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Nanofocusing of Surface Plasmons at the 
Apex of Metallic Tips and at the Sharp 

Metallic Wedges. Importance of 
Electric Field Singularity 

Andrey Petrin 
Joint Institute for High Temperatures of Russian Academy of Science 

Russia 

1. Introduction 

Nanofocusing of light is localization of electromagnetic energy in regions with dimensions 

that are significantly smaller than the wavelength of visible light (of the order of one 

nanometer). This is one of the central problems of modern near-field optical microscopy that 

takes the resolution of optical imaging beyond the Raleigh’s diffraction limit for common 

optical instruments [Zayats (2003), Pohl (1984), Novotny (1994), Bouhelier (2003), Keilmann 

(1999), Frey (2002), Stockman (2004), Kawata (2001), Naber (2002), Babadjanyan (2000), 

Nerkararyan (2006), Novotny (1995), Mehtani (2006), Anderson (2006)]. It is also important 

for the development of new optical sensors and delivery of strongly localized photons to 

tested molecules and atoms (for local spectroscopic measurements [Mehtani (2006), 

Anderson (2006), Kneipp (1997), Pettinger (2004), Ichimura (2004), Nie (1997), Hillenbrand 

(2002)]). Nanofocusing is also one of the major tools for efficient delivery of light energy  

into subwavelength waveguides, interconnectors, and nanooptical devices [Gramotnev 

(2005)]. 

There are two phenomena of exceptional importance which make it possible nanofocusing. 

The first is the phenomenon of propagation with small attenuation of electromagnetic 

energy of light along metal-vacuum or metal-dielectric boundaries. This propagation exists 

in the form of strictly localized electromagnetic wave which rapidly decreases in the 

directions perpendicular to the boundary. Remembering the quantum character of the 

surface wave they say about surface plasmons and surface plasmon polaritons (SPPs) as 

quasi-particles associated with the wave. The dispersion of the surface wave has the 

following important feature [Economou (1969), Barnes (2006)]: the wavelength tends to zero 

when the frequency of the SPPs tends to some critical (cut off) frequency above which the 

SPPs cannot propagate. For SPPs propagating along metal-vacuum plane boundary this 

critical frequency is equal to 2pω  (we use Drude model without absorption in metal). For 

spherical boundary this critical frequency [Bohren, Huffman (1983)] is equal to 3pω . So, 

the SPP critical frequency depends on the form of the boundary. By changing the frequency 

of SPPs it is possible to decrease the wavelength of the SPPs to the values substantially 
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smaller than the wavelength of visible light in vacuum and use the SPPs for trivial focusing 

by creation a converging wave [Bezus (2010)]. In this case there is no breaking the diffraction 

Raleigh’s limitation and the energy of the wave is focused into the region with dimensions 

of the order of wavelength of the SPPs. These dimensions may be substantially smaller than 

the wavelength of light in vacuum corresponding to the same frequency. As a result we 

have nanofocusing of light energy. The second phenomenon is electrostatic electric field 

strengthening at the apex of conducting tip (at the apex of geometrically ideal tip there is 

electrostatic field singularity, i.e. the electrostatic field tends to infinity at the apex). This 

phenomenon exists not only in electrostatics. For alternating electric field in the region with 

the apex of the tip at the center (with dimensions smaller than wavelength) the quasi-static 

approximation is applicable and there is a singularity of the time varying electric field (if the 

frequency is low enough as we will see below). Surely, at the apex of a real tip there is no 

singularity of electrostatic field since the apex is rounded. But near the apex the electric field 

increases in accordance with power (negative) law of the singularity and the electric field 

saturation at the apex is defined by the radius of the apex. This radius may be very small, of 

the order of atomic size. 
Nanofocusing of SPPs at the apex of metal tip is considered in [Stockman (2004), De Angelis 
(2010)]. SPPs are created symmetrically at the basement of the tip and this surface wave 
converges along the surface of the metal to the tip’s apex where surface wave energy is 
focused. But conditions for existence of electric field singularity are considered in [Stockman 
(2004), De Angelis (2010)] only for very sharp conical metal tips with small angle at the apex. 
In [Petrin (2010)] it is shown that due to frequency dependence of metal permittivity in optic 

frequency range the singularity of electric field at the tip’s of not very sharp apex may exist 

in different forms. 

The goal of the present chapter is investigation of the factors defined the type of 
singular concentration of electromagnetic energy at the geometrically singular metallic 
elements (such as apexes and edges) as one of the important condition for optimal 
nanofocusing. 
In the next  sections of this chapter we discuss the following: 
electric field singularities in the vicinity of metallic tip’s apex immersed into a uniform 

dielectric medium; 

electric field singularities in the vicinity of metallic tip’s apex touched a dielectric plate; 

electric field singularities in the vicinity of edge of metallic wedge. 

2. Nanofocusing of surface plasmons at the apex of metallic probe microtip. 
Conditions for electric field singularity at the apex of microtip immersed into 
a uniform dielectric medium. 

In this section of the chapter we focus our attention on finding the condition for electric field 

singularity of focused SPP electric field at the apex of a metal tip which is used as a probe in 

a uniform dielectric medium. As we have discussed above this singularity is an important 

feature of optimal SPP nanofocusing.  

2.1 Condition for electric field singularity at the apex 

Consider the cone surface of metal tip (see Fig. 1). 
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Fig. 1. Geometry of the problem. 

Let calculate the electric field distribution near the tip’s apex. In spherical coordinates with 

origin O at the apex and polar angle θ  (see Fig. 1), an axially symmetric potential Ψ  obeys 

Laplace’s equation (we are looking for singular solutions, so in the vicinity of the apex the 
quasistatic approximation for electric field is applicable) 

2 1
sin

sin
r θ 0

r r θ θ θ
∂ ∂Ψ ∂ ∂Ψ⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

. 

Representing the solution as ( )Ψ r fα θ= , where α  is a constant parameter, we have 

( )sin 1 sin
fθ f θ

θ θ
α α

∂∂ ⎛ ⎞ = − +⎜ ⎟∂ ∂⎝ ⎠
. 

Changing to the function g  defined by the relation ( ) ( )cosf gθ θ= , which entails 

sin
cos

df dgθ
dθ d θ

= − , 

we obtain Legendre’s differential equation 

( ) ( )
2

2
2

1 cos 2 cos 1 0
coscos

d g dg
g

dd
θ θ α α

θθ
− − + + = . 

It’s solution is the Legendre polynomial ( )cosPα θ  of degree α , which can be conveniently 

represented as 

( ) 1 cos
cos , 1 ,1 ,

2
P Fα

θθ α α −⎛ ⎞= − +⎜ ⎟
⎝ ⎠

, 

where F  is the hypergeometric function. This representation is equally valid whether α  is 

integer or not. 
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Let denote the permittivity of metal cone as mε  and the permittivity of external uniform 

dielectric medium as dε . The electric potentials outside and inside the cone can be 

represented, respectively, as ( )cosd Ar Pα
α θΨ =  and ( )cosm Br Pα

α θΨ = − , where A  and B  

are constant parameters. Since the functions ( )cosPα θ  and ( )cosPα θ−  are linearly 

independent [Angot (1962)], the field components outside and inside the cone are, 
respectively, 

( )1
, cosd

dE A r P
r

α
τ αα θ−∂Ψ
= − = −

∂
, 

( )1
,

1
sin cosd

d nE Ar P
r

α
αθ θ

θ
−∂Ψ ′= − =

∂
; 

and 

( )1
, cosm

mE B r P
r

α
τ αα θ−∂Ψ
= − = − −

∂
, 

( )1
,

1
sin cosm

m nE Br P
r

α
αθ θ

θ
−∂Ψ ′= − = − −

∂
. 

At θ π γ= − , the tangential and normal electric field components satisfy the boundary 

conditions 

, ,d mE Eτ τ= ,  , ,d d n m m nE Eε ε= , 

which yield the system of equations 

( )( ) ( )( )1 1cos cos 0A r P B r Pα α
α αα π γ α π γ− −− − − − = , 

( ) ( )( ) ( ) ( )( )1 1sin cos sin cos 0d mAr P Br Pα α
α αε π γ π γ ε π γ π γ− −′ ′− − + − − − = , 

where the primes denote derivatives with respect to the arguments. 
A nontrivial solution of the system exists when the determinant is equal to zero, 

 ( ) ( ) ( ) ( )( ) ( )1
cos cos cos cos 0m d

d d
P P P P

d d
α α α αε ε γ γ π γ γ

γ γ
− − − − = . (1) 

Numerical calculation of the functions in Eq.(1) may be carried out with the aid of the 
hypergeometric function. Taking into account the following identity [Olver (1974)] 

( ) ( ), , , 1, 1 , 1 ,F a b c z abF a b c z
z

∂
= + + +

∂
, 

we find 

( ) ( ) sin 1 cos
cos 1 1, 2 ,2 ,

2 2
P Fα

θ θθ α α α α
θ
∂ −⎛ ⎞= − + − + +⎜ ⎟∂ ⎝ ⎠

, 
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( ) ( ) sin 1 cos
cos 1 1, 2 ,2 ,

2 2
P Fα

θ θθ α α α α
θ
∂ +⎛ ⎞− = + − + +⎜ ⎟∂ ⎝ ⎠

. 

Therefore Eq.(1) may be rewritten as 

1 cos 1 cos
, 1,1, 1, 2 ,2 ,

2 2

1 cos 1 cos
, 1 ,1 , 1, 2 ,2 , 0.

2 2

m

d

F F

F F

γ γε α α α α

γ γε α α α α

+ −⎛ ⎞ ⎛ ⎞− + − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− +⎛ ⎞ ⎛ ⎞+ − + − + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

For a given γ  Eq.(1) implicitly defines the function ( )m dα α ε ε= . Let use Drude model 

without losses for permittivity of metal 2 21m pε ω ω= −  and consider that the metal tip 

surrounded with vacuum with permittivity 1dε = , then 2 21m d pε ε ω ω= − . In this case, 

( )pα α ω ω=  and remembering that d rαΨ ∼  we have 1
dE rα −∼ . So, the function 

( )pα α ω ω=  defines the character of electric field singularity at the apex. 

Note, that for given γ  and pω ω  Eq.(1) has many roots but not all of them give solution 

which have physical sense or solution with electric field singularity at the apex of the tip. 

Obviously that only roots with ( )Re 1α <  ( 1
dE rα −∼ ) will give singular solutions. So, we 

have interest only in these solutions. To find the lower boundary of the roots of interest it is 

necessary to remember that in the vicinity of a singular point the density of electric field 

power must be integrable value. It means that in the limit 0r →  the electric field must 

increase slower than 3 2r−  and, therefore, the density of electric field power must increase 

slower than 3r− . It gives us the lower boundary for the roots. I.e. the appropriate roots must 

satisfy the inequity  ( )Re 1 2α > − . 

Eq.(1) was solved numerically. As an example of such calculations Fig. 2 shows real and 

image values of all roots of Eq.(1) in the interval ( )1 2 Re 1α− ≤ <  as functions of pω ω  for 

15γ = ° , 1dε =  (solid curves). The dielectric constant of the metal was calculated by Drude 

formula without losses 2 21m pε ω ω= − . From Fig. 2 we may see that there is a critical 

frequency of SPP crω  which separates the pure real solution (for crω ω< ) from essentially 

complex solution (for crω ω> ). It follows that there are two essentially different types of the 

SPP nanofocusing. First type takes place when crω ω<  and is characterized by the electric 

field singularity without oscillations along radius in the vicinity of the apex. Second type 

takes place when 2cr pω ω ω< <  and is characterized by the electric field singularity with 

oscillations along radius and the wave number of these oscillations tends to infinity when 

0r → . Note, that in the second type of nanofocusing ( )Re 1 2α ≡ −  if there is no losses in 

metal. The integral of the total electric power in the vicinity of the apex diverges. But if we 

take into account the metal losses considering the Drude’s formula with losses 

2

2
1

p
m

i

ω
ε

ω ω
= −

+ Γ
, where pω  and Γ  are constants, 

then in the second type of nanofocusing the integral of the total electric power in the vicinity 

of the apex converges since ( )Re 1 2α > − . As an example of the metal with losses was made 

silver ( 161.36 10pω = × s-1 и 142 10Γ = ×  s-1 [Gay (2007)]). In Fig. 2 the curves for silver are 

shown by dotted lines. 
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Note, that here there is an essential difference of the quasistatic approach to the  

problem from the pure static one. In the static problem physical sense have electric 

potentials with ( )Re 0α >  since only under this condition the potential on the surface of 

conducting cone may be made constant. In the quasistatic problem the equipotentiality of 

the metallic cone is not a necessary condition since the metal of the cone is considered as a 

dielectric with frequency dependent permittivity. The dielectric surface is not obligatory 

equipotential. 
 
 

 
 

Fig. 2. Real (curve 1) and image (curve 2) parts of index α  as a function of normalized 

frequency pω ω  for of tip’s angle 15γ = °  (no losses in metal). Dotted lines (curve 3 and 4) 

show analogues dependences for silver (metal with losses).  

From the functions of Fig. 2, the normalized critical frequency crω  as a function of angle γ  

was found numerically (see Fig.3). This function may be found analytically. If we take in 

Eq.(1) 1 2α = −  и 2 21m d p crε ε ω ω= −  ( the characteristics of critical points) then 
 

1

21 cos 1 cos
1 2 ,1 2 ,1, 3 2 ,3 2 ,2 ,

2 2
1

1 cos 1 cos
1 2 ,1 2 ,1 , 3 2 ,3 2 ,2 ,

2 2

cr p

F F

F F

γ γ

ω ω
γ γ

−
⎡ ⎤− +⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥= +
+ −⎛ ⎞ ⎛ ⎞⎢ ⎥

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

 

In Fig. 3 the frequency 2pω  is shown. SPPs can not exist above this frequency on the 

plane boundary metal-vacuum. We may see that when 90γ → °  the critical frequency tends 

to  2pω . It is absolutely unexpectable that the utmost frequency of SPP existence arises in 

quasistatic formulation of the problem on electric field singularity finding. 

www.intechopen.com



Nanofocusing of Surface Plasmons at the Apex of Metallic Tips 
and at the Sharp Metallic Wedges. Importance of Electric Field Singularity   

 

199 

 

Fig. 3. Normalized critical frequency as a function of γ . 

2.2 Application of the theory to a silver tip. 

Consider a silver tip with plasma frequency [Fox (2003)]  161.36 10pω = × s-1. Based on the 

function of Fig.3 we may find the function ( )0cr crγ γ λ=  for silver by simple recalculating 

(see Fig. 4). The wavelength 0λ  is defined through the critical frequency crω  as 

0 cr2 cλ π ω= , where c  is the speed of light in vacuum The curve plotted in Fig. 4 separates 

the region with the first type of singularity (above the curve) and the region with the second 
type of singularity (below the curve). 
 

 

Fig. 4. Critical angle crγ  as a function of wavelength in vacuum of exciting laser. The curve 

starts from the lowest wavelength (in vacuum) of SPPs spectrum for silver: 

( ) 2 2 196sp p
cr

c nmλ π ω= ≈ . 

As an example of application of the obtained results we consider the experiment on local 

Raman’s microscopy [De Angelis (2010)]. A silver tip with angle 12γ ≈ °  in the vicinity of 
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the apex was used. The wavelength of laser used in the experiment was equal to 

0 532nmλ = . The excited SPPs propagated along the surface of the tip to the focus at the 

apex. But from the above results we may conclude that the angle is not optimal for the best 

focusing. Indeed, from Fig. 4 we may see that the critical angle for 0 532nmλ =  is 24.7crγ ≈ ° . 

So, there is electric field singularity of the second type near the apex of the tip with 12γ ≈ ° . 
So, it was obtained the fundamental result: the field singularity of alternative electric field 
at the apex of geometrically ideal metal cone tip exists in two form. First – with pure real 
index of singularity α , and second – with essentially complex index of singularity with 

constant real part ( )Re 1 2α = − . 

But it is remained the following unresolved problem yet. If the metal microtip is used as a 

SPP probe of the surface properties it is obvious that the value of the microtip’s angle 

depends on the dielectric constant of the surface which the microtip’s apex is touched and 

on the dielectric constant of the surrounding medium. It is clear that it is necessary to 

consider the influence of the probed surface on the electric field singularity at the microtip’s 

apex and therefore on nanofocusing. The next section of this chapter gives the answer to the 

following question: what happens with the considered phenomenon when the apex of metal 

cone touches a dielectric plane plate? 

3. Nanofocusing of surface plasmons at the apex of metallic microtip probe 
touching a dielectric plane. Conditions for electric field singularity at the 
apex of a microtip immersed into uniform dielectric medium and touched a 
probed dielectric plane. 

In experiments the apex of the microtip may touch the surface of a probed dielectric plane 

plate (see Fig. 5). In this connection the following question arises: how the dielectric constant 

of the plate affects the electric field singularity index at the apex? By another words, if the 

microtip used as a concentrator of SPPs for Raman’s spectroscopy of a dielectric surface [De 

Angelis (2010)] how the investigated material affects the electric field singularity at the apex 

and therefore the efficiency of SPPs focusing?  

3.1 Method of electric field singularity finding at the apex of metal microtip touching a 
dielectric plane 

Consider the cone metal microtip touching a dielectric plane plate (see Fig. 5). The space 

between the metal tip and dielectric plane is filled by a uniform dielectric. The dielectric 

constants of the metal, the dielectric plane and the filling uniform dielectric are equal to mε , 

pε  and dε  respectively. The frequency of SPP wave which is focused at the apex is equal to 

ω . As in the previous part, in the quasistatic formulation of the problem the electric field 

potential must obeys Laplace’s equation and normal and tangential components of electric 

field must obey the following boundary conditions: at the boundary of metal cone and free 

space , ,m dE Eτ τ= , , ,m m n d d nE Eε ε=  and at the boundary of free space and dielectric plate 

, ,d pE Eτ τ= , , ,d d n p p nE Eε ε= . 
Based on the general solutions of Laplace’s equation obtained in the previous part of this 

chapter, the electric potential in the considering three regions may be written as: 

in the metal tip ( )cosm Ar Pα
α θΨ = − ; 
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Fig. 5. Geometry of the problem. 

in dielectric plate ( )cosp Br Pα
α θΨ = ; 

in free space ( ) ( )cos cosd Cr P Dr Pα α
α αθ θΨ = + − . 

In these expressions we use the facts that for noninteger α  the function ( )cosPα θ  tends to 

infinity when θ π→  and ( )cosPα θ−  tends to infinity when 0θ → . 
Therefore, the field components in the considering three regions may be written by the 
following expressions:  
tangential components: 

( )1
, cosm

mE A r P
r

α
τ αα θ−∂Ψ
= − = − −

∂
, 

( )1
, cos

p
pE B r P

r
α

τ αα θ−∂Ψ
= − = −

∂
, 

( ) ( )1 1
, cos cosd

dE C r P D r P
r

α α
τ α αα θ α θ− −∂Ψ
= − = − − −

∂
; 

normal components: 

( )1
,

1
sin cosm

m nE Ar P
r

α
αθ θ

θ
−∂Ψ ′= − = − −

∂
, 

( )1
,

1
sin cos

p
p nE Br P

r
α

αθ θ
θ

−∂Ψ
′= − =

∂
, 

( ) ( )1 1
,

1
sin cos sin cosd

d nE Cr P Dr P
r

α α
α αθ θ θ θ

θ
− −∂Ψ ′ ′= − = − −

∂
, 

where we use the natural notations: 

( ) ( )
cos

cosP dP dα α μ θ
θ μ μ

=
′ =  and ( ) ( )

cos
cosP dP dα α μ θ

θ μ μ
=−

′ − = . 
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At the boundaries of the considering regions (at θ π γ= −  and 2θ π= ) the mentioned 

above boundary conditions for tangential and normal components of electric field must be 

satisfied. Substituting into the boundary conditions the expressions for the field components 

and taking into account that ( )cos cosπ γ γ− − =  we have the following four equations: 

( ) ( )( ) ( )cos cos cos 0P A P C P Dα α αγ π γ γ− − − = , 

( ) ( )( ) ( )cos cos cos 0m d dP A P C P Dα α αε γ ε π γ ε γ′ ′ ′+ − − = , 

0B C D− − = , 

0p d dB C Dε ε ε− + − = , 

where  ( )( ) ( ) ( )cos
cosP dP dα α μ π γ

π γ μ μ
= −

′ − = . 

A nontrivial solution of the system exists when the determinant is equal to zero, 

( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( )

cos 0 cos cos

cos 0 cos cos
0

0 1 1 1

0 1 1

m d

p d

P P P

P P P

α α α

α α α

γ π γ γ

ε ε γ π γ γ

ε ε

− − −

′ ′ ′− −
=

− −

− −

. 

By expansion the determinant we have 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ){ }
( ) ( )( ) ( ) ( ) ( )( ) ( ){ }
cos cos cos cos cos

cos cos cos cos cos 0.

m d p d

p d

P P P P P

P P P P P

α α α α α

α α α α α

ε ε γ π γ γ ε ε π γ γ

γ π γ γ ε ε π γ γ

⎡ ⎤′ − + + − − +⎣ ⎦

⎡ ⎤′ ′ ′ ′+ − − + − + =⎣ ⎦
 (2) 

Numerical calculations of the functions in (2) were carried out with the aid of the 
hypergeometric function. Taking into account the identity [Olver (1974)] 

( ) ( ), , , 1, 1 , 1 ,F a b c z abF a b c z
z

∂
= + + +

∂
, 

we find 

( ) ( ) ( )
cos

sin 1 cos
cos sin 1 1, 2 ,2 ,

2 2
P dP d Fα α μ θ

θ θθ θ μ μ α α α α
θ =

∂ −⎛ ⎞= − = − + − + +⎜ ⎟∂ ⎝ ⎠
, 

( ) ( ) ( )
cos

sin 1 cos
cos sin 1 1, 2 ,2 ,

2 2
P dP d Fα α μ θ

θ θθ θ μ μ α α α α
θ =−

∂ +⎛ ⎞− = = + − + +⎜ ⎟∂ ⎝ ⎠
, 

and therefore 

( ) ( )
cos

1 1 cos
1, 2 ,2 ,

2 2
dP d Fα μ θ

α α θμ μ α α
=

+ −⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

, 
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( ) ( )
cos

1 1 cos
1, 2 ,2 ,

2 2
dP d Fα μ θ

α α θμ μ α α
=−

+ +⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

. 

By substituting these expressions into (2) we have 

( )

( )

1 cos
1, 2 ,2 ,

2

1 cos 1 cos
1 , 1,1, 1 , 1,1 ,

2 2

1 cos
, 1,1 ,

2

1 cos
1 1, 2 ,2 , 1

2

m

d

p p

d d

p p

d d

F

F F

F

F F

ε γα α
ε

ε επ γ γα α α α
ε ε

γα α

ε επ γ
α α

ε ε

−⎛ ⎞− + + ×⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ − − ⎞ −⎪ ⎪⎛ ⎞+ − + + − − + +⎜ ⎟ ⎜ ⎟⎨ ⎜ ⎟ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭
−⎛ ⎞− + ×⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ − − ⎞
+ − + + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

1 cos
1, 2 ,2 , 0.

2

γα α
⎧ ⎫−⎪ ⎪⎛ ⎞+ + =⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

 

If the particular case when 1p dε ε =  is considered, this equation is transformed into 

( ) ( ) ( ) ( )cos cos cos cos 0d mP P P Pα α α αε γ γ ε γ γ′ ′− + − = . 

Since ( ) ( )1cos sin cos
d

P P
d

α αγ γ γ
γ

−′ = −  and ( ) ( )1cos sin cos
d

P P
d

α αγ γ γ
γ

−′ − = −  we may write 

 ( ) ( ) ( )( ) ( )cos cos cos cos 0d m

d d
P P P P

d d
α α α αε γ γ ε π γ γ

γ γ
− − − = . (3) 

Eq.(3) is identical to the corresponding Eq.(1) for the geometry without dielectric plate. In 

this case the cone tip with dielectric constant mε  is immersed into the uniform dielectric 

with constant  dε . This problem has been solved for example in [Petrin (2007)]. 

The minimal root α  of Eq.(2) (which corresponds to the physically correct solution) defines 

the character of electric field singularity in the vicinity of the cone apex. From Eq.(2) it 

follows that α  is a function of three independent variables: the angle γ  and the ratios of 

dielectric constants m dε ε  and p dε ε , i.e. ( ), ,m d p dα α γ ε ε ε ε= . As it was shown below 

( ), ,m d p dα α γ ε ε ε ε=  is a complex function even for real arguments (it is important). 

Let use again Drude’s model for permittivity of metal without absorption 2 21m pε ω ω= − , 

where pω  is the plasma frequency of the metal. Therefore, for fixed values of γ , dε  and pε , 

we may find the dependence ( )pα ω ω . Taking into account that d rαΨ ∼ , we have 
1

exE rα −∼ .  

Note, that for fixed values of γ , dε , pε  and pω ω  Eq.(1) has many roots iα  but not all of 

the roots have physical sense or represent the singular electric field at the cone apex. 

Obviously, that only roots smaller than unit ( 1
exE rα −∼ ) give the singular electric field. So, 

we will be interested by the solutions of Eq.(2) in the interval ( )Re 1α < . To define the lower 

boundary of the solution’s interval it is necessary to remind that in the vicinity of the apex 

the electric field density must be integrable. It means that the electric field and density must 

increase slower than 3 2r−  and 3r−  respectively when 0r → . So, the lower boundary of the 

roots interval is equal to 1 2  and the total roots interval of interest is ( )1 2 Re 1α− < < . 
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Eq.(2) was solved numerically. For  15γ = ° , 1dε =  and 1pε =  the results of calculations are 

the same as in Fig. 2 obtained from Eq.(1). The plots for other values of dielectric constant of 

the plate  pε  are analogous to the plot of Fig. 2. 

Using the same approach as in the case of Fig. 3 it were calculated numerically (see Fig. 6) 

the dependences of the critical frequency crω  (normalized on the plasma frequency of the 

metal) on the cone angle γ  for 1dε =  and several values of  pε . 

These dependences may be found analytically. The critical frequency crω  corresponds to the 

root value 1 2α = − . Substituting 1 2α = −  and 2 21m p crε ω ω= −  into Eq.(2) we find the 

following expression which is valid for any values of dε  and pε : 

1 cos
1 2 ,1 2 ,1 ,

2
1

1 cos
3 2 ,3 2 ,2 ,

2

1 cos 1 cos
1 3 2 ,3 2 ,2 , 1 3 2 ,3 2 ,2 ,

2 2

1 cos 1 cos
1 1 2 ,1 2 ,1 , 1 1 2 ,1 2 ,1 ,

2 2

d

cr

p p
p

d d

p p

d d

F

F

F F

F F
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ε
γ

ω
ε εγ γω
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Fig. 6. Normalized critical frequency cr pω ω  as a function of γ  for 1dε =  and several 

values of pε . Curve 1 for 1pε = , 2 – 1.5pε = , 3 – 2.25pε = . It is shown the asymptotic of the 

curve when 90γ → ° . 

It was found that when 90γ → °  (the metal cone turns into metal plane and the free space 

between the cone and the dielectric plate disappears) the curves of the critical frequencies 

tends to the value 1p pω ε+  – the utmost frequencies of SPP’s existence on the boundary 

metal-dielectric plate [Stern (1960)]. As in the previous part of the chapter we see that it is 
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absolutely unexpected that the utmost maximal frequency of SPP’s existence arises in the 
quastatic statement of the singularity existence problem. 

3.2 Application of the theory to a silver tip 

So, as in the section 2.2, we see that if the working frequency is fixed, then there are two 

different types of singularity. In this case there is a critical angle crγ  which separates the 

regime with the first type of singularity from the regime with the second type of singularity. 

For 1dε =  and several values of pε  the dependences ( )0cr crγ γ λ=  of the critical angle on the 

wavelength of light in vacuum of the focused SPPs with frequency ω  may be found from 

Fig. 6 by a recalculation as it was made (section 2.2) for microtip immersed into uniform 

medium. The plots ( )0cr crγ γ λ=  for silver, 1dε =  and for three values 1pε = , 1.5pε =  and 

2.25pε =  are shown in Fig. 7. Calculating the plots ( )0cr crγ γ λ=  we neglect by losses in 

silver. If the angle of the cone γ  is more than crγ , then the singularity at the apex is of the 

first type. If the angle γ  is smaller than crγ , then the singularity is of the second type. 
 

 

Fig. 7. Critical angle crγ  of silver cone as a function of wavelength in vacuum 0λ  of exciting 

laser for 1dε =  and several values of pε . Curve 1 for 1pε = , 2 – 1.5pε = , 3 – 2.25pε = . The 

left boundaries of the plots ( ) 2 1sp p p
cr

cλ π ε ω= +  are the limits of the spectrums of SPP on 

plane surface. 

If (as in section 2.2) the wavelength of the laser 0λ , the dielectric constant of the working 

medium dε  and the dielectric constant of the dielectric plate pε  are given, then the cone 

angle γ  at the apex of focusing SPPs microtip defines the type of singularity. From Fig. 7 it 

may be seen that the more pε  the more crγ  under the other things being equal. 

As in the previous section of the chapter, consider the setup of the work [De Angelis (2010)] 

on local Raman’s microscopy. The waveength of the laser excited the focused SPPs is equal 
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to 0 532λ =  nm. The SPPs travel along the surface of the microtip cone and focus on its apex. 

From Fig. 7 it may be seen that the critical angle for 1dε =  and 1pε =  is equal to 24.7crγ ≈ °  

(as in the previous section). If the dielectric constant pε  is equal to 1.5 or 2.25 then the 

critical angles are  26.7crγ ≈ °  and  28.9crγ ≈ ° , respectively. 

4. Nanofocusing of surface plasmons at the edge of metallic wedge. 
Conditions for electric field singularity existence at the edge immersed into a 
uniform dielectric medium. 

In this part of the chapter we focus our attention on finding the condition for electric field 
singularity of focused SPP electric field at the edge of a metal wedge immersed into a 
uniform dielectric medium. 
SPP nanofocusing at the apex of microtip (considered in the previous sections) corresponds 
(based on the analogy with conventional optics) to the focusing by spherical lens. Thus, SPP 
nanofocusing at the edge of microwedge corresponds to the focusing by cylindrical lens at 
the edge [Gramotnev (2007)]. The main advantage of the wedge SPP waveguide in 
nanoscale is the localization of plasmon wave energy in substantially smaller volume 
[Moreno (2008)] due to the electric field singularity at the edge of the microwedge. This 
advantage is fundamentally important for miniaturization of optical computing devices 
which have principally greater data processing rates in comparison with today state of the 
art electronic components [Ogawa (2008), Bozhevolnyi (2006)]. 
As it will be shown below the electric field singularity at the edge of the microwedge may be 
of two types due to frequency dependence of dielectric constant of metal in optical 
frequency range. This phenomenon is analogues to the same phenomenon for microtips 
which was considered in the previous parts of this chapter. The investigation of these types 
of electric field singularities at the edge of metal microwedge is the goal of this chapter 
section. 

4.1 Condition for electric field singularity at the edge of metallic wedge 

Let consider the metal microwedge (see Fig. 8) with dielectric constant of the metal mε . The 

frequency of the SPP is  ω . The wedge is immersed into a medium with dielectric costant  

dε . 
 

 

Fig. 8. Geometry of the wedge. 
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Let calculate the electric field distribution near the edge. In cylindrical system of coordinates 

with origin O and angle θ  (see Fig. 8), a symmetric quasistatic potential ϕ  obeys Laplace’s 

equation. The two independent solutions of the Laplace’s equation are the functions  

( )sinrα αθ  and  ( )cosrα αθ  [Landau, Lifshitz (1982)] where α  is a constant; θ  is the angle 

from the axis OX; r  is the radial coordinate from the origin O. Taking into account that the 

electric potential in the metal and dielectric depends on  r  as the same power  we may write 

the following expressions for potential in metal and dielectric respectively 

cos( )mS rαϕ αθ= , where  2 2ψ θ ψ− ≤ ≤ , 

( )cos( )dS rαϕ α θ π= − , where  ( )2 2 2ψ θ π ψ≤ ≤ − , 

where mS  and dS  are constants, ψ  is the total angle of the metallic wedge. 

The boundary conditions for tangential and normal components of electric field may be 
written as 

, ,m dE Eτ τ=  and  , ,m m n d d nE Eε ε= . 

Using the above expressions for electric potential in the two media the boundary conditions 
may be rewritten in the following form 

( )1
, cosm mE r S θ

r
α

τ
ϕ α α−∂

= − = −
∂

, 

( )( )1
, cosd dE r S

r
α

τ
ϕ α α θ π−∂

= − = − −
∂

, 

( )1
,

1
sinm n mE r S θ

r θ
αϕ α α−∂

= − =
∂

, 

( )( )1
,

1
sind n dE r S

r θ
αϕ α α θ π−∂

= − = −
∂

. 

At the first boundary of the wedge (where 2θ ψ= ) the boundary conditions give two 

equations 

( ) ( )( )1 1

2
cos cosm dr S θ r Sα α

θ ψ
α α α α θ π− −

=
− =− − , 

( ) ( )( )1 1

2
sin sinm m d d θ

r S θ r Sα α
ψ

ε α α ε α α θ π− −

=
= − , 

or 

( ) ( )( )cos 2 cos 2m dS Sαψ α ψ π= − , 

( ) ( )( )sin 2 sin 2m m d dS Sε αψ ε α ψ π= − . 
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Note, that at the second boundary of the wedge (where 2θ ψ= − ) the boundary conditions 

give absolutely identical equations due to symmetry of the problem. 
A nontrivial solution of the system exists when the determinant is equal to zero, 

 ( )( ) ( ) ( )( ) ( )cos 2 sin 2 sin 2 cos 2 0m dε α ψ π αψ ε α ψ π αψ− − − = . (4) 

From this equation it follows that the index of singularity α  is a function of two variables: 

angle ψ  and the ratio  m dε ε , i.e. ( )min , m dα α ψ ε ε= . 
Note, that in electrostatic field mε →∞  and, therefore, in the limit we have 

( )( ) ( )cos 2 sin 2 0α ψ π αψ− = . 

The minimal root of this equation will be when ( )( )cos 2 0α ψ π− =  (we are interested in 

the interval ψ π< ). Therefore, the minimal value of α  is defined by equation 

( )2 2α ψ π π− = −  or ( )2α π π ψ= −  (it is well-known result [Landau, Lifshitz (1982)]). 

When  0ψ → , we have  1 2α → . 

Using Drude’s model for permittivity of metal without absorption 2 21m pε ω ω= −  and 

considering that the wedge is immersed into vacuum ( 1dε = ) we have 2 21m d pε ε ω ω= − . 

Therefore, for fixed value of we may find the dependence ( )min pα α ω ω= . Taking into 

account that rαϕ ∼ , we have 1
exE rα −∼ . Note, that from the physical sense of the electric 

potential ϕ  it follows that allways ( )Re 0α ≥ . Therefore, the interval α  of singularity 

existence is  ( )0 Re 1α≤ < . 

Fig. 9 shows the dependences ( )min pα α ω ω=  obtained from Eq.(4) for the wedge angle 

30ψ = ° . We can see that as in the case of cone tip in the case of wedge there are two types of 

electric field singularity at the edge of metallic wedges. The first type of electric field 

singularity takes place when crω ω< . Here, the index α has a pure real value. The second type 

of electric field singularity takes place when crω ω>  and the index α has a pure image value. 
 

 

Fig. 9. Real (curve 1) and image (curve 2) part of the index α  as a function of normalized 

frequency pω ω  for the wedge angle 30ψ = ° . 
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Fig. 10 shows the plots of ( )Re α  and ( )Im α  as functions of pω ω  (the same functions 

depicted in Fig.9) in the vicinity of the critical frequency crω  without losses. For comparison 

in Fig. 10 the plots of ( )Re α  and ( )Im α  as functions of pω ω  for silver (the metal with 

losses) are shown.  
 

 
 

 
 
 

Fig. 10. The vicinity of the critical frequency crω . Real (curve 1) and image (curve 2) parts of 

the index α  as a function of normalized frequency pω ω  for the wedge angle 30ψ = °  and 

no losses in the metal. For comparison, the analogous curves 3 and 4 for silver wedge (metal 

with losses). 

From the dependences like of Fig. 9 it was numerically found crω  (normalized on the 

plasma frequency pω ) as a function of the wedge angle ψ  (see Fig. 11). The obtained 

function is excellently approximated by the elementary function  [ ]0.05255 deg.cr pω ω ψ≈ . 

This is not a coincidence. Indeed, the condition crω ω=  implies that  0α =  and therefore 

from Eq.(4) it follows 

( ) ( )( ) ( )
( )( ) ( )0

sin 2 cos 2 2
lim 1

cos 2 sin 2
m cr α

α ψ π αψ πε
ψα ψ π αψ→

−
= = −

−
. 

Thus, 2cr pω ω ψ π=  or [ ] [ ]deg. / 360 0.0527046 deg.cr pω ω ψ ψ= ≈  exactly (analytical 

solution)! We can see that the accuracy of the numerical results is substantially high. 

Fig. 11 also shows the frequency 2pω , above which SPP can not exist. Note, that when 

180ψ → °  (the wedge turns into a plane) the critical frequency tends to 2pω  – the utmost 

frequency of SPP existence on plane surface. Again it is absolutely unexpectable that the 

utmost frequency of SPP existence arises in the quasistatic problem of singularity existence. 
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Fig. 11. Normalized critical frequency of singularity existence cr pω ω  as a function of the 

wedge angle ψ . Solid line is the approximating function [ ]0.05255 deg.cr pω ω ψ≈ . 

4.2 Results of calculation for a silver microwegde 

From the results of the previous section 4.1 we see that the problem of finding of the SPP 

nanofocusing properties of microwedge is the following. On the one hand the wavelength of 

SPP must be possibly smaller. So, the SPP frequency must be close (but smaller) to the 

critical frequency of SPP existence 2pω . On the other hand it is necessary to use the effect 

of additional increasing of the SPP electric field at the edge of the microwedge due to 

electric field singularity at the edge. As we have seen the electric field singularity at the edge 

exists for any frequency of SPP, but there two different types of electric field singularity. The 

choice of the singularity depends on the particular technical problem (in this work this 

problems do not discuss).  

Consider the following problem. Let there is a microwedge on the edge of which SPPs with 

frequency ω  are focused (the wavelength in vacuum of a laser exciting the SPP is equal to 

0λ ). What is the value of wedge angle crψ  which separates regimes of nanofocusing with 

different types of singularities? 

Consider a microwedge made from silver (plasma frequency of silver is equal to 
161.36 10pω = ×  1s− [Fox (2003)] and no losses). Based on the dependences of Fig. 11 it is 

elementary to find the function ( )0cr crψ ψ λ=  for silver (see Fig. 12) which is the solution of 

the considering problem. Indeed, 

2cr pω ω ψ π=  ⇒ 02 2p crcπ λ ω ψ π=  ⇒ ( )3 2 2 2
08cr pcψ π ω λ=  

or for the angle in degrees 

[ ] ( )2 2 2 2
0deg. 1440cr pcψ π ω λ= . 

Thus, we have obtained for this problem the exact analytical solution 
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Fig. 12. Critical wedge angle crψ  as a function of the SPP wavelength in vacuum. The left 

limit of the graphic ( ) 2 2 195.5sp p
cr

c nmλ π ω= ≈  – the utmost point of SPP spectrum for 

silver. 

Thus, we may finish this section by the following fundamental statement: the field 

singularity of alternative electric field at the edge of geometrically ideal metal wedge exists 

in two forms. First – with pure real index of singularity α , and second – with essentially 

image index of singularity with constant real part ( )Re 0α = . This phenomenon is due to 

the strong frequency dependence of metal permittivity at the range of light frequencies. 

6. Conclusion 

It was obtained the fundamental result: the electric field singularity of alternative electric 
field of SPP wave at the apex of geometrically ideal metal conical tip or at the edge of 
geometrically ideal metal wedge may exist in two forms depending on the type of the index 
of singularity. For a given SPP frequency and surrounding media the type the singularity 
defines by the angle of the tip (or wedge). This remains true for the case when the apex of 
metal cone touches a dielectric plane plate. 
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