z t
H x y z t x y

z t z
τ

μ
λ

μ

∞
−

=

⎡ ⎤∂ ⎣ ⎦= ∇Ψ
∂∑

f & &
 (1.7) 

 ( ) ( ) ( ) ( )2
0

0

, ,1
, , , ,

n
n n

n

z t H z t
E x y z t z x y

c t
τ

μ
λ

∞
−

=

⎡ ⎤∂ ⎣ ⎦ ⎡ ⎤= ∇Ψ⎣ ⎦∂∑
f & &f , (1.8)      

TE field 

 ( ) ( ) ( ) ( )2
0

0

. ,1
, , , ,

n
n n

n

z t E z t
H x y z t z x y

c t
τ

ε
λ

∞
−

=

⎡ ⎤∂ ⎣ ⎦ ⎡ ⎤= − ∇Ψ⎣ ⎦∂∑
f f

, (1.9) 

 ( ) ( )
( ) ( ) ( )2

0

, ,1
, , , ,

,

n
n n

n

z t E z t
E x y z t x y

z t z
τ

ε
λ

ε

∞
−

=

⎡ ⎤∂ ⎣ ⎦= ∇Ψ
∂∑

f
, (1.10) 
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where ( ) ( )/ /i x j y∇ = ∂ ∂ + ∂ ∂
f f

 is the two-dimensional nabla operator. 

If into the wave equations (1.2) and (1.3) of variables z and t  to introduce the new 

quantities by the formulas 

 ,z z z zH H E Eμ ε= =# #  (1.11) 

and to pass to the new variables ξ  and η  according to the formulas [22] 

 ( ) ( )20

0 0

1
,

1

dz
z ut

u u

ξ ξ
ξ η

ε ξ μ ξ
β

ε μ

= − = −
−

∫ , (1.12) 

where  2 2 2
0 0u cβ ε μ= and when 0u →  then ,z tξ η→ → , and the solutions of received 

partial differential equations to look for the form [22] 

 ( ) ( )
0

,z nz n
n

i
H H x ye γη ξ

∞

=
= ⋅Ψ∑

&# # , ( ) ( )
0

,z nz n
n

i
E E x ye γη ξ

∞

=
= ⋅Ψ∑# # , (1.13)                          

taking into account the orthonormalization of the eigenfunctions  ( ),n x yψ&  and ( ),n x yψ  

then we receive for nzH#  and nzE#  the following ordinary differential equations with variable 

coefficients: 

 
2

2

20 0

0 0

1
1 0

1

n z n
n z

d Hd
H

d d

ε μ χμ β ε μξ μ ε μ ξ β
ε μ

⎡ ⎤⎛ ⎞
− + =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦ −

&#
# , (1.14) 

 

 
2

2

20 0

0 0

1
1 0

1

n z n
n z

d Ed
E

d d

ε μ χε β ε μξ ε ε μ ξ β
ε μ

⎡ ⎤⎛ ⎞
− + =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦ −

#
# , (1.15) 

where  

 
2

2 2 2
2

0 0

1n n
c

ε μγχ ε μ λ β
ε μ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

&&
, 

2
2 2 2

2
0 0

1n n
c

ε μγχ ε μ λ β
ε μ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
. (1.16) 

 

In this investigation we are limited of small quantities of modulation indexes of the 

waveguide filling. It is explained that in real experiment the modulation indexes are very 

small and they can change from 410− to 24 10−⋅ (the quantity 24 10−⋅  is fixed in the chrome 

gelatin). Note that if the velocity of modulation wave satisfies the condition   ph0,8u υ≤ ⋅ , 

where 0 0ph cυ ε μ=  is the phase velocity in the non-disturbance medium, then side by 

side of modulation indexes is small the parameter  ( ) 2m m bε μ β= +`  ( 21b β= − ) too, that 

is   1.l <<  
Then with help of changed of variables  
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( )2

0

20 0

0 0

1

2 1

k d
s

ξβ μ ξ
ε μμ β
ε μ

−
=

−
∫

&
, 

( )2
0

20 0

0 0

1

2 1

k d
s

ξβ ε ξ
ε με β
ε μ

−
=

−
∫  (1.17) 

and taking into account that permittivity and permeability of the filling change by the 

harmonic law (1.1) the above received differential equations (1.14) and (1.15) on variables ξ  

and η are transformed to the differential equations with periodic coefficients of Mathie-Hill 

type [32]. In the first approximation on small modulation indexes they have a form [23] 

 
( )

( )
2 1

2
2

1

0
n z i kSn

k n z
k

d H s
H s

ds
eθ

=−

+ =∑
&&# & &#& , (1.18)             

 
( )

( )
2 1

2
2

1

0
n z i kSn

k n z
k

d E s
E s

ds
eθ

=−
+ =∑

#
# , (1.19) 

where 

 ( )20 02 2
0

4n n

k b
θ χ=
& &

, ( )20 02 2
0

4n n

k b
θ χ= , (1.20) 

 ( ) ( )
2 2 2

1 0 02 2 2 2 2
0 0

2 4n n n m
k b u k b

μ
γθ χ χ±

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠

& & &` , (1.21) 

 ( ) ( )
2 2 2

1 0 02 2 2 2 2
0 0

2 4n n n m
k b u k b

ε
γθ χ χ±

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
` , (1.22) 

 ( )
22 2

0 0 02
n

n b
c

γχ ε μ λ= −
&&

, ( )
22 2

0 0 02
n

n b
c

γχ ε μ λ= − . (1.23) 

The solutions of the equations (1.18) and (1.19) we look for the form 

 ( )
1

2

1

ni s i k sn
n z k

k

H s Ce eμ

=−

= ⋅∑
& && &&# , ( )

1
2

1

ni s i k sn
n z k

k

E s Ce eμ

=−

= ⋅∑# . (1.24) 

Substituting these expressions into Mathie-Hill equations (1.18) and (1.19) for determination 

of characteristic indexes  nμ
&

 and  nμ   we receive the following dispersion equations: 

 
( )

( )
( )

( )

2 2

1 12
0 2 2

0 02 2

n n

n
n n n

n n

θ θ
μ θ

μ θ μ θ
= + +

− − − −

& &
&&

& && & , (1.25) 

 
( )

( )
( )

( )

2 2

1 12
0 2 2

0 02 2

n n

n
n n n

n n

θ θ
μ θ

μ θ μ θ
= + +

− − − −
. (1.26) 
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The analysis of these dispersion equations show that under the following conditions [33] 

 0 01 , 1n n
n nθ δ θ δ− ≥ ≈ − ≥ ≈

& &
` `  (1.27) 

we become to the region of weak interaction between the signal wave and the modulation 

wave where the characteristic indexes nμ
&

 and nμ  are real and then the Mathie-Hill 

equations have the stable solutions. With help of obtained solutions of dispersion equations 

 ( )22
0 0( ) ,n n

n nμ θ μ θ= =
&&

 (1.28) 

and the expressions for the coefficients 

 

( ) ( )
1 0 1 0

1 1

0 0

,
4 1 4 1

n n n n
n n

n n

C C
C C

θ θ

θ θ
± ±

⋅ ⋅
= =

± ±

&&&
& , (1.29) 

where 0
nC

&
 and 0

nC  are defined from the conditions of normalizing, we obtained the 

analytical expressions for the zH  and zE  of TE and TM fields in the waveguide in the 

region of weak interaction. They have a form [33] 

 ( ) ( ) ( )0 0 0

1

0
0 0 1

1
, ,

ni P z t i k k z utn n
z n k

n k

H x y C Ve eω

μ

∞ − −

= =−
= Ψ ⋅ ⋅∑ ∑

& & &&
 (1.30) 

 ( ) ( ) ( )0 0 0

1

0
0 0 1

1
, ,

ni P z t i k k z utn n
z n k

n k

E x y C Ve eω

ε

∞ − −

= =−
= Ψ ⋅ ⋅∑ ∑  (1.31) 

where  

 0

0

,
2 2

kn n
n k
k n

mC
V k

C

μ⎛ ⎞Δ
= ⋅ + −⎜ ⎟⎜ ⎟
⎝ ⎠

&&&
& 0

02 2

kn n
n k
k n

C m
V k

C
ε⎛ ⎞Δ

= ⋅ + −⎜ ⎟⎜ ⎟
⎝ ⎠

, (1.32) 

 0
0

02
n n m

k u
μ

μ ω
Δ = +

&&
` , 0

0
02

n n m
k u

ε
μ ω

Δ = + ` , (1.33) 

 ( ) ( )2 2
2

1 0 02 2 2 2
0 0

2 4n n n
n m

k b k b
μθ χ λ χ

β±
⎡ ⎤= + −⎢ ⎥⎣ ⎦

& && &` , (1.34) 

 ( ) ( )2 2
2

1 0 02 2 2 2
0 0

2 4n n n
n m

k b k b
εθ χ λ χ

β±
⎡ ⎤= + −⎢ ⎥⎣ ⎦

` , (1.35) 

 ( ) ( ) ( ) ( )2 2
2 20 02 2

0 0 0 0 0 02 2
,n n

n nP P
c c

ω ω
ε μ λ ε μ λ= − = −

& &
. (1.37)  

As is seen from the expressions (1.30) and (1.31) TE and TM fields in the waveguide with 
modulated filling are represented as the set of space-time harmonics with different 
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amplitudes. At that time the amplitude of the zero (fundamental) harmonic are independent 
of small modulation indexes, while the amplitudes of the plus and minus first harmonics 
(side harmonics) are proportional to the small modulation indexes in the first degree. 
At the realization the following condition [31], [33] 

 01 ,n
nθ δ− ≤

& &
 (1.38)  

where  

 
2 2

2
,

4 2
n

n
ε

ε
ε

η βδ
β

−
=

&&
`

2

2
0

4
1 ,n

n
k bε

λ
η = +

&
& 2

,
m

b
ε ε

ε
ε

β
=`  (1.39)  

 

( )

0

2
2

0 2 2
0 02

2 2 2
0

4

,

n

n

u
C

k u b

ε

ε
ε

ω
ε λ β ω

θ

⎛ ⎞
⎜ ⎟− −
⎜ ⎟
⎝ ⎠=

&

&
2

0 , 1
u

b
c

ε ε εβ ε β= = −  (1.40)                  

(here are shown the results for the TE field when 1μ = ) the strong (resonance) interaction 

between the signal wave and the modulation wave takes place, when occurs the 

considerable energy exchange between them. The analytical expression for the frequency of 

strong interaction is found in the form 

 0, 0 0 0, 0 ,s sω ω ω ω ω− Δ ≤ ≤ + Δ ( )0
0,

2
s n

uk
ε

ε
ω η β

β
= +&

 (1.41) 

and is shown that the width of strong interaction is small and proportional to the 
modulation index in the first degree [31], [33]  

 
( ) ( )2 2

0
0

1
.

8 2

n n

n

k u ε ε
ε

ε

η β η β
ω

ηβ

+ −
Δ =

& &
`&  (1.42) 

In the region of strong interaction the dispersion equation (1.25) has complex solutions in 
the following form 

 
( )2

2
1

, 1 ,
2

n
n

n i
ε

ε

θ δ
μ

−
= ±

& &
&

,1 2 2 .n
nεθ δ=

& &
 (1.43) 

(1.43) allow to receive the analytical expressions for the amplitudes of different harmonics in 
the form [31], [33] 

 
( )( )

, 1 ,1 2

3
1, .

16

n nn nV V ε ε
ε ε ε

ε

η β η β
β−

+ +
≈ ≈

& && &
`  (1.44) 

The analysis of these expressions shows that in the case of forward modulation, when the 
directions of propagation of the signal wave and the modulation wave coincide, the 
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amplitude of minus first harmonic doesn’t depend from the modulation index, while the 
amplitude of the plus first harmonic is proportional to the modulation index in the first 
degree. In other words in the region of strong interaction besides the fundamental harmonic 
the substantial role plays the minus first harmonic reflected from the periodic structure of 
the filling on the frequency 

 ( )0
1, 0, 0 ,

2
s s n

k u
k u ε

ε
ω ω η β

β− = − = −&
 n εη β>&

. (1.45) 

In the backward modulation case, when the directions of propagation of the signal wave 
and the modulation wave don’t coincide, the minus first and plus first harmonics change 
their roles. 
The results received above admit the visual physical explanation of the effect of strong 
interaction between the signal wave and the modulation wave. Below the physical 
explanation we show by example of TE field in the case of forward modulation. The zero 
harmonic in the modulated filling of the waveguide is incident on the density maxima of the 

filling at the angle ,0
n
εϕ
&

 and is reflected from them at the angle ,1
n
εϕ
&

 (Fig.2). These angles are 

defined from the following correlations [33] 

 
0

2
20

, 02
0 0

cos ,n
n

c

c
ε

ω
ϕ ε λ

ω ε
= −

&&
 

( )
0

1

0

2

, 2
,

1 cos 2
cos .

1 2 cos

n

n
n

ε ε ε
ε

ε ε ε

β ϕ β
ϕ

β β ϕ

+ −
=

+ −

&
&

&  (1.46) 

At that time the incident and reflection angles are different because of the moving of the 
modulation wave of the filling and the frequencies of incident and reflected waves satisfy to 
the following correlation [33] 

 
1 01 , 0 ,sin sin .n n

ε εω ϕ ω ϕ⋅ = ⋅& &
 (1.47) 

 

 

Fig. 2. The physical explanation of the effect of strong interaction. 
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If now we apply the first-order Wolf-Bragg condition, when the waves reflected from high-
density points of the interference pattern are amplified, we obtain the following equation 

 
( )
( )

00 0 ,

2
0

2 cos
1.

1

n

k c

ε ε

ε

ε ω ϕ β

β

⋅ −
=

−

&
 (1.48)    

It is not difficult to note, taking into account (1.46), that the solution of the equation (1.48) 
precisely coincides with the expression of the frequency of strong interaction (see (1.41)), 
received above.  

3. Propagation of electromagnetic waves in a waveguide with a periodically 
modulated anisotropic insert 

Consider a waveguide of arbitrary cross section with an anisotropic nonmagnetic 

( )1μ = modulated insert (modulated uniaxial crystal) the permittivity tensor of which has 

the form 

 

( )

1

1

2

( , ) 0 0

0 ( , ) 0 ,

0 0 ,

z t

z t

z t

ε
ε ε

ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

&  (2.1) 

where components 1( , )z tε    and 2( , )z tε  are modulated by the pumping wave in space and 

time according to the harmonic law 

0
1 1 1 0( , ) [1 cos ( )],z t m k z utε ε= + −  0

2 2 2 0( , ) [1 cos ( )].z t m k z utε ε= + −  (2.2) 

Here, 0
1ε  and 0

2ε  are the permittivities in the absence of a modulating wave; m, and m2 are 

the modulation indices; and k0 and и are, respectively, the wavenumber and velocity of the 

modulating wave. 
Consider the propagation of a signal electromagnetic wave at frequency 0ω  in this 

waveguide under the assumption that the modulation indices are small 

( )1 2 1 21, 1, .m m m m<< << ≈  Note that, when the condition   1 0.8β ≤  is satisfied, where   

0
1 1 /u cβ ε= , not only the modulation indices, but also parameter ( )2

1 1 1 1/ 1l m β β= −  are 

small ( )1 1 .l <<   

As in my earlier works (see, e.g., [23], [31], [34-37]), transverse electric (ТЕ) and transverse 

magnetic (TM) waves in the waveguide will be described through the longitudinal 

components of the magnetic ( zH ) and electric ( zE ) field. Then, bearing in mind that 

( ) ( ) ( )1 1 2, , , , ,x x y y z zD z t E D z t E D z t Eε ε ε= = =   and В = H and using the Maxwell equations, 

we obtain equations for  Hz(x, y, z, f) and E,(x, y, z, 0; namely, 

for the TE wave 

 
2

12 2

1
0z z

z

H H
H

t tz c
ε⊥

∂ ∂∂ ⎡ ⎤Δ + − =⎢ ⎥∂ ∂∂ ⎣ ⎦
, (2.3) 
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for the TM wave 

 
2

2
2 2 2

1

1
0z z

z

E E
E

z z c t

εε
ε⊥
⎛ ⎞∂ ∂∂

Δ + − =⎜ ⎟
∂ ∂ ∂⎝ ⎠

# ## , (2.4) 

where  ⊥Δ is the two-dimensional Laplacian and 2z zE Eε=# .  

It is easy to check in this case that the transverse components of the ТЕ and TM fields can be 
expressed in terms of (1.6) as: 

for TE wave 

 
( ) ( )2

0

,
, ,n

n n
n

H z t
H x y

z
τ λ

∞
−

=

∂
= ∇Ψ

∂∑
f & &

 (2.5) 

 
( ) ( )2

0
0

,1
,n

n n
n

H z t
E z x y

c t
τ λ

∞
−

=

∂
⎡ ⎤= ∇Ψ⎣ ⎦∂∑

f & &f
, (2.6) 

for TM wave 
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ε
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∞
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=
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, (2.7)  
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z
τ

ε
λ

ε

∞
−

=

∂ ⎡ ⎤⎣ ⎦= ∇Ψ
∂∑

f
. (2.8) 

Let us introduce the new variables 

 ,z utξ = −
( )2 0

1 1 10

1

1 /

z d

u u

ξ ξη
β ε ξ ε

= −
−∫  (2.9) 

into equations (2.3) and (2.4)  and seek for solutions to the above equations in the form 

 
( ) ( ) ( )0 0

0

,
ni P u

z nz n
n

H e H x y
ω η

ξ
∞ −

=

= Ψ∑
& &

, (2.10) 

 
( ) ( ) ( )0 0

0

,
ni P u

z nz n
n

E e E x y
ω η

ξ
∞ −

=

= Ψ∑# . (2.11) 

Taking into account that functions ( ),n x yψ&  and ( ),n x yψ  satisfy the Helmholtz equations 

(1.4) and (1.5), we get ordinary second-order differential equations in variable ξ  to find 

( )nzH ξ   and ( )nzE ξ , 

 
2

2 1
1 0

2 11
1 0

1

1 0
1

nz n
nz

dHd
H

d d

χεβ εξ ξε β
ε

⎡ ⎤⎛ ⎞
− + =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ −

&
, (2.12)         
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2

2 1
2 1 0

2 11 1
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1

1
1 0

1
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dEd
E

d d

χεε β εξ ε ξε β
ε

⎡ ⎤⎛ ⎞
− + =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ −

# # . (2.13) 

 

Here, 
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0 02 2 2 1
1 12 0

1

1

n
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c

ω εχ ε λ β
ε
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⎝ ⎠

&
&&

,
( )2

0 02 2 2 1
1 12 0

1

1

n

n n

up

c

ω εχ ε λ β
ε

− ⎛ ⎞
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⎝ ⎠
, (2.14) 
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0 12
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, ( )
20 0 22 0 202 1 1

0 1 10 0 2 2
2 1 2

n
np b

c

ωε ε β ε λ
ε ε β

−
= −

−
, 2

1 11b β= − , 
0
2

2

u

c

ε
β = . (2.15)  

In terms of the new variables  

 0 1

2 10 1 0
1

,
2 1

k b d
s

ξ ξ
εβ
ε

=
−

∫ , 0 1 1
0

2 11 0 1 0
1

2 1

k b d
s

ξ ε ξ
εε β
ε

=
−

∫  (2.16)  

Equations (2.12) and (2.13) take the form of the Mathieu-Hill equations 

 
2 2

2 2 2
0 1

4
0nz n
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d H
H

ds k b

χ
+ =

&
& , 

( )2
2 02

1

2 2 2
0 1 1 2

4
0

nnz
nz

d E
E

ds k b

χ ε

ε ε
+ =

# # . (2.17) 

Note that the frequency domain described by the conditions 

 1
01

2 2

n
n

n

θθ δ− >> ≅
&& &

, 1
01

2 2

n
n

n

θθ δ− >> ≅ , (2.18) 

 

where 

 

22
0 1

0 02 2
0 1

4n np
uk b

ω βθ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

& &
, 

22
0 1

0 02 2
0 1

4n np
uk b

ω βθ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

,  (2.19) 
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1 1 0 12 2 2
0 1

2

4

n

n n n
up k b

k b u

ω
θ θ θ−

⎡ ⎤−⎢ ⎥= = +⎢ ⎥
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&
& & &

` , 
0 2
1 0

1 1 2 12 2 0
0 1 2

2

2

n
n n n m m

k b

ε λ θθ θ
ε−= = − , (2.20) 

is the domain of weak interaction between the signal wave and the wave that modulates the 
insert. Solving (2.17) by the method developed in [23], [31], [34-37] and discarding the terms 
proportional to the modulation indices in the first  power, we obtain the following expressions 
for the ТЕ and TM field  in the frequency domain defined by formulas (2.18): [38] 
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for the TE wave 

 ( ) ( ) ( )0 0 0

1

0
0 1

,
ni P z t ikk z utn n

z n k
n k

H x y e c V e
ω∞ − −

= =−
= Ψ∑ ∑

& && &
, (2.21) 

where 
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1

0 02
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k n
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uk c

ω⎛ ⎞
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&&
` & , 

( )
1 0

1

0

,
4 1

n n
n

n

c
c

θ

θ
± =

±

& &&
&  (2.22) 

for the TM wave 

 ( ) ( ) ( )0 0 0

1

0
0 1

, ,
ni P z t ikk z utn n

z n k
n k

E x y e c V e
ω∞ − −

= =−
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where  

 ( )0
1 1 2

0 0

1

2 2
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n k
k n

c
V k m m

uk c

ω⎡ ⎤
= + − +⎢ ⎥
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` , 

( )
1 0

1

04 1

n n
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n

c
c

θ

θ
± =

±
. (2.24) 

Note that quantities 0
nc

&
 and 0

nc  in (2.21) and (2.23) are found from the normalization 

condition. As follows from (2.21) and (2.23), when an electromagnetic wave propagates in a 

waveguide with an insert harmonically modulated in space and time, the ТЕ and TM fields 

represent a superposition of space-time harmonics of different amplitudes. In the domain of 

weak interaction between the signal and modulation waves, the amplitudes of harmonics +1 

and -1 prove to be small (they are linearly related to the modulation indices) compared with 

the amplitude of the fundamental harmonic (which is independent of modulation indices).  

It is known [21] that, when 0
nθ

&
 and 0

nθ  tend to unity, i.e., when the conditions  

 01 ,n
nθ δ− ≤

& &
   01 n

nθ δ− ≤  (2.25)  

are satisfied, the signal wave and the wave that modulates the insert strongly interact (the 
first-order Bragg condition for waves reflected from a high-density area is met) and 
vigorously exchange energy.  
Condition (2.25) can be recast (for the TM field) as 

 0, 0 0 0, 0 ,s sω ω ω ω ω− Δ ≤ ≤ + Δ  (2.26) 

where 0,sω given by 

 ( )
2 0

2 20 1
0, 1 2 0

1 1 0 2

4
, 1 , ,

2
n

s n n n n

uk

b k

λ εω β η η λ λ
β ε

= + = + =  (2.27)    

 is the frequency near which the strong interaction takes place, and 
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 ( )0 1
0 1

1

1

8 2

n n

n

k u β η
ω θ

β η
+

Δ =  (2.28)   

 is the width of the domain of strong interaction. Calculations show that 

 1 ~ 1nV− , 1 1 2~ ,nV m m  (2.29) 

in frequency domain (2.26). From relationships (2.29), it follows that the amplitude of 
reflected harmonic -1 is independent of modulation indices in the domain where the signal 
wave and the wave that modulates the anisotropic insert strongly interact. In other words, 
not only the zeroth harmonic of the signal, but also reflected harmonic -1 of frequency 

 ( ) ( )0
1, 1 1

1

,
2

s n n

ukω η β η β
β− = − >  (2.30) 

plays a significant role in this domain. 

Note in conclusion that the results obtained here turn into those reported in [37] in the limit 

1 0m → ;  in the limit 0u → , one arrives at results for a waveguide with an inhomogeneous 

but stationary anisotropic insert. 

4. Interaction of electromagnetic waves with space-time periodic anisotropic 
magneto-dielectric filling of a waveguide 

Let the axis of a regular waveguide of an arbitrary cross section coincides with the OZ axis 
of a Certain Cartesian coordinate frame. Assume that the waveguide is filled with a 
periodically modulated anisotropic  magneto- dielectric filling  whose tensor permittivity 
and permeability are specified by the formulas  

 

( )

1

1

2

0 0

0 0

0 0 ,z t

ε
ε ε

ε

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

& , 

( )

1

1

2

0 0

0 0

0 0 ,z t

μ
μ μ

μ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

& . (3.1) 

In (3.1) 1 1,const constε μ= =  and the ( )2 ,z tε  and ( )2 ,z tμ  components are harmonic 

functions in space and time: 

 ( ) ( )0
2 2 0 0, 1 cosz t m k z k utεε ε ⎡ ⎤= + −⎣ ⎦ , (3.2) 

 ( ) ( )0
2 2 0 0, 1 cosz t m k z k utμμ μ ⎡ ⎤= + −⎣ ⎦ , (3.3) 

where   1mε <<  and  1mμ <<  are small modulation indexes,  0
2 constε =   and  0

2 constμ =  

are, respectively, the permittivity and permeability of the filling in the absence of a 

modulation wave. 

Let a signal wave unit amplitude with frequency 0ω  propagates in such a waveguide in a  

positive Direction of an axis OZ. After some algebra, the wave equations for the longitudinal 

components ( ), , ,zH x y z t and ( ), , ,zE x y z t of TE and TM fields can be obtained from Maxwell 

equations 
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D

curlH
t

∂
=
∂

ff
, ,

B
curlE

t

∂
= −

∂

ff
 0divD =

f
, 0divB =

f
, (3.4) 

 0D Eε ε=
f f&

, 0B Hμ μ=
f f&

, ( )9
0 1 / 4 9 10 /F mε π= ⋅ ⋅ , 7

0 4 10 /H mμ π −= ⋅  (3.5) 

with allowance for the equalities 

 0 1x xD Eε ε= , 0 1y yD Eε ε= , ( )0 2 ,z zD z t Eε ε= ,  (3.6) 

 0 1x xB Hμ μ= , 0 1y yB Hμ μ= , ( )0 2 ,z zB z t Hμ μ= . (3.7) 

We arrive at the following equations: 

for TE waves 
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2 2

2
0 0 1 22 2

1

,
,z z

z

z t H H
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μ
ε μ ε μ

μ⊥
∂ ∂
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# ## , (3.8) 

for the TM waves 
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ε
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ε⊥
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# ## , (3.9) 

where  

 ( )2 , ,z zH z t Hμ=#  ( )2 ,z zE z t Eε=# . (3.10) 

With the use of Maxwell equations (3.4) and (3.5), the transverse components of ТЕ and TM 
fields can be represented in terms of 
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0

, ,z n
n

H H z t x y
∞

=
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, ( ) ( )
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, ,z n
n

E E z t x y
∞

=

= Ψ∑  (3.11) 

as follows: 

for TE waves 
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=
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, (3.12) 

 
( ) ( ) ( )22

0 0
0

, ,
,

n
n n

n

z t H z t
E z x y

t
τ

μ
μ λ

∞
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=
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, (3.13) 

for TM waves 
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0 0
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, ,
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∞
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=
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=
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With the new variables 

 
2

1
,

1

z z ut
z ut

u u
ξ η

β
−

= − = −
−

 (3.16)  

where  2 2
0 0 1 1uβ ε μ ε μ= , wave equations (3.8) and (3.9) can be modified to obtain 
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∂ − ∂

# ## . (3.18)  

Let us seek solutions of equations (3.17) and (3.18) in the form (1.13). Then, taking into 

account (1.4) and (1.5), we obtain for ( )nzH ξ#  and ( )nzE ξ#  the following second-order 

ordinary differential equations with the periodic Mathieu-Hill coefficients: 

 
( )

( )( )
( ) ( )

2
0 0 1 2 2 21

2 22
2
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With the new variable 0 / 2kζ ξ=   equations (3.19) and (3.20) can be modified into the form  
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2 1

2
1

exp 2 0
n z n

k n z
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d H
ik H
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d E
ik E

d
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ζ =−
+ =∑

#
# , (3.22) 

where quantities n
kθ
&

and n
kθ are the coefficients of the Fourier decompositions of the 

expressions that appear before functions ( )nzH ζ#  and ( )nzE ζ#  entering equations (3.19) and 

(3.20). In the first approximation for small parameters mε  and mμ  these coefficients are 

expressed according to the formulas 

 ( )0 2 21
0 2 0 0 12 0 2

2 0

4n
n b

b k

μθ μ ε μ ε γ λ
μ
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& &

, 
2

1
1 0 2
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2n n m
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μ λθ
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, (3.23)  
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= − , 
2

1
1 0 2

2 0

2n n m
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ε
ε λθ
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We seek solutions to equations (3.21) and (3.22) in the form 

 ( )
1

2

1

ni n ik
n z k

k

H e C eμ ζ ζζ
=−

= ∑
& &# , ( )

1
2

1

ni n ik
nz k

k

E e C eμ ζ ζζ
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= ∑# . (3.25) 

It is known [33] that, under the conditions (1.27), which provide for weak interaction 

between the signal wave and the wave of the waveguide-filling modulation, quantities  

1, , n
n n Cμ μ ±

&&
 and 1

nC±   have the form (1.28) and (1.29)  (accurate to within small parameters 

mε  and mμ  inclusively). Taking into account (3.25), (1.28), (1.29) and changing to variables z 

and t, we obtain from (3.10) analytic expressions for zH  and zE  of ТЕ and TM waves. These 

expressions correspond to the first approximation for mε  and mμ , are valid in the region of 

weak interaction between the signal wave and the wave of the waveguide-filling 

modulation, and have the form [39] 
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where  
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Note, that for the frequency and frequency width of the strong interaction region (see [31], 
[33]) the following expressions can easily be obtained from (2.25): 

for TE waves 
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for TM waves 
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For the quantities 1V±

&
and 1V± in this case we obtain 

 1 1nV− ≅
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2 0 2

1 2 0
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μ λ μ
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 1 1nV− ≅ , 
2 0 2

1 2 0
1 0 2

2 0

2

4

n n b k
V m

b k
ε

ε λ ε
ε
−

≅ . (3.32)    

According to (3.31) and (3.32), in the strong- interaction region a substantial role is played 
not only by the fundamental harmonic but also by the reflected minus-first harmonic that 
exists at the frequency: 

for TE waves 

 ( )0
1

2
n

k u
ω η β

β− = −
&
# , nη β>

&
# , (3.33)  

for TM waves 

 ( )0
1

2
n

k uω η β
β− = −# , nη β># . (3.34) 

Note that, in limiting case 0u → the above obtained relationships yield results for the 

stationary inhomogeneous anisotropic magneto-dielectric filling of a waveguide. 

5. Refrences 

[1] Brillouin L., Parodi M. Rasprostranenie Voln v Periodicheskikh Strukturakh. Perevod s 
Frantsuskovo, M.: IL, 1959. 

[2] Born M., Volf E. Osnovi Optiki. Perevod s Angliyskovo, M.: Nauka, 1973. 
[3] Cassedy E. S., Oliner A. A. TIIER, 51, No 10, 1330 (1963). 
[4] Barsukov K. A., Bolotovskiy B. M. Izvestiya Vuzov. Seriya Radiofizika, 7, No 2, 291 

(1964). 
[5] Barsukov K. A., Bolotovskiy B. M. Izvestiya Vuzov. Seriya Radiofizika, 8, No 4, 760 

(1965). 
[6] Cassedy E. S. TIIER, 55, No 7, 37 (1967). 
[7] Peng S. T., Cassedy E. S. Proceedings of the Symposium on Modern Optics. Brooklyn, N. 

Y.: Politecnic Press, MRI-17, 299 (1967). 
[8] Barsukov K. A., Gevorkyan E. A., Zvonnikov N. A. Radiotekhnika i Elektronika, 20, No 

5, 908 (1975). 
[9] Tamir T., Wang H. C., Oliner A. A. IEEE, Transactions on Microwave Theory and 

Techniques, MTT-12, 324 (1964). 
[10] Averkov S. I., Boldin V. P. Izvestiya Vuzov. Seriya Radiofizika, 23, No 9, 1060 (1980). 
[11] Askne J. TIIER, 59, No 9, 244 (1968). 
[12] Rao. TIIER, 65, No 9, 244 (1968). 
[13] Yeh C., Cassey K. F., Kaprielian Z. A. IEEE, Transactions on Microwave Theory and 

Techniques, MTT-13, 297 (1965). 

www.intechopen.com



 Wave Propagation 

 

284 

[14] Elachi Ch. TIIER, 64, No 12, 22 (1976). 
[15] Karpov S. Yu., Stolyarov S. N. Uspekhi Fizicheskikh Nauk, 163, No 1, 63 (1993). 
[16] Elachi Ch., Yeh C. Journal of Applied Physics, 44, 3146 (1973). 
[17] Elachi Ch., Yeh C. Journal of Applied Physics, 45, 3494 (1974). 
[18] Peng S. T., Tamir T., Bertoni H. L. IEEE, Transactions on Microwave Theory and 

Techniques, MTT-23, 123 (1975). 
[19] Seshadri S. R. Applied Physics, 25, 211 (1981). 
[20] Krekhtunov V. M., Tyulin V. A. Radiotekhnika i Elektronika, 28, 209 (1983). 
[21] Simon J. C. IRE, Transactions on Microwave Theory and Techniques, MTT-8, No 1, 18 

(1960).  
[22] Barsukov K. A.,  Radiotekhnika i Elektronika, 9, No 7, 1173 (1964). 
[23] Gevorkyan E. A. Proceedings of International Symposium on Electromagnetic Theory, 

Thessaloniki, Greece, May 25-28, 1, 69 (1998). 
[24] Gevorkyan E. A. Mezhduvedomstvenniy Tematicheskiy Nauchniy Sbornik. Rasseyanie 

Elektromagnitnikh Voln. Taganrok, TRTU, No 12, 55 (2002). 
[25] Gevorkyan E. A. Book of Abstracts of the Fifth International Congress on Mathematical 

Modelling, Dubna, Russia, September 30 – October 6, 1, 199 (2002). 
[26] Gayduk V. I., Palatov K. I., Petrov D. M. Fizicheskie Osnovi Elektroniki SVCH, Moscow, 

Sovetskoe Radio (1971). 
[27] Yariv A. Kvantovaya Elektronika I Nelineynaya Optika. Perevod s Angliyskovo, M.: 

Sovetskoe Radio (1973). 
[28] Volnovodnaya Optoelektronika. Pod Redaktsiey T. Tamir. Perevod s Angliyskovo, M.: 

Mir (1974). 
[29] Markuze D. Opticheskie Volnovodi. Perevod s Angliyskovo, M.: Mir (1974). 
[30] Yariv A., Yukh P. Opticheskie Volni v Kristallakh. Perevod s Angliyskovo, M.: Mir 

(1987). 
[31] Barsukov K. A., Gevorkyan E. A. Radiotekhnika i Elektronika, 28, No 2, 237 (1983). 
[32] Mak-Lakhlan N. V. Teoriya i Prilozheniya Funktsiy Mathe. Perevod s zAngliyskovo, M.: 

Fizmatgiz (1963). 
[33] Gevorkyan E. A. Uspekhi Sovremennoy Radioelektroniki, No 1, 3 (2006). 
[34] Barsukov K. A., Gevorkyan E. A. Radiotekhnika i Elektronika, 31, 1733 (1986). 
[35] Barsukov K. A., Gevorkyan E. A. Radiotekhnika i Elektronika, 39, 1170 (1994). 
[36] Gevorkyan E. A. Proceedings of International Symposium on Electromagnetic Theory, 

Kiev, Ukraine, September 10-13, 2, 373 (2002). 
[37] Gevorkyan E. A. Proceedings of International Symposium on Electromagnetic Theory, 

Dnepropetrovsk, Ukraine, September 14-17, 370 (2004). 
[38] Gevorkyan E.A. Zhurnal Tekhnicheskoy Fiziki, 76, No 5, 134 (2006) (Technical Physics, 

51, 666 (2006)). 
[39] Gevorkyan E.A. Radiotekhnika i Elektronika, 53, No 5, 565 (2008) (Journal of 

Communications Technology and Electronics, 53, No 5, 535 (2008)). 

www.intechopen.com



Wave Propagation

Edited by Dr. Andrey Petrin

ISBN 978-953-307-275-3

Hard cover, 570 pages

Publisher InTech

Published online 16, March, 2011

Published in print edition March, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book collects original and innovative research studies of the experienced and actively working scientists in

the field of wave propagation which produced new methods in this area of research and obtained new and

important results. Every chapter of this book is the result of the authors achieved in the particular field of

research. The themes of the studies vary from investigation on modern applications such as metamaterials,

photonic crystals and nanofocusing of light to the traditional engineering applications of electrodynamics such

as antennas, waveguides and radar investigations.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eduard A. Gevorkyan (2011). On the Electrodinamics of Space-Time Periodic Mediums in a Waveguide of

Arbitrary Cross Section, Wave Propagation, Dr. Andrey Petrin (Ed.), ISBN: 978-953-307-275-3, InTech,

Available from: http://www.intechopen.com/books/wave-propagation/on-the-electrodinamics-of-space-time-

periodic-mediums-in-a-waveguide-of-arbitrary-cross-section



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


