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Wave Propagation Inside a  
Cylindrical, Left Handed,  

Chiral World 

       Pierre Hillion 
       Institut Henri Poincaré   

France 

1. Introduction 

Isotropic metamaterials, with negative permittivity and permeability, also called left-handed 

[Veselago, 1958] [Pendry, 2000], [Sihvola 2007] have opened the way to new physical 

properties, different from those obtained with a conventional material. So, it is natural to 

inquire how these properties transform when these metamaterials are also chiral because of 

the importance of chirality in Nature. Some left-handed materials [Pendry 2006] and 

metamaterials [Grbic & Elefthertades, 2006] have been recently manufactured. We  consider 

here a metachiral circular cylindrical medium with negative permittivity and permeability 

endowed with the Post constitutive relations [Post, 1962]. Using the cylindrical coordinates  

r > 0, θ, z and, assuming fields that do not depend on θ, we analyze the propagation of 

harmonic Bessel beams inside this medium. Two different modes exist charac-terized by 

negative refractive indices, function of permittivity and permeability but also of chirality 

which may be positive or negative with consequences on the Poynting vector carefully 

analyzed. The more difficult problem of wave propagation in a spherical, left handed, chiral 

world is succinctly discussed in an appendix. 

2. Cylindrical Maxwell’s equations and Post’s constitutive relations 

With the cylindrical coordinates r > 0, θ, z, the Maxwell equations in a circular cylindrical 
medium are for fields that do not depend on θ 

−∂zE θ + 1/c ∂tB r = 0, 

∂zE r − ∂rEz + 1/c ∂tBθ  = 0, 

(∂r +1/r)E θ + 1/c ∂tB z = 0 

(1a)

∂zH θ + 1/c ∂tD r = 0, 

∂zH r − ∂rHz − 1/c ∂tDθ  = 0, 

(∂r +1/r)H θ − 1/c ∂tD z = 0, 

(1b) 
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(∂r +1/r)Br + ∂zB z = 0 , 

(∂r +1/r)Dr + ∂zD z = 0 

 

(2) 

We write −|ε|,  −|μ| the negative permittivity and permeability [Pendry, 2006] in the meta-
chiral cylindrical medium and the Post constitutive relations are [Post, 1962] 

D = −|ε| E + iξ B ,          H = −B/|μ|  + iξ E  ,  i = √−1  (4) 

in which ξ is the chirality parameter assumed to be real. 
From (2), (3), we get at once the divergence equation satisfied by the electric field 

 (∂r +1/r)Er + ∂zE z = 0 (4) 

3. Cylindrical harmonic Bessel modes 

3.1 The Bessel solutions of Maxwell’s equations     

 Substituting (3) into (1b) gives 

∂z(−Bθ/|μ| +iξ Eθ) + 1/c∂t (−|ε| Er +iξ Br) = 0 

∂z(−B r/|μ| +iξ Er) − ∂r(−Bz/|μ| +iξ Ez) − 1/c∂t (−|ε| Eθ +iξ Bθ) = 0 

(∂r +1/r)(−Bθ/|μ| +iξ Eθ) − 1/c∂t (−|ε| Ez +iξ Bz) = 0 

(5) 

Taking into account (1a), Eqs.(5) become 

−1/|μ| ∂zBθ −|ε|/c ∂tEr + 2iξ/c ∂tBr = 0  

   −1/|μ| ∂zBr +1/|μ| ∂rBz +|ε|/c ∂tEθ + 2iξ/c ∂tBθ = 0 

−1/|μ| (∂r +1/r)Bθ +|ε|/c ∂tEz + 2iξ/c ∂tBz = 0 

(5a)

Applying the time derivative operator ∂t to (5a) gives 

1/c ∂t ∂zBθ +|ε||μ|/c2 ∂t2Er − 2iξ|μ|/c2 ∂t2Br = 0 (6a)

1/c ∂t ∂zBr −1/|c ∂t ∂rBz −|ε||μ|/c2 ∂t2Eθ + 2iξ|μ|/c2 ∂t2Bθ = 0  (6b) 

1/c ∂t (∂r +1/r)Bθ −|ε||μ|/c2 ∂t2Ez + 2iξ|μ|/c2 ∂t2Bz = 0 (6c)

Using (1a) and the divergence equation (4), we have in the first and last terms of (6a) 

1/c ∂t ∂zBθ = ∂r∂zΕz −∂z2Εr = − (∂r2+1/r∂ r −1/r2 + ∂z2)Er  

1/c2 ∂t2Br = 1/c∂t∂zEθ   

Substituting these two relations into (6a) and introducing the wave operator [Morse & 
Feshbach, 1953] 
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∆1 = ∂r2+1/r∂ r −1/r2 + ∂z2 −|ε||μ|/c2 ∂t2 (7) 

we get the equation 

∆1Er + 2iξ|μ|/c ∂z∂tΕθ= 0 (8a)

We have similarly in (6b) for the first two terms and for the last one taking into account (1a) 

1/c ∂t ∂zBr −1/c ∂t ∂rBz = (∂r2+1/r∂ r −1/r2 + ∂z2)Eθ    

1/c2 ∂t2Bθ = 1/c∂t∂rEz − 1/c∂t∂zEr 

so that Eq.(6b) becomes 

∆1Eθ + 2iξ|μ|/c (∂r∂tΕz−∂z∂tΕr) = 0  (8b) 

Finally in (6c) , the first and third terms  are according to (1a) 

1/c ∂t(∂r +1/r)Bθ = (∂r2+1/r∂ r + ∂z2)Ez   

1/c2 ∂t2Bz = −1/c(∂r +1/r) ∂tEθ 

and, taking into account these two relations, we get 

∆0 Ez − 2iξ|μ|/c (∂r +1/r) ∂tEθ = 0  (8c)

in which ∆0 is the wave operator   

∆0 = ∂r2+1/r∂ r + ∂z2 −|ε||μ|/c2 ∂t2  (9) 

We look for the solutions of Eqs.(8a,b,c) in the form inside the cylindrical medium:  

Er(r,z,t) = Er J1(krr) exp(iωt +ikzz) 

    Eθ(r,z,t) = Eθ J1(krr) exp(iωt +ikzz)  

Ez(r,z,t) = Ez J0(krr) exp(iωt +ikzz) 

(10)

in which J0, J1 are the Bessel functions of the first kind of order zero and one respectively 

while Er, Eθ, Ez are arbitrary amplitudes. From now on, we use the two parameters 

n2 = |ε||μ|/c2 ,        α =2ξ|μ|/c (11)

Let us now substitute (10) into (8a,b,c). The Bessel functions with k2 = kr2 +kz2 satisfy the 

following relations with the exponential factor exp(iωt +ikzz) implicit 

∆1J1(krr) = −(k2−ω2n2) J1(krr),          ∆0J0(krr) = −(k2−ω2n2) J0(krr) (12a)

∂rJ0(krr) = −krJ1(krr),         (∂r+1/r) J1(krr) = krJ0(krr) (12a)

then, using (12a,b) we get the homogeneous system of equations on the amplitudes  

Er, Eθ, Ez 
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(k2−ω2n2)Er +iωαkzEθ = 0 

(k2−ω2n2)Eθ −ωαkrEz −iωαkzEr = 0 

(k2−ω2n2)Ez −ωαkrEθ = 0 

(13)

This system has nontrivial solutions when its determinant is null and a simple calculation 

gives 

 (k2−ω2n2) [(k2−ω2n2)2 − α2ω2k2] = 0 (14) 

Leaving aside k2−ω2n2= 0, the equation (14) implies 

 k2−ω2n2 ±αωk = 0 (15) 

or in terms of refractive index m = ck/ω : m 2± αcm −cn2 = 0. These equations have four 

solutions, two positive and two negative But, it has been proved [Ziolkowski & Heyman, 

2001] that in left handed materials, m must be taken negative: m = − |αc ± (α2c2 + 4n2c2)1/2| 

so that introducing the γ > I parameter 

 γ = (1+4n2α−2)1/2 = (1+|ε||/|µ| ξ2)1/2  (16) 

the equation (15) has the two negative roots   

  k1 = −ω |α| (1+γ)/2,         k2 = ω |α| (1−γ)/2  (17) 

So, there exist two modes with respective wave numbers k1, k2 able to propagate in the 

meta-chiral cylindrical medium, with two different negative indices of refraction  

m1,2. = ck1,2/ω. 

3.2 Amplitudes of harmonic Bessel beams 

The B, D, H components of the electromagnetic field have the form (10), that is. 

(Br,Dr, Hr )(r,z,t) = (Br, Dr, Hr,) J1(krr) exp(iωt +ikzz) 

(Bθ,Dθ, Hθ )(r,z,t) = (Bθ, Dθ, Hθ,) J1(krr) exp(iωt +ikzz) 

(Bz,Dz, Hz )(r,z,t) = (Bz, Dz, Hz,) J0(krr) exp(iωt +ikzz) 

(18)

Then, in agreement with (15) and (17), we first assume k12− ω2n2 = αωk1 . Deleting the 

exponential factor from (10), (18) and using (12a), we get at once from (13) in terms of Eθ ≅ E1 

with kr2+kz2 = k12 

  Er = −ikzE1/k1,               Eθ = E1,              Ez = krE1/k1  (19a) 

 

Substituting (18) into (1a), taking into account (19a) and using (12a) give 

  Br = ckzE1/ω,             Bθ = ick1E1/ω,           Bz = ickrE1/ω (19b)   

 

and, with (19a,b) substituted into the Post constitutive relations (3), we get     
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 Dr = −ikzD1†E1,    Dθ = −k1D1†E1,      Dz = −krD1†E1,    D1† = |ε|/k1 − cξ/ω  (19c) 

 Hr = −kzH1†E1,     Hθ = −ik1H1†E1,     Hz = −ikr H1†E1,    H1† = c/ω|μ| − ξ/k1 (19d) 

 

Similarly, with k22−ω2n2 = −αωk2, kr2+kz2 = k22 , Eθ ≅ E2 , we  get from (13 and (12a) 
 

  Er = ikzE2/k2,               Eθ = E2,              Ez = − krE2/k2 (20a) 

 Br = ckzE2/ω,           Bθ = −ick2E2/ω,           Bz = ickrE2/ω  (20b)   

 

and, substituting (20a,b) into (3)  
 

 Dr = −ikzD2† E2,    Dθ = −k2 D2† E2,     Dz = kr D2† E2,   D2† = |ε|/k2 − cξ/ω (20c) 

  Hr = −kzH2†E2,   Hθ = ik2 H2†E2,       Hz = −ikr H2†E2,  H2† = c/ω|μ| + ξ/k2 (20d) 

 

The expressions (19), (20) give in terms of E1, E2 the amplitudes of the two modes 
propagating in metachiral un-bounded cylindrical worlds. 

3.3 Energy flow of Bessel waves 

Using (10), (18) the Poynting vector S = c/8π (E∧H*) where the asterisk denotes the complex 
conjugation, gives for the first mode 

 S1,r(r,z,t) = c/8π(EθHz* −EzHθ*)(r,z,t) 

                                                               = 0 

S1,θ(r,z,t) = c/8π(EzHr* −ErHz*)(r,z,t) 

                                 = −ckrkz H1†/4πk1 J0(krr) J1(krr) |E1]2 

S1,z(r,z,t) = c/8π(ErHθ* −EθHr*)(r,z,t) 

                =  ckz H1†/4π  J12(krr) |E1]2 

(21)

Now, according to (11) and (17): 

 ξ/k1 = -2ξ[ω|α|(1+γ)]-1 = -c(ξ /|ξ| ω|μ|)  (1+γ)-1 (22) 

 

so that since  according to (19d), H1†= c/ω|μ| − ξ/k1, we get 

 H1†= c/ω|μ| [1+ξ/ |ξ|(1+γ)-1] (22a) 

 

and H1† > 0  whatever the sign of  ξ/|ξ| is. So for kz > 0  (resp. kz < 0) the z-component of 

the energy flow runs in the direction of the positive ( resp.negative) z axis while according 

to (10) and (18), Bessel waves propagate in the opposite direction with the phase velocity vz 

= −ω/kz. Consequently Sz and vz are antiparallel, but, because S1,θ is not null, the phase 

velocity is not strictly antiparallel to the energy flow. 
A similar calculation for the second mode gives S2,r(r,z,t) = 0 and 
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S2,θ(r,z,t) = ckrkz H2†/4πk2 J0(krr) J1(krr) |E2]2 

S2,z(r,z,t) =  ckz H2†/4π  J12(krr) |E2]2 
(23)

Taking into account (11), (17), we have   

 ξ/k2 =  2(ξ/ω |α| ) (1−γ)−1    = c(ξ/|ξ|ω|μ|)(1−γ)−1 (24) 

 

and, since according to (20d) H2† = c/ω|μ| + ξ/k2 , we get taking into account (24)  

 H2† = c/ω|μ| [1+ ξ/|ξ| (1−γ)−1]  (25) 

 

H2† is positive for ξ/|ξ| = −1 and for ξ/|ξ| = 1 with γ > 2 leading to the same conclusion as 

for the first mode while for ξ/|ξ| = 1 and 1 < γ < 2 Bessel waves propagate in the same 

direction [Hu & Chui, 2002]. So, the harmonic Bessel waves may be considered as partially 

left-handed.  

3.4 Evanescent waves 

It is implicitly assumed in the previous sections that the wave numbers kr, kz are real which 

implies kr2, kz2 smaller than k12, k22 with |k2| < |k1| according to (17). Suppose first kr2 > 

k12, then 

 k1,z = ± i(kr2− k12)1/2 ,          k2,z = ± i(kr2− k22)1/2   (27)  

 

with the plus (minus) sign in the z > 0 ( z< 0) region to make exp(ikzz) exponentially 

decreasing, the only solution physically acceptable. Both modes are evanescent but only the 

second mode if k12 > kr2 > k22. 

Suppose now kz2 > k12 then 

 k r(1,2) = ±iks(1,2),       k s(1,2) = (kz2− k1,22)1/2 (28) 

and  

 J0(±iksr) = I0 (ksr) ,          J1(±iksr) = ±I1 (ksr) (28a) 

 

in which I0, I1 are the Bessel functions of second kind of order zero, one respectively.These 

functions are expo-nentially growing with r and physically unacceptable in unbounded 

media.. Of course, if k12 > kz2 > k22 the first mode can exist. 

4. Discussion  

Wave propagation in chiral materials is made easy for media equipped with Post’s 

constitutive relations because as electromagnetism, they are covariant under the Lorentz 

group. In a metachiral material, the refractive index m  depends not only on ε, μ but also on 

the chirality  ξ and in cylindrical geometry m may have four different expressions among 

which only the two negative ones are physically convenient. But, the Poynting vector S 

depends on the sign of  ξ so that S and the phase velocity v may be parallel or antiparallel 
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but not strictly because,  as easily shown, the Poynting vector S is orthogonal  to E but not to 

H, So that E, H, S do not form a cartesian frame. So, metachiral cylindrical media have some 

particular features. Wave propagationin uniaxially anisotropic left-handed materials is 

discussed in [Hu & Chui, 2002]. Incidentally, a cylindrical world has been envisged by 

Einstein [Eddington, 1957]. 

Appendix A: Wave propagation in spherical, left handed, chiral media. 

1. Maxwell’s equations in spherical metachiral media 

With the spherical polar coordinates r, θ, φ, the Maxwell equations in a spherical medium 

are for fields that do not depend on φ 

(1/r sinθ) ∂θ(Εφ sinθ) + c−1∂tBr = 0 

− 1/r∂r(rΕφ )] + c−1∂tBθ = 0 

1/r [∂r(rEθ) − ∂θΕr] + c−1∂tBφ = 0 

(A.1) 

And 

(1/r sinθ) ∂θ(Hφ sinθ) −c−1∂tDr = 0  

1/r∂r(rHφ)] + c−1∂tDθ = 0 

1/r [∂r(rHθ) − ∂θHr] − c−1∂tDφ = 0 

(A.2) 

with the divergence equations 

(1/r2)∂r(r2B r) + (1/r sinθ) ∂θ(sinθ Bθ) = 0,  

(1/r2)∂r(r2D r) + (1/r sinθ) ∂θ(sinθ Dθ) = 0 
(A.3) 

We look for the solutions of these equations in a metachiral material endowed with the 
constitutive relations (3) that is 
 

  D = −|ε| E + iξ B,          H = −B/|μ| + iξ E,         i = √−1  (A.4) 

 

Substituting (A.4) into (A.2) gives a set of equations depending only on E and B: 

(1/r sinθ) ∂θ[sinθ (−Βφ/|μ| + iξEφ)] − c−1∂t[−|ε|Εr + iξΒ r] = 0  

1/r∂r[r(−Βφ/|μ|+ iξEφ)] − c−1∂t[−|ε|Εθ + iξΒθ] = 0 

1/r∂r[r(−Βθ/|μ|+ iξEθ)] − 1/r∂θ[−Βr/|μ|) + iξEr) − c−1∂t[−|ε|Εφ + iξΒφ] = 0 

(A.5) 

while, taking into account (A,3), (A.4), the divergence equation for E is 

 (1/r2)∂r(r2E r) + (1/r sinθ) ∂θ(sinθ Eθ) = 0 (A.6) 
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Substituting (A.1) into (A.5), the Maxwell equations become 

(−1/|µ|r sinθ) ∂θ(sinθ Βφ ) + |ε|c−1∂t |Εr − 2iξc−1∂t Β r = 0 

(−1/|µ|r) ∂r(rΒφ) − |ε| c−1∂t Εθ +2iξ c−1∂tΒθ = 0 

(−1/|µ|r) [∂r(rΒθ) −∂θΒr) + |ε|c−1∂t|Εφ−2iξ c−1∂tΒφ = 0 

(A.7) 

To look for the solutions of Eqs.(A.7) taking into account (A.1) is a challenge imposing 

simplifying assumptions, as for instance Βφ = 0, which seems to be the most evident. 

2. 2D-electromagnetic harmonic field 

For a time harmonic field ∂t ⇒ iω and if Βφ = 0, Eqs.(A.7) reduce to 

|ε| Er − 2iξBr = 0 ,     |ε| Eθ − 2iξBθ = 0 

−1/|µ|r [∂r(rΒθ) −∂θΒr) − iω|ε| c−1Eφ = 0 
(A.8) 

Now let B(r,θ) = ∇Φ(r,θ) be the gradient of a magnetic scalar potential Φ     
 

 Br = ∂rΦ,         Bθ = 1/r ∂θΦ (A.9) 

 

Substituting (A.9) into the third relation (A.8) gives Eφ = 0 so that since Bφ = 0, we have 

according to (A.4) Dφ = Hφ = 0. So, all the φ-components  of the electromagnetic field are null 

and consequently, we have to deal with a 2D-field. 

With the first two relations (A.8) substituted into (A.4), we get 

  {Hr, Hθ} = − {Br, Bθ)(1/|µ| +2ξ/|ε|),          {Dr, Dθ} = − |ε|/2 {Er, Eθ) (A.10) 

 

So, according to (A.9), we have just to determine the potential Φ. Then, using the equations 

fulfilled by the spherical Bessel functions jn(kr) and by the Legendre polynomials Pn(θ) 

where n is a positive integer  

∂r2jn(kr) + 2/r jn(kr) + [k2 − n(n+1)/r2] jn(kr = 0 

∂θ2Pn(θ) + cosθ/sinθ ∂θPn(θ) + n(n+1) Pn(θ) = 0 
(A.8) 

the divergence equation (A.3) is satisfied with φn(r,θ)  = jn(kr) Pn(θ) and k2 = ω2|ε| |μ|c−2 

since     

 (∆ +k2)φn = 0,           ∆ = 1/r2∂r(r2∂r)  + 1/r2sinθ ∂θ(sinθ ∂θ) (A.12) 

 

So, the potential Φ(r,θ,) with the complex amplitudes An) is    

 Φ(r,θ) = ∑0
∞An jn(kr) Pn(θ) (A.13) 

 

which achieves to determine the 2D-electromagnetic field. 
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In this situation where Eφ = Hφ = 0, the Poynting vector has only a non null component Sr = 

Sθ = 0 and 

 Sφ = c/8π Re (ErHθ* − EθHr*) (A.14) 

 

in which the asterisk denotes the complex conjugation. But, acording to (A.4) and (A.8): 

ErHθ* = −2i (ξ/|ε| |μ|) (1+2ξ2|μ|/|ε|)BrBθ* 

EθHr* = −2i (ξ/|ε| |μ|) (1+2ξ2|μ|/|ε|)BθBr* 
(A.15) 

Substituting (A.15) into (A.14) gives   

 Sφ = (c/8π/|ε| |μ|) (1+2ξ2|μ|/|ε|) Im{ BrBθ* − BθBr*} (A.16) 

 

Now, according to (A.4), (A.8), (A.10) we have with B2 = |Br|2+|Bθ|2 

 E.D* = −2ξ2Β2/|ε|,           BH* = − B2 (1/|μ|+  2ξ2/|ε|) (A.17) 

 

So, the energy density w = 1/8π (E.D* + BH* ) is 

 w = −1/8π ((1/|μ|+  4ξ2/|ε|) (A.18) 

The energy density is negative which suggests that spherical left handed chiral media 

behave as a rotating plasma [Ilysionis et al] 2009], [Lashmore-Davies, 2005] and that the 

solutions obtained with  the magnetic potential Φ are of the Alfven wave type. This result 

could also be a consequence of the approximations imposed here. 
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