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Wave Propagation in Dielectric Medium  
Thin Film Medium 

                       E. I. Ugwu, Senior Lecturer 
   Department of Industrial Physics,  Ebonyi State University, Abakaliki,  

Nigeria                       

1. Introduction 

Various tools have been employed in studying and computing beam or field propagation in 

a medium with variation of small refractive index Feit and (Fleck,et al,1976)(Fleck,1978)( 

Ugwu et al,2007) some researchers had employed beam propagation method based on 

diagonalization of the Hermitian operator that generates the solution of the Helmholtz 

equation in media with real refractive indices (Thylen and Lee,1992), while some had used 

2x2 propagation matrix formalism for finding the obliquely propagated electromagnetic 

fields in layered inhomogeneous un-axial structure (Ong,1993) 

Recently, we have looked at the propagation of electromagnetic field through a conducting 

surface (Ugwu, 2005) and we observed the behaviour of such a material. The effect of 

variation of refractive index of FeS2 had also been carried out (Ugwu, 2005) 

The parameters of the film that were paramount in this work are dielectric constants and the 

thickness of the thin film. 

The dielectric constants were obtained from a computation using pseudo-dielectric function 

in conjunction with experimentally measured extinction co-efficient and the refractive 

indices of the film and the thickness of the film  which was assumed to range from 0.1μm to 

0.7μm [100nm to 700nm] based on the experimentally measured value, at the wavelength, 

450μm   (Cox, 1978)( Lee and Brook,1978)   

This work is based on a method that involves propagating an input field over a small 
distance through the thin film medium and then iterating the computation over and over 
through the propagation distance using Lippmann-Schwinger equation and its counterpart, 
Dyson’s equation (Economou, 1979) here, we first derived Lippmann-Schwinger equation 
using a specific Hamiltonian from where the field function Ǚk (z) was obtained. From this, it 
was observed that to ease out the solution of the Lippmann-Schwinger equation, it was 
discretized. After this, Born approximation was applied in order to obtain the solution. The 
formalism is logically built up step-by-step, which allowed point-to-point observation of the 
behaviour of the field propagating through the film inorder to analyze the influence of the 
field behavior as it propagates through small thin film thickness with consideration given to 
solid state properties such as dielectric function/refractive index, determine the absorption 
characteristics within the wavelength regions of electromagnetic wave spectrum and then to 
have  a view  of the influence of the dielectric function on the amplitude of the propagated 
field from the theoretical solution of the scalar wave equation considered within the ultra 
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violet, optical and near infrared. The advantage of this approach is clearly glaring as it 
provides a good picture of the field in a medium with variation of dielectric constant, 
refractive index  and above all, the method requires no resolution of a system of equations 
as it can accommodate multiple layers easily.  

2. Theoretical procedure 

This our method is to find a solution ψ(r) of the scalar wave equation  

 "2ψ(r)+ǚ2εoµoε(r)ψ(r) = 0 (1)  

for arbitrary complex dielectric medium permittivity εp(r) of homogeneous permeability µo  

starting with Halmitonian. In equation (1) we assume the usual time dependence, exp(-iǚt), 

for the electromagnetic field ψ(r). Such a scalar field describes, for instance, the transverse 
electric modes propagating in thin media deposited on glass slide using solution growth 
technique (Ugwu, 2005).    
 
 

εp (r)  
εref is reference medium 

εp(r) is perturbed medium. 

Fig. 1. Geometry used in the model. The dielectric medium for which we see a solution of 

the wave equation can be split into two parts; reference homogeneous medium, εref , and a 

perturbed medium where the film is deposited εp(r) 

The assumption made here regarding the dielectric medium is that it is split into two parts; 

a homogenous reference medium of dielectric constant εref and a perturbation εp(r) confined 
to the reference medium. Hence, the dielectric function of the system can be written as 

 εp(r)=εref+!εp(r)  (2)   

Where Δεp(r) = εp(r) - εref.  The assumption here can be fulfilled easily where both reference 

medium and the perturbation depend on the problem we are investigating. For example, if 

one is studying an optical fiber in vacuum, the reference medium is the vacuum and the 

perturbation describes the fiber. For a ridge wedge, wave guide the reference medium is the 

substrate and the perturbation is the ridge, In our own case in this work, the reference 

medium is air and the perturbing medium is thin film deposited on glass slide. Lippman-

Schwinger equation is associated with the Hamiltonian H which goes with H0 + V  

Where H0 is the Hamiltonian before the field penetrates the thin field and V is the 
interaction. 

 0 k k kH EΦ 〉 = Φ 〉  (3)   

The eigenstate of H0 + V is the solution of  

 εref 
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 0( ) ( ) | ( )k k kE H z V z− Ψ 〉 = Ψ 〉  (4a) 

Here, z is the propagation distance as defined in the problem     

 
0

1
| ( ) | ( )k k k

k n

z V z
E H

Ψ 〉 = Φ + Ψ 〉
−

 (4b) 

Where η is the boundary condition placed on the Green’s function (Ek-H0)-1. Since energy is 
conserved, the propagation field component of the solutions will have energy En with the 
boundary conditions that only handle the singularity when the eigenvalue of H0 is equal to 
Ek. Thus we write; 

  
0

1
| ( ) | ( )f

k n k
k n

z V z
E H iη

Ψ 〉 = Φ + Ψ 〉
− +

 (5) 

as the Lippman-Schwinger equation without singularity; where ŋ is a positively 

infinitesimal, ( )f
k zΨ 〉  is the propagating field in the film while ( )f

k zΨ is the reflected. With 

the above equation (4) and (5) one can calculate the matrix elements with ( )z  and insert a 

complete set of z and kΦ  states as shown in equation (6). 

 ( )
( )

! !

3 !
3 ! ! ! !

3

1
| | | | | | |

2
k k zk k

k

d k
z z z d z z J z z

E H in
ψ ψ

π
〈 = 〈 Φ 〉 + ∫ 〈 Φ 〉〈Φ 〉〈

− +∫  (6) 

 

'( )3 '
3 ' '

3
( ) ( ) ( )

(2 )

fk z z
fk

k k
k k

d k e
z e d z V z z

E E iηπ

− −

Ψ 〉 = + ∫ Ψ
− +∫       (7) 

 
( !)3 !

3
( )

(2 )

fk z z

k k

d k e
G z

E E iηπ

− −

= ∫
− +

  (8)  

is the Green’s Function for the problem, which is simplified as:  

 
!

!
2 2 !2 2

sin
( )

2 ( )

m k z
G z dk

h z K k iπ η

∞

−∞

= ∫
− +∫  (9) 

When ŋ ≈0 is substituted in equation (9) we have 

 

!( )
3 ! ! !

2 2 !
( ) ( ) ( )

2

ik z z
ikz

k k

m e
z e d z V z z

h z zπ

∞ −

−∞

Ψ = − Ψ
−∫  (10) 

The perturbated term of the propagated field due to the inhomogeneous nature of the film 
occasioned by the solid-state properties of the film is: 

  
( ')

3 '
2 2

( ) ( ') ( ')
'2

fk z z

k k

m e
z d z V z z

z zhπ

+∞ −

−∞

Ψ = − Ψ
−∫   (11a) 
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 '2

1 2
( )

4
k k k

z
hπ

Ψ = − Δ  (11b) 

Where ,kk
Δ  is determined by variation of thickness of the thin film medium and the 

variation of the refractive index (Ugwu,et al 2007) at various boundary of propagation 
distance. As the field passes through the layers of the propagation distance, reflection and 
absorption of the field occurs thereby leading to the attenuation of the propagating field on 
the film medium. Blatt, 1968 

3. Iterative application 

Lippman-Schwinger equation can be written as  

     ! ! !( ) ( ) ( )o o
k k pz dz G z zεΨ = Ψ + Δ Ψ∫  (12) 

Where Go(z,z’) is associated with the homogeneous reference system, (Yaghjian1980) 
(Hanson,1996)( Gao et al,2006)( Gao and Kong1983)   
The function  

 2( ) ( )o pV z k zε= − Δ   (13) 

define the perturbation 
Where 

 
2

2
2o o o

c
k ε μ

λ
=   (14) 

The integration domain of equation (12) is limited to the perturbation. Thus we observe that 
equation (12) is implicit in nature for all points located inside the perturbation. Once the 
field inside the perturbation is computed, it can be generated explicitly for any point of the 
reference medium. This can be done by defining a grid over the propagation distance of the 

film that is the thickness. We assume that the discretized system contains  ,kk
Δ  defined  

by T/N. 
Where T is thickness and N is integer 
(N= 1, 2, 3, N - 1). The discretized form of equation (12) leads to large system of linear 
equation for the field; 

 ,
1

o o
i i i k k k k

k

G V
Δ

=
Ψ = Ψ + Δ Ψ∑  (15)   

 ,
1

o o
i i i k k k i

k

G V
Δ

=
Ψ = Ψ + Δ Ψ∑  (16) 

However, the direct numerical resolution of equation (15) is time consuming and difficult 

due to singular behaviour of ,
o
i kG . As a result, we use iterative scheme of Dyson’s equation, 

which is the counter part of Lippman-Schwinger equation to obtain ,
o
i kG . Equation 10 is 

easily solved by using Born approximation, which consists of taking the incident field in 
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place of the total field as the driving field at each point of the propagation distance. With 

this, the propagated field through the film thickness was computed and analyzed. 

 (z)= ( ) ( . )t
o z e z tλ ωΨ Ψ −  (17) 

From equation (1),  

Let 2 2 2 ( )O O ref O O ref pi zλ μ ε ω ε μ ε ω ε ε= + Δ   

 
1/22 1/2| ( ) [ ]ref p O Oi zλ ε ε ω μ ε⎡ ⎤= + Δ⎣ ⎦

 (18) 

                     1/2 1/21
[ ( )] ( )ref p O O o Ok z

o
ε ε μ ε μ ε⎡ ⎤= + Δ =⎢ ⎥⎣ ⎦

 

                                                      
1/2

( )ref pk zε ε⎡ ⎤= + Δ⎣ ⎦
                                                    (19)  

Expanding the expression up to 2 terms, we have 

                                                      1

2
ref pk iε ε⎡ ⎤= + Δ⎢ ⎥⎣ ⎦

 (20) 

Where pεΔ  gives rise to exponential damping for all frequencies of field radiation of which 

its damping effect will be analyzed for various radiation wavelength ranging from optical to 

near infra-red  
The relative amplitude  

 ( )
exp ( )  exp[ ]

( ) 2
p ref

o

z K
z z ik t

z

ψ ε ε ω
ψ

⎛ ⎞= − Δ −⎜ ⎟
⎝ ⎠

 (21) 

Decomposing equation (3.18) into real and complex parts, we have the following  

 

( )
exp ( )  cos

2( )
p refo

z K
z z k t

z

ψ ε ε ω
ψ

⎛ ⎞= − Δ −⎜ ⎟
⎝ ⎠

 

(22) 

 

( )
exp ( )  sin

2( )
p refo

z K
z z k t

z

ψ ε ε ω
ψ

⎛ ⎞= − Δ −⎜ ⎟
⎝ ⎠

 (23) 

Considering a generalised solution of the wave equation with a damping factor 

 ψ(r) = ψo(r) exp- β exp-i(αz – ǚt) (24) 

                            [Smith et al, 1982]. 

in which kref is the wave number β  is the barrier whose values describe our model. With 

this, we obtain the expression for a plane wave propagating normally on the surface of the 

material in the direction of z inside the dielectric film material. Where - β
 
describes the 

barrier as considered in our model. 
When a plane wave ψo(z) = exp (ί kref z) with a wave number corresponding to the reference 
medium impinges upon the barrier, one part is transmitted, the other is reflected or in some 
cases absorbed (Martin et al 1994). This is easily obtained with our method as can be 
illustrated in Fig 2 present the relative amplitude of the computed field accordingly. 
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Three different cases are investigated: 

a. When the thin film medium is non absorbing, in this case Δεp(z) is considered to be 
relatively very small. 

b. When the film medium has a limited absorption, Δεp(z) is assumed to have a value 
slightly greater than that of (a) 

c. When the absorption is very strong, Δεp(z) has high value. In this first consideration,  

λeff = 0.4μm, 0.70μm, 0.80μm and 0.90μm while z =0.5μm as a propagation distance in 
each case. In each case, the attenuation of the wave as a function of the absorption in the 
barrier is clearly visible in graphs as would be shown in the result. 

 

 

Fig. 2. Geometrical configuration of the model on which a wave propagates. The description 
is the same as in fig 1 

4. Beam propagated on a mesh of the thin film 

We consider the propagation of a high frequency beam through an inhomogeneous 
medium; the beam propagation method will be derived for a scalar field. This restricts the 
theory to cases in which the variation in refractive index is small or in which a scalar wave 
equation can be derived for the transverse electric, (T.E) or transverse magnetic, (T.M) 
modes separately. We start with the wave equation (Martin et al, 1994; Ugwu et al, 2007): 

 "2ψ + K2n2 (z) ψ = 0 (26a) 

where ψ represents the scalar field, n(z) the refractive index and K the wave number in 
vacuum. In equation 26a, the refractive index n2 is split into an unperturbed part no2 and a 
perturbed part Δn2; this expression is given as  

 n2z(=) no2 + !n2(z) (26b) 

Thus   

 "2Ǚ + k2no2 (z) =ρ(z) (27) 

x x

x

x

x

x

x

x

Mesh

ψ (z)
    k1 
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where ρ (z) is considered the source function. The refractive index is n 2o +!n2 (z) and the 

refractive index 2
on (z) is chosen in such a way that the wave equation 

 "2Ǚ+k2 2
on  (z) Ǚ = 0 (29)  

together with the radiation at infinity, can be solved. If a solution Ǚ for z = zo the field Ǚ and 

its derivative 
z

∂
∂
Ψ

 can be calculated for all values of z by means of an operator â; 

           
z

∂
∂
Ψ

 = â Ǚ (x, y, zo) (30) 

where the operator â  acts with respect to the transverse co-ordinate (x, y) only (VanRoey et 
al 1981) 
We considered a beam propagating toward increasing z and assuming no paraxiality, for a 
given co-coordinate z, we split the field Ǚ into a part Ǚ1 generated by the sources in the 
region where z1 < z and a part of Ǚ2 that is due to sources with z1> z;  

 Ψ = Ǚ1 + Ǚ2  (31)  

An explicit expression for Ǚ1 and Ǚ2 can be obtained by using the function (Van Roey et al, 
1981).   

 ( )
1

1 1 1

1

/ 1 / 2

1

o forz z

e z z forz z

forz z

⎧ <
⎪

= =⎨
⎪ >⎩

 (32) 

If G is the Green’s function of equation 26a ψ1 can be formally expressed as follows: 

 1 ( )z
∞

∞
= ∫ ∫ ∫

+

-
ψ    G(z, z1) e 1(z, z1) ρ(z1) d z1 (33) 

that leads to  

1

z

∂
∂
Ψ

= 
∞

∞∫ ∫ ∫
+

-
  

G

z

∂
∂

(z, z1) ρ (z1) d3 z1 

 +
∞

∞∫ ∫ ∫
+

-
G (z, z1)δ (z – z1) ρ (z1) d3 z1 (34) 

The first integral represents the propagation in the unperturbed medium, which can be 
written in terms of the operator â defined in equation 34 as  

 
( )z

z

ψ∂
∂

  = â ψ1  (35) 

and ψ1 being generated by sources situated to the left of z. 

The second part of the integral is written with assignment of an operator Ъ  acting on ψ 
with respect to the transverse coordinate (x, y) only. Such that we have 
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 1 2
ˆâ b

z

∂Ψ
= Ψ + Ψ

∂
  (36) 

(Now neglecting the influence of the reflected field ψ2 on ψ1) we use ψ1 instead of ψ2 and 
equation 36 becomes 

 
z

∂
∂

1
ψ

  = âψ1 + Ъ Ψ  (37) 

Equation 37 is an important approximation and restricts the use of the B.P.M to the analysis 
of structures for which the influence of the reflected fields on the forward propagation field 

can be neglected in equation (36) ψ1 describes the propagation in an unperturbed medium 

and a correction term representing the influence of Δn. Since equation (30) is a first order 

differential equation, it is important as it allows us to compute the field ψ1 for z > zo starting 
from the input beam on a plane of our model z = zo. Simplifying the correction term (Van 

Roey et al, 1981), we have Ъ   

 2

2 o

ik
n

n
= −

1 1
ЪΨ Δ Ψ   (38) 

Equation 3.18 becomes 

 
21

1 1
2 o

ik
a n

z n

ψ ψ ψ∂
= = Δ

∂
  (39) 

The solution of this equation gives the propagation formalism that allows one propagate 
light beam in small steps through an inhomogeneous medium both in one and two 
dimensional cases which usually may extend to three dimension. 

5. Analytical solution of the propagating wave with step-index 

Equation 37 is an important approximation, though it restricts the use of the beam 
propagation method in analyzing the structures of matters for which only the forward 
propagating wave is considered. However, this excludes the use of the method in cases 
where the refractive index changes abruptly as a function of z or in which reflections add to 

equation (26). The propagation of the field ψ1 is given by the term describing the 
propagation in an unperturbed medium and the correction term-representing the influence 

of Δn2 (z) (Ugwu et al, 2007). 
As the beam is propagated through a thin film showing a large step in refractive index of an 
imperfectly homogeneous thin film, this condition presents the enabling provisions for the 
use of a constant refractive index no of the thin film. One then chooses arbitrarily two 
different refractive indices n1 and n2 at the two sides of the step so that 

 1

2

( ) 0

( ) 0
o

o

n z n z

n z n z

= < ⎫
⎬= > ⎭

 (40) 

with 
( ) ( )

1
( )

o

o

n z n z
for all z

n z

−
>>  
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Fig. 3. Refractive index profile showing a step 

The refractive index distribution of the thin film was assumed to obey the Fermi distribution 
that is an extensively good technique for calculating the mode index using the well known 
WKB approximation (Miyazowa et al,1975). The calculation is adjusted for the best fit to the 
value according to 

  
1

( ) exp[ ] 1o

z d
n z n n

a

−−⎡ ⎤= + Δ −⎢ ⎥⎣ ⎦
 (41)     

Small change in the refractive index over the film thickness can be obtained 

Equation (41) represents the Fermi distribution. where n(z) is the refractive index at  a depth 

z below the thin surface, on is the refractive index of the surface ,Δn is the step change in the 

film thickness, z is average film thickness and “a” is the measure of the sharpness of the 

transition region (Ugwu et al, 2005). 
With smoothly changing refractive index at both sides of the step, we assume that the 
sensitivity to polarization is due mainly to interface and hence in propagating a field ψ 
through such a medium, one has to decompose the field into (T.E) and (TM) polarized fields 
in which we neglect the coupling between the E and H fields due to small variation (n-no). 

When the interface condition ψm and m
z

∂Ψ
∂  are continuous at z = 0 are satisfied, the T.E 

field could be propagated by virtue of these decomposition. Similarly, TM fields were also 

propagated by considering that ψm and m
z

∂Ψ
∂ were continuous at z = 0. 

When we use a set or discrete modes, different sets of ψm can be obtained by the application of 
the periodic extension of the field. To obtain a square wave function for no(z) as in fig 3.4, no 
has to be considered periodic. We were primarily interested in the field guided at the interface 
z = z1. The field radiated away from the interface was assumed not to influence the field in the 
adjacent region because of the presence of suitable absorber at z = z – z1. The correction 

operator ∂ contains the perturbation term Δn2 and as we considered it to be periodic function 
without any constant part as in equation 3.18. The phase variation of the correction term is the 
same such that the correction term provided a coupling between the two waves. 
The Green’s function as obtained in the equation (29) satisfies (1) 

 
2 2

1 12 2
( ) ( , ) ( ) ( )n y G x y x x y y

x y
δ δ

⎡ ⎤∂ ∂
+ + Δ = − −⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 (42) 

n2 

n1 

z
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at the source point and satisfies (Ugwu et al, 2007) the impedance boundary condition. 

 0o

G
G B

n

∂
+ =

∂
 (43) 

where  s
o

o

iR
B

Rκ
= − s 

and 

1

2

o
o

R
μ
ε
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

is the free space characteristic impedance, and n∂ ∂ is the normal derivative. The impedance 

Rs offered to the propagating wave by the thin film is given by  

  

1
22

2
1

( )
o

s
o

R
R

n n

κ
κ

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 (44) 

  
0

2

1
1

R
R

n n

⎡ ⎤= −⎢ ⎥⎣ ⎦
  (45)                                     

where n is the average refractive index of the film (Wait, 1998; Bass et al, 1979)  қ is the 
wave-number of the wave in the thin film where қo is the wave number of the wave in the 
free space. For every given wave with a wavelength say λ propagating through the film 
with the appropriate refractive index n, the impedance R of the film can be computed using 
equation (44) When қ is equal to қo we have equation (45) and when n is relatively large ⎪n⎪ 

6. Integral method 

The integral form of Lippmann-Schwinger as given in equation 12 may be solved analytically 

as Fredholm problem if the kernel ( , ) ( , ) ( )k z z G z z V z′ ′ ′=  is separable, but due to the implicit 

nature of the equation as ( )zψ ′  is unknown, we now use Born approximation method to make 

the equation explicit. This simply implies using ( )o zψ in place of ( )zψ ′  to start the numerical 

integration that would enable us to obtain the field propagating through the film. 
In the solution of the problem, we considered Ψ0(z) as the field corresponding to 
homogeneous medium without perturbation and then work to obtain the field Ψ0(z) 
corresponding to the perturbed system (6) is facilitated by introducing the dyadic Green’s 
function associated with the reference system is as written in equation (12). However, to do 
this we first all introduce Dyson’s equation, the counterpart of Lippmann-Schwinger 
equation to enable us compute the value of the Green’s function over the perturbation for 
own ward use in the computation of the propagation field. 
Now, we note that both Lippmann-Schwinger and Dyson’s equation are implicit in nature 
for all points located inside the perturbation and as a result, the solution is handle by 
applying Born Approximation method as already mentioned before now 

7. Numerical consideration  

In this method, we defined a grid over the system as in fig 3 this description, we can now 
write Lippmann-Schwinger and Dyson’s equations as: 
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 ψ1 = 0
1ψ + 1,

1

Np

o
k

k

G
=
∑  VKΔKψK  (45)                                  

 Gi,j =G0i,j + 0
,

1

Np

i k
k

G
=
∑ vk!kGk       (46)      

 The descretization procedure is identical in one, two, or three dimensions; for clarity, we 
use only one segment to designate the position of a mesh and we assume it to be k and we 
assume also that the discretized system contains N meshes from which Np describes the 

meshes, Np ≤ N, we denote the discretized field. The formulation of the matrix in equations 
(46) leads to the solution Gs that would be used in building up the matrix in (46) which 
eventually makes it possible to obtain the propagating field. Also the number of the matrices 
obtained will depend on the number meshes considered 
For instant if 3 meshes are considered, 9 algebraic equations as  

 G1,1= Go1,1 + Go1,1 V1 Δ1 G1,1 + Go2,2 V2 G2, 1 + Go1,3 V3Δ3,1 a 

 G2,1 = Go2,1 + Go2,1 V1Δ1G1,1 + Go2, 2v2 Δ2 G2,I + Go2, 3V3, Δ G3,1 b     

 G3,1= Go2,2+ Go31V1 Δ1 G1,1 + Go3, 2V2 Δ2,1 + Go3,3 V3Δ3 G3,1 c 

 G1,2 =Go1,2 + Go1, 1V1 Δ1 G1,2 + Go1,2 V2 Δ2 G2,2 + Go1,2V3 Δ3G3,2 s d 

 G2,2 =  Go2,2 + Go2,1V1 Δ G1,2 + Go2,2V2 Δ2 G2,2 + G2,3 V3 Δ3 G3,2 e 

 G3,2 = Go3,2 + G3,1V1Δ1G1,2 + Go3,2V2 Δ2 G2,2 +Go3,3 V3Δ3 G3,2 f           

 G1,3 + Go1,3 + Go1,1V1Δ1G1,3 + Go1,2 Go1,2V2Δ2G2,3 + G1,3V3Δ3G3,3 g 

 G2,3 + Go2,3 + G2,1V1Δ1G1,3 + Go1,2 V2Δ2 G2,3 + Go2,3 V3Δ3G3,3 h 

 G3,3 = Go3,3 + Go3,1 + 1V1Δ1G1,2 + Go3,2V3Δ3G2,3 +G03,3V3Δ3G3,3       i  (47) 

Are generated and from that 9x9 matrix is formulated from where one can obtain nine 
values of Gij   

G1,1, G1,2, G1,3, G2,1, G2,2, G2,3, G1,3, G2,3 and G3,3. Using these Gs, one generates three algebraic 

equations in terms of field as shown below. 

 
0 0 0 0

1 1 1,1 1 1 1 1,2 2 2 2 1,3 3 3 3G V G V G VΨ = Ψ + Δ Ψ + Δ Ψ + Δ Ψ  

0 0 0 0
2 2 2,1 1 1 1 2,2 2 2 2 3,3 3 3 3G V G V G VΨ = Ψ + Δ Ψ + Δ Ψ + Δ Ψ  

0 0 0 0
3 3 3,1 1 1 1 3,2 2 2 2 3,3 3 3 3G V G V G VΨ = Ψ + Δ Ψ + Δ Ψ + Δ Ψ  

 

The compact matrix form of the equation can be written thus, 

 

0 0 0 0
1,1 1 1 1,2 2 2 1,3 3 3 1 1

0 0 0 0
2,1 1 1 2,2 2 2 2,3 3 3 2 2

0 0 0 0
3,1 1 1 3,2 2 2 3,3 3 3 3 3

1

1

1

G V G V G V

G V G V G V

G V G V G V

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− Δ − Δ − Δ Ψ Ψ
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− Δ − Δ − Δ Ψ = Ψ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− Δ − Δ − Δ Ψ Ψ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (48) 
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8. Result/discussion  
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Fig. 1. The field behaviour as it propagates through the film thickness ZǍm for mesh size = 
10 when ǌ =0.4Ǎm 0.7Ǎm and 0.9Ǎm. 
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Fig. 2. The field behaviour as it propagates through the film thickness ZǍm for mesh size = 
50 when ǌ = 0.25Ǎm, 0.7Ǎm and 0.9Ǎm. 
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Fig. 3. The field behavour as it propagates through the film thickness ZǍm for mesh size = 
50 when ǌ = 0.25Ǎm, 0.7Ǎm and 0.9Ǎm. 
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Fig. 4. The field behavour as it propagates through the film thickness ZǍm for mesh size = 
100 when ǌ = 0.25Ǎm, 0.8Ǎm and 1.35Ǎm. 
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Fig. 5. The filed absorbance as a function wavelength. 
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Fig. 6. Refractive index profile using Fermi distribution 
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Fig. 7. Graph of change in Refractive Index as a function of a propagation distance 
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Fig. 8. Graph of Impedance against Refractive Index when k =k0  
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Fig. 9. Computed field against wavelength when the mesh size is constant 
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Fig. 10. Computed and Initial field values in relation to the Green’s value within the uv 
region 
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Fig. 11. Computed and Initial field values in relation to the Green’s value within the near 
infrared region 
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Fig. 12. Computed and Initial field values in relation to the Green’s value within the visible 
region 
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From the result obtained using this formalism, the field behaviour over a finite distance was 
contained and analyzed by applying born approximation method in Lippman-Schwinger 
equation involving step by step process. The result yielded reasonable values in relation to 
the experimental result of the absorption behaviour of the thin film (Ugwu, 2001).  
The splitting of the thickness into more finite size had not much affected on the behaviour of 
the field as regarded the absorption trends.  

The trend of the graph obtained from the result indicated that the field behaviour have the 

same pattern for all mesh size used in the computation. Though, there is slight fall in 

absorption within the optical region, the trend of the graph look alike when the thickness is 

1.0 μ m with minimum absorption occurring when the thickness is 0.5 μ m. within the near 

infrared range and ultraviolet range, (0.25 μ m) the absorption rose sharply, reaching a 

maximum of1.48 and 1.42 respectively when thickness is 1.0 μ m having value greater than 

unity. 
From the behaviour of the propagated field for the specified region, UV, Visible and Near 
infrared, (Ugwu, 2001) the propagation characteristic within the optical and near infrared 
regions was lower  when compared to UV region counterpart irrespective of the mesh size 
and the number of points the thickness is divided. The field behaviour was unique within 

the thin film as observed in fig. 3 and fig 4: for wavelength 1.2μm and 1.35μm 
while that of fig,1 and fig.2 were different as the wave patterns were  shown within the 

positive portion of the graph. The field unique behavior within the film medium as 

observed in the graphs in fig.1 to fig.4 for all the wave length and Nmax suggests the 

influence of scattering and reflection of the propagated field produced by the particles of the 

thin field medium. The peak as seen in the graphs is as a result of the first encounter of the 

individual molecules of the thin film with the incident radiation. The radiation experiences 

scattering by the individual molecules at first conforming to Born and Huang, 1954 where it 

was explained that when a molecule initially in a normal state is excited, it generates 

spontaneous radiation of a given frequency that goes on to enhance the incident radiation   

This is because small part of the scattered incident radiation combines with the primary 

incident wave resulting in phase change that is tantamount to alternation of the wave 

velocity in the thin film medium. One expects this peat to be maintained, but it stabilized as 

the propagation continued due to fact that non-forward scattered radiation is lost from the 

transmitted wave(Sanders,19980) since the thin film medium is considered to be optically 

homogeneous, non-forward scattered wave is lost on the account of destructive interference. 

In contrast, the radiation scattered into the forward direction from any point in the medium 

interferes constructively (Fabelinskii, 1968)  

We also observed in each case that the initial value of the propagation distance zμm, initial 
valve of the propagating field is low, but increase sharply as the propagation distance 
increases within the medium suggesting the influence of scattering and reflection of 
propagating field produced by the particles of the thin film as it propagates.Again, as high 
absorption is observed within the ultraviolet (UV) range as depicted in fig.5, the thin film 
could be used as UV filter on any system   the film is coated with as it showed high 
absorption. On other hand, it was seen that the absorption within the optical (VIS) and near 
infrared (NIR) regions of solar radiation was low. Fig.6 depicts the refractive index profile 
according to equation (41) while that of the change in refractive index with propagation 
distant is shown on figs.7. The impedance appears to have a peak at lower refractive index 
as shown in fig. 8. Fig. 9 shows the field profile for a constant mesh size while that of Fig.10 
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to fig.12 are profile for the three considered regions of electromagnetic radiation as obtained 
from the numerical consideration.  

9. Conclusion 

A theoretical approach to the computation and analysis of the optical properties of thin film 
were presented using beam propagation method where Green’s function, Lippmann-
Schwinger and Dyson’s equations were used to solve scalar wave equation that was 
considered to be incident to the thin film medium with three considerations of the thin film 
behaviour These includes within the  three regions of  the electromagnetic radiation namely: 
ultra violet, visible and infrared regions of the electromagnetic radiation with a 
consideration of the impedance offered to the propagation of the field by the thin film 
medium. 
Also, a situation where the thin film had a small variation of refractive index profile that 
was to have effect on behaviour of the propagated field was analyzed with the small 
variation in the refractive index. The refractive index was presented as a small perturbation. 
This problem was solved using series solution on Green’s function by considering some 
boundary conditions (Ugwu et al 2007). Fermi distribution function was used to illustrate 
the refractive index profile variation from where one drew a close relation that facilitated an 
expression that led to the analysis of the impedance of the thin film 
The computational technique facilitated the solution of field values associated first with the 
reference medium using the appropriate boundary conditions on Lippmann-Schwinger 
equation on which dyadic Green’s operator was introduced and born approximation 
method was applied both Lippmann-Schwinger and Dyson’s equations. These led to the 
analysis of the propagated field profile through the thin film medium step by step.  
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