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The Space Vector Modulation PWM Control 
Methods Applied on Four Leg Inverters  

Kouzou A, Mahmoudi M.O and Boucherit M.S 
Djelfa University and ENP Algiers,  

Algeria 

1. Introduction 

Up to now, in many industrial applications, there is a great interest in four-leg inverters for 
three-phase four-wire applications. Such as power generation, distributed energy systems 
[1-4], active power filtering [5-20], uninterruptible power supplies, special control motors 
configurations [21-25], military utilities, medical equipment[26-27] and rural electrification 
based on renewable energy sources[28-32]. This kind of inverter has a special topology 
because of the existence of the fourth leg; therefore it needs special control algorithm to fulfil 
the subject of the neutral current circulation which was designed for. It was found that the 
classical three-phase voltage-source inverters can ensure this topology by two ways in a way 
to provide the fourth leg which can handle the neutral current, where this neutral has to be 
connected to the neutral connection of three-phase four-wire systems: 
1. Using split DC-link capacitors Fig. 1, where the mid-point of the DC-link capacitors is 

connected to the neutral of the four wire network [34-48].  
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Fig. 1. Four legs inverter with split capacitor Topology.                    
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Fig. 2. Four legs inverter with and additional leg Topology. 
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2. Using a four-leg inverter Fig. 2, where the mid-point of the fourth neutral leg is 
connected to the neutral of the four wire network,[22],[39],[45],[48-59]. 

It is clear that the two topologies allow the circulation of the neutral current caused by the 
non linear load or/and the unbalanced load into the additional leg (fourth leg). But the first 
solution has major drawbacks compared to the second solution. Indeed the needed DC side 
voltage required large and expensive DC-link capacitors, especially when the neutral 
current is important, and this is the case of the industrial plants. On the other side the 
required control algorithm is more complex and the unbalance between the two parts of the 
split capacitors presents a serious problem which may affect the performance of the inverter 
at any time, indeed it is a difficult problem to maintain the voltages equally even the voltage 
controllers are used. Therefore, the second solution is preferred to be used despite the 
complexity of the required control for the additional leg switches Fig.1. The control of the 
four leg inverter switches can be achieved by several algorithms [55],[[58],[60-64]. But the 
Space Vector Modulation SVM has been proved to be the most favourable pulse-width 
modulation schemes, thanks to its major advantages such as more efficient and high DC link 
voltage utilization, lower output voltage harmonic distortion, less switching and conduction 
losses, wide linear modulation range, more output voltage magnitude  and its simple digital 
implementation. Several works were done on the SVM PWM firstly for three legs two level 
inverters, later on three legs multilevel inverters of many topologies [11],[43-46],[56-57],[65-
68]. For four legs inverters there were till now four families of algorithms, the first is based 

on the αβγ  coordinates, the second is based on the abc coordinates, the third uses only the 

values and polarities of the natural voltages and the fourth is using a simplification of the 
two first families. In this chapter, the four families are presented with a simplified 
mathematical presentation; a short simulation is done for the fourth family to show its 
behaviours in some cases. 

2. Four leg two level inverter modelisation   

In the general case, when the three wire network has balanced three phase system voltages, 
there are only two  independents variables representing the voltages in the three phase 
system and this is justified by  the following relation : 

 0af bf cfV V V+ + =   (1) 

Whereas in the case of an unbalanced system voltage the last equation is not true: 

 0af bf cfV V V+ + ≠   (2) 

And there are three independent variables; in this case three dimension space is needed to 
present the equivalent vector. For four wire network, three phase unbalanced load can be 
expected; hence there is a current circulating in the neutral: 

 0La Lb Lc nI I I I+ + = ≠   (3) 

nI  is the current in the neutral. To built an inverter which can response to the requirement 

of the voltage unbalance and/or the current unbalance conditions a fourth leg is needed, 
this leg allows the circulation of the neutral current, on the other hand permits to achieve 
unbalanced phase-neutral voltages following to the required reference output voltages of 
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the inverter. The four leg inverter used in this chapter is the one with a duplicated additional 
leg presented in Fig.1. The outer phase-neutral voltages of the inverter are given by: 

 : , ,if a f gV S S V where i a b c⎡ ⎤= − ⋅ =⎣ ⎦   (4) 

f designed the fourth leg and fS its corresponding switch state.  
The whole possibilities of the switching position of the four-leg inverter are presented in 
Table 1. It resumes the output voltages of different phases versus the possible switching states 
 

Vector a b c fS S S S  af

g

V
V

 
bf

g

V
V

 
cf

g

V
V

 

1V  1111  0  0  0  

2V  0010  0  0  1+  
3V  0100  0  1+  0  

4V  0110  0  1+  1+  
5V  1000  1+  0  0  

6V  1010  1+  0  1+  
7V  1100  1+  1+  0  

8V  1110  1+  1+  1+  
9V  0001  1−  1−  1−  
10V  0011  1−  1−  0  

11V  0101  1−  0  1−  
12V  0111  1−  0  0  

13V  1001  0  1−  1−  
14V  1011  0  1−  0  

15V  1101  0  0  1−  
16V  0000  0  0  0  

Table 1. Switching vectors of the four leg inverter  

Equation (4) can be rewritten in details: 

 

1 0 0 1

0 1 0 1

0 0 1 1

a
af

b
bf g

c

cf
f

S
V

S
V V

S
V S

⎡ ⎤⎡ ⎤ −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

  (5)                          

Where the variable iS  is defined by: 

1
: , , ,

0i

if the upper switch of the leg i isclosed
S where i a b c f

if the upper switch of the leg i isopened

⎧
= =⎨
⎩
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3. Three dimensional SVM in  a b c− −  frame for four leg inverters  

The 3D SVM algorithm using the a b c− −  frame is based on the presentation of the 

switching vectors as they were presented in the previous table [34-35],[69-72]. The vectors 

were normalized dividing them by gV . It is clear that the space which is containing all the 

space vectors is limited by a large cube with edges equal to two where all the diagonals pass 

by (0,0,0) point inside this cube Fig. 3, it is important to remark that all the switching vectors 

are located just in two partial cubes from the eight partial cubes with edges equal to one Fig. 

4. The first one is containing vectors from 1V  to 8V   in this region all the components 

following the a , b  and c  axis are positive. The second cube is containing vectors from 9V  to 
16V  with their components following the a , b  and c axis are all negative. The common 

point (0,0,0) is presenting the two nil switching vectors 1V  and 16V .  
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Fig. 3. The large space which is limiting the switching vectors 
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Fig. 4. The part of space which is  limiting the space of  switching vectors 
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Fig. 5. The possible space including the voltage space vector (the dodecahedron) . 

The instantaneous voltage space vector of the reference output voltage of the inverter travels 
following a trajectory inside the large cube space, this trajectory is depending on the degree 
of the reference voltage unbalance and harmonics, but it is found that however the 
trajectory, the reference voltage space vector is remained inside the large cube. The limit of 
this space is determined by joining the vertices of the two partial cubes. This space is 
presenting a dodecahedron as it is shown clearly in Fig. 5. This space is containing 24 
tetrahedron, each small cube includes inside it six tetrahedrons and the space between the 
two small cubes includes 12 tetrahedrons, in Fig. 6 examples of the tetrahedrons given. In 
this algorithm a method is proposed for the determination of the tetrahedron in which the 
reference vector is located. This method is based on a region pointer which is defined as 
follows: 

 ( )
6

1

1

1 2
i

i
i

RP C
−

=
= + ⋅∑   (6) 

Where:        

  ( ( ( ) 1))iC Sign INT x i= +   1 : 6i =  (7) 

The values of ( )x i  are:  

   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=

crefaref

crefbref

brefaref

cref

bref

aref

VV

VV

VV

V

V

V

x
         

Where the function Sign  is:          
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1 1

( ) 1 1

0 1

if V

Sign V if V

if V

+ >⎧
⎪= − <⎨
⎪ =⎩

  (8) 
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Fig. 6. The possible space including the voltage space vector (the dodecahedron). 

 

RP  1V  2V  3V   RP  1V  2V  3V  

1 9V  10V  12V   41 9V  13V  14V  

5 2V  10V  12V   42 5V  13V  14V  

7 2V  4V  12V   46 5V  6V  14V  

8 2V  4V  8V   48 5V  6V  8V  

9 9V  10V  14V   49 9V  11V  15V  

13 2V  10V  14V   51 3V  11V  15V  

14 2V  6V  14V   52 3V  7V  15V  

16 2V  6V  8V   56 3V  7V  8V  

17 9V  11V  12V   57 9V  13V  15V  

19 3V  11V  12V   58 5V  13V  15V  

23 3V  4V  12V   60 5V  7V  15V  

24 3V  4V  8V   64 5V  7V  8V  

Table 2. The active vector of different tetrahedrons 

Each tetrahedron is formed by three NZVs (non-zero vectors) confounded with the edges 

and two ZVs (zero vectors) ( 1V , 16V ). The NZVs are presenting the active vectors 

nominated by 1V , 2V and 3V  Tab. 2. The selection of the active vectors order depends on 

several parameters, such as the polarity change, the zero vectors ZVs used and on the 

sequencing scheme. 1V , 2V and 3V  have to ensure during each sampling time the equality 

of the average value presented as follows:  

            1 1 2 2 3 3 01 01 016 016ref zV T V T V T V T V T V T⋅ = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ 1 2 3 01 016zT T T T T T= + + + +   (9) 

The last thing in this algorithm is the calculation of the duty times.  From the equation given 
in (9) the following equation can be deducted: 
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1 2 3 1 1

1 2 3 2 2

1 2 3 3 3

1 1
aref a a a

bref b b b
z z

c c ccref

M

V V V V T T

V V V V T M T
T T

V V V T TV

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ ⋅ = ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ '***(***)

  (10) 

Then the duty times:  

 
1

1
2

3

aref

z bref

cref

VT

T T M V

T V

−

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⋅ ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

  (11) 

4. 3D-SVM in α β γ− −  coordinates for four leg inverter   

This algorithm is based on the representation of the natural coordinates a , b  and c  in a new 

3-D orthogonal frame, called  α β γ− −  frame [72-80], this can be achieved by the use of the 

Edit Clark transformation, where the voltage/current can be presented by a vectorV : 

 
a

b

c

V V

V V C V

V V

α

β

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

     
a

b

c

I I

I I C I

I I

α

β

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

  (12) 

C  represents the matrix transformation: 

 

1 1 2 1 2
2

0 3 2 3 2
3

1 2 1 2 1 2

C

− −⎡ ⎤
⎢ ⎥

= ⋅ −⎢ ⎥
⎢ ⎥
⎣ ⎦

  (13) 

When the reference voltages are balanced and without the same harmonics components in 

the three phases, the representations of the switching vectors have only eight possibilities 

which can be represented in the α β−  plane. Otherwise in the general case of unbalance 

and different harmonics components the number of the switching vectors becomes sixteen, 

where each vector is defined by a set of four elements , , ,a b c fS S S S⎡ ⎤
⎣ ⎦  and their positions in 

the α β γ− −  frame depend on the values contained in these sets Tab. 3. 
Each vector can be expressed by three components following the three orthogonal axes as 
follows: 

i

i i

i

V

V V

V

α

β

γ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

Where: 

  1,16i =   (12) 
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It is clear that the projection of these vectors onto the αβ  plane gives six   NZVs and two 

ZVs; these vectors present exactly the 2D presentation of the three leg inverters, it is 

explained by the nil value of the γ  component where there is no need to the fourth leg. 

On the other side Fig. 7 represents the general case of the four legs inverter switching 

vectors. The different possibilities of the switching vectors in the α β γ− −  frame are shown 

clearly, seven vectors are localised in the positive part of the γ axis, while seven other 

vectors are found in the negative part, the two other vectors are just pointed in the 

( )0,0,0 coordinates, this  two vectors are very important during the calculation of the 

switching times. 
 

Vector a b c fS S S S  Vγ  Vα  Vβ  

9V  0001  1−  0  0  

10V  0011  1
3

− 1
3

−

11V  0101  1
3

− 1
3

+

13V  1001  

2

3
−  

2
3

+ 0  

12V  0111  2
3

− 0  

14V  1011  1
3

+ 1
3

−

15V  1101  

1

3
−  

1
3

+ 1
3

+

16V  0000  0  0  0  

 
 

Vector a b c fS S S S  Vγ  Vα  Vβ  

1V  1111  0  0  0  

2V  0010  1
3

− 1
3

−

3V  0100  1
3

− 1
3

+

5V  1000  

1

3
+  

2
3

 0  

4V  0110  2
3

− 0  

6V  1010  1
3

+ 1
3

−

7V  1100  

2

3
+  

1
3

+ 1
3

+

9V  1110 1+  0  0  

 

Table 3. Switching vectors in the αβγ  frame 
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Fig. 7. Presentation of the switching vector in the  αβγ  frame 
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refref VV βα ⋅
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Fig. 8. Determination of the prisms  

The position of the reference space vector can be determined in two steps. 
1. Determination of the prism, in total there are six prisms. The flowchart in Fig.8 explains 

clearly, how the prism in which the reference space vector is found can be determined. 
2. Determination of the tetrahedron in which the reference vector is located. Each prism 

contains four tetrahedrons Fig. 9, the determination of the tetrahedron in which the 
reference space vector is located is based on the polarity of the reference space vector 

components in a b c− −  frame as it is presented in Tab. 4. 
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Fig. 9. Presentation of the switching vector in the  αβγ  frame 

 

Active vectors 
Reference vector 

 components Prism Tetrahedron 

1V 1V 2V 2V 3V 3V afV bfV cfV

1T 15V 1101
13V 1001

5V 1000 ≥ ≺ ≺ 

2T 5V 1000
7V 1100

15V 1101 ≥ ≥ ≺ 

13T 9V 0001
13V 1001

15V 1101 ≺ ≺ ≺ 
 1P 

14T 8V 1110
7V 1100

5V 1000 ≥ ≥ ≥ 

3T 3V 0100
7V 1100

15V 1101 ≥ ≥ ≺ 

4T 15V 1101
11V 0101

3V 0100 ≺ ≥ ≺ 

15T 9V 0001
11V 0101

15V 1101 ≺ ≺ ≺ 
2P 

16T 8V 1110
7V 1100

3V 0100 ≥ ≥ ≥ 

5T 12V 0111
11V 0101

3V 0100 ≺ ≥ ≺ 

6T 3V 0100
4V 0110

12V 0111 ≺ ≥ ≥ 

17T 9V 0001
11V 0101

12V 0111 ≺ ≺ ≺ 
3P 

18T 8V 1110
4V 0110

3V 0100 ≥ ≥ ≥ 

7T 2V 0010
4V 0110

12V 0111 ≺ ≥ ≥ 

8T 12V 0111
10V 0011

2V 0010 ≺ ≺ ≥ 

19T 9V 0001
10V 0011

12V 0111 ≺ ≺ ≺ 
4P 

20T 8V 1110
4V 0110

2V 0010 ≥ ≥ ≥ 

9T 14V 1011
10V 0011

2V 0010 ≺ ≺ ≥ 

10T 2V 0010
6V 1010

14V 1011 ≥ ≺ ≥ 

21T 9V 0001
10V 0011

14V 1011 ≺ ≺ ≺ 
5P 

22T 8V 1110
6V 1010

2V 0010 ≥ ≥ ≥ 

11T 14V 1011
13V 1001

5V 1000 ≥ ≺ ≺ 

12T 5V 1000
6V 1010

14V 1011 ≥ ≺ ≥ 

23T 9V 0001
13V 1001

14V 1011 ≺ ≺ ≺ 
6P 

24T 8V 1110
6V 1010

5V 1000 ≥ ≥ ≥ 
 

Table 4. Tetrahedron determination. 

By the same way, using (9) the duty times of the active vectors can be calculated using the 
following expression: 
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1 2 3 1 1

1 2 3 1 1

1 2 3 1 1

1 1
ref

ref
z z

ref

N

V V V V T T

V V V V T N T
T T

V V V T TV

α α α α

β β β β

γ γ γγ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ ⋅ = ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦ '***(***)

  (13) 

Finally: 

 
1

1
1

1

ref

z ref

ref

VT

T T N V

T V

α

β

γ

−

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⋅ ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

  (14) 

5. 3D-SVM new algorithm for four leg inverters   

A new method was recently proposed for the identification of tetrahedron and the three 

adjacent nonzero vectors [81]. It exposes the relationship between the reference voltages and 

the corresponding tetrahedron, on the other side the relationship between the three adjacent 

vectors and their duty times in each sampling period. This method is based on the idea that 

the three adjacent vectors are automatically in a tetrahedron, but it is not required to 

identify this tetrahedron. The authors of this method proposed two algorithms for the 

implementation of 3-D SVPWM where the phase angle is necessary to be determined. Each 

of the tetrahedrons is appointed by ( ), ,T x y z , it is composed of three non-zero vectors xV , 

yV  and zV  as it is exposed in the other methods. On the other side the authors of this 

method have noticed that the shape of sliced prisms in two methods have the same shapes 

but with differences of scale and spatial position Fig. 10. On this basis the initial 

transformation used between the a b c− −  frame and α β γ− −  frame is decomposed to 

three matrixes: 

 1 2 3

0

2 1 1
1

0 3 3
3

1 1 1

a a

b b

c c

U U U

U U T T T U

U U U

α

β

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ − ⋅ = ⋅ ⋅ ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

  (15) 

Where: 

 1

2 3 0 0

0 2 3 0

0 0 1 3

T

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 2

2 3 0 1 3

0 3 0

1 3 0 2 3

T

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

, 3

1 0 0

0 1 2 1 2

0 1 2 1 2

T

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (16) 

The first matrix rotates the a b c− −  coordinates around the a axis by an angle of 45 °. Then 

the second matrix rotates the  a b c− −  coordinates around the b axis by an angle of 36.25 °. 

Finally, the third matrix modifies its scale by multiplying the a and b axis by 2 3  and 

1 3  respectively. After this transformation, it was noticed that the vector used in each 

tetrahedron are the same in either frames a b c− −  and α β γ− − , of course with two 
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different spatial positions, Hence, it is deducted that the duration of the adjacent vectors are 
independent of coordinates. 
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Fig. 10. Presentation of the switching vector in the  αβγ  frame 
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Fig. 11. Presentation of the switching vector in the  αβγ  frame 

The determination of the tetrahedron can be extracted directly by comparing the relative 

values of aU , bU  , cU  and zero.  The Zero value is used in the comparison for determining 

the polarity of the voltages in three phases. If the voltages aU , bU  , cU  and zero are 

ordered in descending order, the possible number of permutations  is  24 which is equal to 

the number of Tetrahedron.  Tab. 5 shows the relationship between Terahedrons and the 
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order of aU , bU  , cU and zero. Therefore the tetrahedron ( ), ,T x y z  can be determined 

without complex calculations. These elements are respectively denoted 1U , 2U , 3U and 4U  

in descending order. 

 1 2 3 4U U U U≥ ≥ ≥   (17) 

For example for:  0a c bU U U≥ ≥ ≥   

It can be found that: 1 aU U= , 2 0U = , 3 cU U= , 4 bU U= . 
 

Tetrahedron Vecteurs 1 2 3 4U U U U≥ ≥ ≥ Tetrahedron Vecteurs 1 2 3 4U U U U≥ ≥ ≥  

1 ( )1,3,7T  0 c b aU U U≥ ≥ ≥  13 ( )4,5,7T  0b c aU U U≥ ≥ ≥  

2 ( )1,3,11T 0 c a bU U U≥ ≥ ≥  14 ( )4,5,13T 0b a cU U U≥ ≥ ≥  

3 ( )1,5,7T  0 b c aU U U≥ ≥ ≥  15 ( )4,6,7T  0b c cU U U≥ ≥ ≥  

4 ( )1,5,13T 0 b a cU U U≥ ≥ ≥  16 ( )4,6,14T 0b c cU U U≥ ≥ ≥  

5 ( )1,9,11T 0 a c bU U U≥ ≥ ≥  17 ( )4,12,13T 0b a cU U U≥ ≥ ≥  

6 ( )1,9,13T 0 a b cU U U≥ ≥ ≥  18 ( )4,12,14T 0b a cU U U≥ ≥ ≥  

7 ( )2,3,7T  0c b aU U U≥ ≥ ≥  19 ( )8,9,11T 0a c bU U U≥ ≥ ≥  

8 ( )2,3,11T 0c a bU U U≥ ≥ ≥  20 ( )8,9,13T 0a b cU U U≥ ≥ ≥  

9 ( )2,6,7T  0c b aU U U≥ ≥ ≥  21 ( )8,10,11T 0a c bU U U≥ ≥ ≥  

10 ( )2,6,14T 0c b aU U U≥ ≥ ≥  22 ( )8,10,14T 0a c bU U U≥ ≥ ≥  

11 ( )2,10,11T 0c a bU U U≥ ≥ ≥  23 ( )8,12,13T 0a b cU U U≥ ≥ ≥  

12 ( )2,10,14T 0c a bU U U≥ ≥ ≥  24 ( )8,12,14T 0a b cU U U≥ ≥ ≥  

Table 5. Determination of tetrahedron vectors 

If an equality occurs between two elements, then the reference voltage is in the boundary 
between two neighboring tetrahedrons. If two neighboring equalities occur, then the 
reference voltage is within the boundary of six Tetrahedrons. If an equality is occurs 
between the first and the second element and at the same time an equality occurs between 
the third and fourth element, the reference voltage is within the boundary of four 
Tetrahedron.if three equalities occur, this means that the space vector is   passing in the 
point (0,0,0) connecting all the tetrahedrons. For example: 

1. For  0c a bU U U≥ ≥ =   the reference voltage is located in the interface of ( )2,10,11T  and 

( )2,10,14T , which contains the two vectors 2V  and 10V . 

2.  For 0b c aU U U≥ = =   the reference voltage is parallel to  4V  and it is located in the 

interface among ( )4,5,7T , ( )4,5,13T , ( )4,6,7T , ( )4,6,14T , ( )4,12,13T  and 

( )4,12,14T .  

3. For 0b c aU U U= ≥ =   the reference voltage is parallel to 6V  and is located in the 

interface among ( )2,6,7T , ( )2,6,14T , ( )4,6,7T  and ( )4,6,14T . 

4. For 0c b aU U U= = =   the reference voltage is nil. 
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It is clear, that as the other methods the determination of the tetrahedron ( ), ,T x y z  allows 

the selection of the three vectors xV , yV  and zV , and the calculation of the application 

duration of the switching states. These switching states have a binary format x , y and z . 

Using the relationship between the tetrahedrons and the voltages aU , bU  , cU and 0  Tab. 5. 

The rule for the determination of  switching states is derived as follows: 

 2ix = , 2 jy x= + , 2kz y= +   (18) 

 

i , j  and k  are determined from the elements 1U , 2U  and 3U . Similarly the parameter r  

can be deduced, this parameter is used subsequently for the calculation of the application 
durations of the three vectors.  
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3

c

b

a

U
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r

U U
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  (19) 

 

The determination of the duration of each vector is given by: 

 
1 1 4 7

2 2 5 8

3 3 6 9

a
p

b
dc

c

T a a a U
T

T a a a U
U

T a a a U

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (20) 

 

This method can be applied in both frames a b c− −  and α β γ− −  in the same way. The 

switching states x , y and z  or the voltage vectors xV , yV  and zV  are independent of the 

coordinates and are determined only from the relative values of aU , bU  and cU . All matrix 

elements ia  take the values 0, 1 or -1. Therefore, the calculations need only the addition and 

subtraction of aU , bU  and cU  except the coefficient p dcT U . The ia  values are determined 

from the following relations where they can be presented as a function of elementary 

relative voltages: 

1
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If we substitute these values in (20) and according to the given definitions of i , j , k  and  

r ,  the application duration of adjacent vectors, can be expressed in (22), it shows that they 

are only depending  on the relative voltage  vectors 1U , 2U , 3U  and 4U . 

 
1 1 2

2 2 3

3 3 4

p

dc

T U U
T

T U U
U

T U U

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

  (22) 

6. 3D-SVM new algorithm for four leg inverters   

A new algorithm of tetrahedron determination applied to the SVPWM control of four leg 

inverters was presented by the authors in [82]. In this algorithm, a new method was 

proposed for the determination of the three phase system reference vector location in the 

space; even the three phase system presents unbalance, harmonics or both of them. As it was 

presented in the previous works the reference vector was replaced by three active vectors 

and two zero vectors following to their duty times [34-35], [69-80]. These active vectors are 

representing the vectors which are defining the special tetrahedron in which the reference 

vector is located.  

In the actual algorithm the numeration of the tetrahedron is different from the last works, 

the number of the active tetrahedron is determined by new process which seems to be more 

simplifiers, faster and can be implemented easily. Form (5) and (12) the voltages in the αβγ  

frame can be presented by: 

 

a f

b f g

c f

S SV

V C S S V

V S S

α

β

γ

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥

= ⋅ − ⋅⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦

  (23)                      

 

It is clear that there is no effect of the fourth leg behaviours on the values of the components 

in the α β−   plane. The effect of the fourth leg switching is remarked in the γ  component. 

The representation of these vectors is shown in Fig. 12 –c-.  

6.1 Determination of the truncated triangular prisms 

As it is shown in the previous sections, the three algorithms are based on the values of the 

a b c− − frame reference voltage components. In this algorithm there is no need for the 

calculation of the zero (homopolar) sequence component of the reference voltage. Only the 

values of the reference voltage in a b c− − frame are needed.  The determination of the 

truncated triangular prism (TP) in which the reference voltage space vector is located is 

based on four coefficients. These four coefficients are noted as 0C , 2C , 3C  and 4C . Their 

values can be calculated via two variables x  and y  which are defined as follows: 

 
V

x
V
α=   (24) 
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Fig. 12. Presentation of the possible switching vectors in a b c− −  

 
V

y
V

β=   (25) 

Where: 

 2 2V V Vα β= +   (26) 

The coefficients can be calculated as follows: 
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INT x
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C INT y

C
INT x

ε

ε

ε

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎛ ⎞⎢ ⎥− −⎢ ⎥ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥ = ⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎛ ⎞⎣ ⎦ + +⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  (27) 

ε  is used to avoid the confusion when the reference vector passes in the boundary between  
two adjacent triangles in the αβ  plane, the reference vector has to be included at each 
sampling time  only in one triangle Fig. 12-c-. On the other hand, as it was mentioned in the 
first family works, the location of the reference vectors passes in six prism Fig. 12-b-, but 
effectively this is not true as the reference vector passes only in six pentahedron or six 
truncated triangular prism (TP) as the two bases are not presenting in parallel planes 
following to the geometrical definition of the prism Fig. 12-a-. The number of the truncated 
prism TP  can be determined as follows: 

 ( )
2

2 1
0

3 1
i

i i
i

TP C C C +
=

= + −∑   (28) 

3=TP 1=TP

2=TP

4=TP

5=TP

6=TP  

axis−α  

axis−β
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6.2 Determination of the tetrahedrons 
In each TP there are six vectors, these vectors define four tetrahedrons. Each tetrahedron 
contains three active vectors from the six vectors found in the TP. The way of selecting the 
tetrahedron depends on the polarity changing of each switching components included in 
one vector. The following formula permits the determination of the tetrahedron in which the 
voltage space vector is located. 

 ( )
3

1

4 1 1h iT TP a= − + +∑   (29) 

Where: 

1 0 0

, ,
i i ia if V else a

i a b c

= ≥ =
=

 

To clarify the process of determination of the TP and Th for different three phase reference 
system voltages cases which may occurred. Figures 13 and 14 are presenting two general 
cases, where: 
• Figures noted as ‘a’ present the reference  three phase voltage system; 
• Figures noted as ‘b’ present the space vector trajectory of the reference  three phase 

voltage system ; 
• Figures noted as ‘c’ present the concerned TP each sampling time, where the reference 

space vector is located; 
• Figures noted as ‘d’ present the concerned Th in which the reference space vector is 

located. 

Case I: unbalanced reference system voltages  
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Fig. 13. Presentation of instantaneous three phase reference voltages, reference space vector, 
TP and Th   
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Case II Unbalanced reference system voltages with the presence of unbalanced harmonics 

 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-500

-400

-300

-200

-100

0

100

200

300

400

500

Time (s)

V
ol

at
ge

 M
ag

n
it
u
de

 (
V

)

 
-400

-200

0

200

400

-400

-200

0

200

400
-150

-100

-50

0

50

100

150

Valpha (v)
Vbeta (V)

V
ga

m
a 

(V
)

 
(a)                                                                          (b) 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time (s)

T
h
e 

N
u
m

be
r 

of
 t
h
e 

T
P

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

5

10

15

20

25

Time (s)

T
h
e 

N
u
m

be
r 

of
 T

H

 
(c)                                                                          (d) 

Fig. 14. Presentation of instantaneous three phase reference voltages, reference space vector, 
TP and Th   

6.3 Calculation of duty times 

To fulfill the principle of the SVPWM as it is mentioned in (9) which can be rewritten as 
follows: 

 
3

0
ref z i i

i

V T T V
=

⋅ = ⋅∑   (30) 

Where: 

 
3

0
z i

i

T T
=

=∑   (31) 

In this equation the a b c− − frame components can be used, either than the use of the 

α β γ− −  frame components of the voltage vectors for the calculation of the duty times, of 

course the same results can be deduced from the use of the two frames. The vectors 1V , 2V  

and 3V   present the edges of the tetrahedron in which the reference vector is lying. So each 

vector can take the sixteen possibilities available by the different switching possibilities. On 

the other hand these vectors have their components in the α β γ− −  frame as follows: 
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  (32) 

 

From (30), (31) and (32) the following expression is deduced: 

 
3

1

1

1
ai fi

i bi fi ref z
g

ci fi

S S

T S S C V T
V

S S

−

⎡ ⎤−
⎢ ⎥
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⎢ ⎥

−⎢ ⎥⎣ ⎦

∑   (33)     

 

In the general case the following equation can be used to calculate the duty time for the 
three components used in the same tetrahedron: 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
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ai fi bj fj ck fk bk fk cj fj
refa

i bi fi ak fk cj fj aj fj ck fk refb

refc
ci fi aj fj bk fk ak fk bj fj
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  (34) 

 

Where: 

 

( ) ( ) ( ) ( ) ( )
3

1

1

ai fi bj fj ck fk bk fk cj fjS S S S S S S S S S

σ =
⎡ ⎤− ⋅ − ⋅ − − − ⋅ −⎣ ⎦∑

  (35) 

 

Variable j  and k  are supposed to simplify the calculation where: 

1 3 ( / 3)j i INT i= + − ⋅ ; ( )2 3 ( 1 / 3)k i INT i= + − ⋅ +       1,2,3i =  

 

A question has to be asked. From one tetrahedron, how the corresponding edges of the 

existing switching vectors can be chosen for the three vectors used in the proposed SVPWM. 

Indeed the choice of the sequence of the vectors used for 1V , 2V  and 3V  in one tetrahedron 

depends on the SVPWM sequencing schematic used [108],[115], in one sampling time it is 

recommended to use four vectors, the fourth one is corresponding to zero vector, as it was 

shown only two switching combination can serve for this situation that is 16V (0000) and 1V  

(1111). On the other hand only one changing state of switches can be accepted when passing 

from the use of one vector to the following vector. For example in tetrahedron 1 the active 

vectors are: 11V (1000), 3V (1001) and 4V (1101), it is clear that if the symmetric sequence 

schematic is used and starts with vector 1V  then the sequence of the use of the other active 

vectors can be realized as follow: 

1V , 11V , 3V , 4V , 10V , 4V , 3V , 11V , 1V  
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Otherwise, if it starts with vector 16V  then the sequence of the active vectors will be 

presented as follow Tab.9: 
16V , 4V , 3V , 11V , 1V , 11V , 3V , 4V , 16V  

 

Active 
vector 

16V  4V  3V  11V  1V  11V  3V  4V  16V  

a

b

c

f

S

S

S

S

 

0 
0 
0 
0 

1 
0 
0 
0 

1 
0 
0 
1 

1 
1 
0 
1 

1 
1 
1 
1 

1 
1 
0 
1 

1 
0 
0 
1 

1 
0 
0 
0 

0 
0 
0 
0 

1
..

0aT  

1
..

0bT  

1
..

0cT  

1
..

0fT  

0

4

t  1

2

t 2

2

t 3

2

t  0

2

t  3

2

t  2

2

t 1

2

t 0

4

t  
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6.4 Applications 

To finalize this chapter two applications are presented here to show the effectiveness of the 
four-leg inverter. The first application is the use of the four-leg inverter to feed a balanced 
resistive linear load under unbalanced voltages. The second application is the use of the 
four-leg inverter as an active power filter, where the main aim is to ensure a sinusoidal 
balanced current circulation in the source side. In the two cases an output filter is needed 
between the point of connection and the inverter, in the first case an “L” filter is used, while 
for the second case an “LCL” filter is used as it is shown in Fig. 15 and Fig. 20. 

6.4.1 Applications1 
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Fig. 15. Four-leg inverter is used as a Voltage Source Inverter ‘VSI’ for feeding balanced 
linear load under unbalanced voltages.  

In this application, the reference unbalanced voltage and the output voltage produced by 
the four leg inverter in the three phases a, b and c are presented in Fig. 16. The currents in 
the four legs are presented in Fig. 17, it is clear that because of the voltage unbalance the 
fourth leg is handling a neutral current. To clarify the flexibility of the four leg inverter and 
the control algorithm used, Fig. 18 shows the truncated prisms and the tetrahedron in which 
the reference voltage space vector is located.  
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Fig. 16. Presentation of three phase reference voltages and the output voltage of the three legs.   
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Fig. 17. Presentation of instantaneous load currents generated by the four legs   
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Fig. 18. Determination of the Truncated Prism TP  and the tetrahedron hT  in which the 

reference voltage space vector is located.    

The presentation of the reference voltage space vector and the load current space vector are 

presented in the both frames α β γ− −  and a b c− − ,where the current is scaled to compare 

the form of the current and the voltage, just it is important to keep in mind that the load is 
purely resistive. 
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Fig. 19. Presentation of the instantaneous space vectors of the three phase reference system 

voltages and load current in α β γ− −  and a b c− − frames ( the current is multiplied by 10, 

to have the same scale with the voltage)    

6.4.2 Applications2 

The application of the fourth leg inverter in the parallel active power filtering has used in 
the last years, the main is to ensure a good compensation in networks with four wires, 
where the three phases currents absorbed from the network have to be balanced, sinusoidal 
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and with a zero shift phase, on the other side the neutral wire has to have a nil current 
circulating toward the neutral of power system source. Figures 21, 22, 23 and 24 show the 
behavior of the four leg inverter to compensation the harmonics in the current. The neutral 
current of the source in nil as it is shown in Fig 24. Finally the current space vectors of the 

load, the active filter and the source in the both frames α β γ− −  and a b c− −  are presented. 
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Fig. 20. Four-leg inverter is used as a Parallel Active Power Filter  ‘APF’ for ensuring a 
sinusoidal source current. 
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Fig. 21. Presentation of the instantaneous currents of Load, reference, active power filter and 
source of phase ‘a’ 
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Fig. 22. Presentation of the instantaneous currents of Load, reference, active power filter and 
source of phase ‘b’ 
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Fig. 23. Presentation of the instantaneous currents of Load, reference, active power filter and 
source of phase ‘c’ 
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Fig. 24. Presentation of the instantaneous currents of Load, reference, active power filter and 
source of the fourth neutral leg ‘f’ 
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Fig. 25. Presentation of the instantaneous currents space vectors of the load, active power 

filter and the source in α β γ− −  and a b c− − frames  

7. Conclusion 

This chapter deals with the presentation of different control algorithm families of four leg 
inverter. Indeed four families were presented with short theoretical mathematical 

explanation, where the first one is based on α β γ− −  frame presentation of the reference 

space vector, the second one is based on a b c− −  frame where there is no need for matrix 

transformation. The third one which was presented recently where the determination of the 
space vector is avoided and there is no need to know which tetrahedron is containing the 
space vector, it is based on the direct values of the three components following the three 
phases, the duty time can be evaluated without the passage through the special location of 
the space vector. The fourth method in benefiting from the first and second method, where 
the matrix used for the calculation of the duty time containing simple operation and the 
elements are just 0,1 and -1. As a result the four methods can lead to the same results; the 
challenge now is how the method used can be implemented to ensure low cost time 
calculation, firstly on two level inverters and later for multilevel inverters. But it is 
important to mention that the SVMPWM gave a great flexibility and helps in improving the 
technical and economical aspect using the four leg inverter in several applications. 

8. References 

[1] Ionel Vechiu, Octavian Curea, Haritza Camblong, “Transient Operation of a Four-Leg 
Inverter for Autonomous Applications With Unbalanced Load,” IEEE 
TRANSACTIONS ON POWER ELECTRONICS, VOL. 25, NO. 2, FEBRUARY 2010 

[2] L. Yunwei, D. M. Vilathgamuwa, and L. P. Chiang, “Microgrid power quality 
enhancement using a three-phase four-wire grid-interfacing compensator,” IEEE 
Trans. Power Electron., vol. 19, no. 1, pp. 1707–1719, Nov./Dec. 2005. 

[3] T. Senjyu, T. Nakaji, K. Uezato, and T. Funabashi, “A hybrid power system using 
alternative energy facilities in isolated island,” IEEE Trans. Energy Convers, vol. 20, 
no. 2, pp. 406–414, Jun. 2005. 

[4] M. N. Marwali, D. Min, and A. Keyhani, “Robust stability analysis of voltage and current 
control for distributed generation systems,” IEEE Trans. Energy Convers., vol. 21, 
no. 2, pp. 516–526, Jun. 2006. 

www.intechopen.com



 Electric Machines and Drives 

 

258 

[5] C. A. Quinn and N. Mohan, “Active filtering of harmonic currents in three-phase, four-
wire systems with three-phase and single-phase nonlinear loads,” in Proc. IEEE-
APEC’93 Conf., 1993, pp. 841–846. 

[6] A. Campos, G.. Joos, P. D. Ziogas, and J. F. Lindsay, “Analysis and design of a series 
voltage unbalance compensator based on a three-phase VSI operating with 
unbalanced switching functions,” IEEE Trans. Power Electron., vol. 10, pp. 269–274, 
May 1994. 

[7] S.-J. Lee and S.-K. Sul, “A new series voltage compensator scheme for the unbalanced 
utility conditions,” in Proc. EPE’01, 2001. 

[8] D. Shen and P. W. Lehn, “Fixed-frequency space-vector-modulation control for three-
phase four-leg active power filters,” in Proc. Inst.Elect. Eng., vol. 149, July 2002, pp. 
268–274. 

[9] Zhihong Ye; Boroyevich, D.; Kun Xing; Lee, F.C.; Changrong Liu “Active common-mode 
filter for inverter power supplies with unbalanced and nonlinear load” Thirty-
Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, Vol., pp. 1858-
1863, 3-7 Oct. 1999. 

[10] A. Julian, R. Cuzner, G. Oriti, and T. Lipo, “Active filtering for common mode 
conducted EMI reduction in voltage source inverters ” Applied Power Electronics 
Conference APEC 98 , Anaheim, CA, 1998, pp. 934–939. 

[11] Z. Lin, L.Mei, Z. Luowei, Z. Xiaojun, and Y. Yilin, “Application of a fourleg ASVG based 
on 3D SVPWM in compensating the harmful currents of unbalanced system,” in 
Proc. IEEE Power Syst. Technol., 2002, vol. 2, pp. 1045–1050. 

[12] P. Lohia, M. K. Mishra, K. Karthikeyan, and K. Vasudevan, “A minimally switched 
control algorithm for three-phase four-leg VSI topology to compensate unbalanced 
and nonlinear load,” Trans. Power Electron., vol. 23, no. 4, pp. 1935–1944, Jul. 2008. 

[13] C. A. Quinn, N. Mohan, “Active Filtering of harmonic Currents in Three-Phase, Four-
Wire Systems with Three-Phase and Single-Phase Non-Linear Loads”, IEEE 
Applied Power Electronics Conference (APEC), pp. 829-836, 1992. 

[14] A. Nava-Segura, G. Mino-Aguilar, “Four-Branches-Inverter-Based-Active-Filter for 
Unbalanced 3-Phase 4-Wires Electrical Distribution Systems”, IEEE Industry 
Applications Conference (IAS), pp. 2503-2508, 2000. 

[15] P. Rodriguez, R. Pindado, J. Bergas, “Alternative Topology For Three-Phase Four-Wire 
PWM Converters Applied to a Shunt Active Power Filter”, IEEE Proceedings of 
Industrial Electronics Society (IECON), pp. 2939-2944, 2002. 

[16] N. Mendalek, “Modeling and Control of Three-Phase Four-Leg Split-Capacitor Shunt 
Active Power Filter,” ACTEA '09. International Conference on Advances in 
Computational Tools for Engineering Applications, pp. 121-126. July 15-17, 2009 
Zouk Mosbeh, Lebanon.  

[17] Seyed Hossein Hosseini, Tohid Nouri2 and Mehran Sabahi, “A Novel Hybrid Active 
Filter for Power Quality Improvement and Neutral Current Cancellation,” 
International Conference on Electrical and Electronics Engineering, ELECO 2009, 
pp. I-244 - I-248.2009.  

[18] Valdez, A.A.; Escobar, G.; Torres-Olguin, R.E, “A novel model-based controller for a 
three-phase four-wire shunt active filter,” 37th IEEE Power Electronics Specialists 
Conference, 2006. PESC '06.   

[19] M. Aredes, K. Heumann, J. Hafner, “A Three-phase Four-Wire Shunt Active Filter 
Employing a Conventional Three-Leg Converter”, European Power Electronics 
Journal, Vol. 6, no 3-4, pp 54-59, December, 1996. 

www.intechopen.com



The Space Vector Modulation PWM Control Methods Applied on Four Leg Inverters   

 

259 

[20] Verdelho P., Marques G., “A Neutral Current Electronic Compensator”, Industrial 
Electronics Conference, 1998. 

[21] Fabien Meinguet, Johan Gyselinck, “Control Strategies and Reconfiguration of Four-Leg 
Inverter PMSM Drives in Case of Single-Phase Open-Circuit Faults,” , pp. 299-
304,2009 

[22] Fabien Meinguet*, Eric Semail§, lohan Gyselinck, “Enhanced Control of a PMSM 
Supplied by a Four-Leg Voltage Source Inverter Using the Homopolar Torque,” 
Proceedings of the 2008 International Conference on Electrical Machines,2008 

[23] R.L.A Ribeirol, C.B. Jacobina, A.M.N. Lima, E.R.C. da Silva, “A Strategy for Improving 
Reliability of Motor Drive Systems Using a Four-Leg Three-phase Converter,” ,pp. 
385-390,2001 

[24] Drazen Dujic, Martin Jones, Member, “A General PWM Method for a (2n + 1)-Leg 
Inverter Supplying n Three-Phase Machines,” IEEE Transaction on Industrial 
electronics, Vol. 56, No. 10,pp. 4107-4118, October 2009 

[25] A. Bouscayrol, S. Siala*, M. Pietrzak-David, B. deFomel, “Four-Legged PWM inverters 
feeding two induction motors for a Vehicle drive applications,”, Power 
Elecironi~zsa nd Variable-Speed Drivers, pp. 700-705,26 - 28 October 1994, 

[26] Tomáš Glasberger, Zdenek Peroutka, “Control of Power Supply Unit for Military 
Vehicles Based on Four-Leg Three-Phase VSI with Proportional-Resonant 
Controllers,” 2008 13th International Power Electronics and Motion Control 
Conference (EPE-PEMC ), pp. 1268-1273,2008 

[27] Desheng Liu Miao Guan Lei Zhang Yong Wang, “ Research on the Three-Phase Four-
Leg Aeronautical Static Inverter Based on Three-dimensional Space Vector 
Modulation in abc Coordinates,” The Ninth International Conference on Electronic 
Measurement & Instruments, (ICEMI),pp. 729-732,2009 

[28] Zdenĕk Peroutka, Tomáš Glasberger and Jan Molnár, “Design of New Diesel-Electric 
Power Supply Unit for Military Vehicles”, 14th International Power Electronics and 
Motion Control Conference, EPE-PEMC 2010,pp. 101-108,2010 

[29] Jing Li, Fang Zhuo, Jinjun Liu, Xianwei Wang, Bo Wen, Lin Wang, Song Ni, “Study on 
Unified Control of Grid-connected Generation and Harmonic Compensation in 
Dual-stage High-capacity PV system,”,pp. 3336-3342,2009 

[30] Said El-Barbari and W. Hofmann, “Control of a 4 Leg Inverter for Standalone 
Photovoltaic Systems,”,pp.348-354,2001 

[31] Yogesh K. Chauhan, Sanjay K. Jain, and Bhim Singh, “Transient Performance of Three-
Phase Four-Wire Stand Alone Supply System with Static Converter Employed for 
Industrial Loads,”2008 

[32] Salem Fouzey, Said El-Barbari4 W. Hofmann, Caner Unsalver, “A new space vector 
modulation scheme for three phase four wire inverter for standalone photovoltaic 
systems,” 

[33] Egon Ortjohann, Arturo Arias, Danny Morton, Alaa Mohd, Nedzad Hamsic, Osama 
Omari, “Grid-Forming Three-Phase Inverters for unbalanced loads in hybrid power 
system,”,pp. 2396-2399,2006 

[34] Manuel A. Perales,M.M. Prats,Ramón Portillo,José L.Mora,José I.León, and Leopoldo 
G.Franquelo, “Three-Dimensional Space Vector Modulation in abc  
CoordinatesforFour-Leg Voltage Source Converters”, IEEE Power Elect. 
Letters,Vol.1, No.4, pp 104-109,  December 2003. 

[35] M. M. Prats, L. G. Franquelo. J. I Leon. R. Portillo,E. Galvan and J. M. Carrasco, "A SVM-
3D generalized algorithm for multilevel converters".. Proc. IEEE IECON.'03, 2003. 
pp. 24-29. 

www.intechopen.com



 Electric Machines and Drives 

 

260 

[36] M. Aredes, J. Hafner, and K. Heumann, “Three-phase four-wire shunt active filter 
control strategies,” IEEE Trans. Power Electron., vol. 12, no. 2, pp. 311–318, Mar. 
1997. 

[37] C. J. Zhan, A. Arulampalam, and N. Jenkins, “Four-wire dynamic voltage restorer based 
on a three-dimensional voltage space vector PWM algorithm,” IEEE. Trans. Power 
Electron., vol. 18, no. 4, pp.1093–1102, Jul. 2003. 

[38] R. Faranda and I. Valade, “UPQC compensation strategy and design aimed at reducing 
losses,” in Proc. IEEE Int. Symp. Ind. Electron., Jul. 2002, vol. 4, pp. 1264–1270. 

[39] Jun Liang, Tim C. Green, Chunmei Feng, and George Weiss, “Increasing Voltage 
Utilization in Split-Link Four-Wire Inverters,” IEEE TRANSACTIONS ON POWER 
ELECTRONICS, VOL. 24, NO. 6,pp. 1562-1569, JUNE 2009 

[40] Changjiang Zhan, Atputharajah Arulampalam, Nicholas Jenkins, “Four-Wire Dynamic 
Voltage Restorer Based on a Three-Dimensional Voltage  Space Vector PWM 
Algorithm,” IEEE Trans.  On Power electronics, Vol. 18, No. 4,pp.1093-1102, July 
2003 

[41] H. Pinheiro, F. Botterbn, C. Rech, L. Schuch, R. F. Camargo, H. L. Hey, H. A. Griindling, 
J. R. Pinheiro, “Space Vector Modulation for Voltage-Source Inverters: A Unified 
Approach,”,pp. 23-29,2002 

[42] Ning-Yi Dai, Chi-Seng Lam, Man-Chung Wong , Ying-Duo Han, “Application of 3D 
Direct PWM in Parallel Power Quality Compensators in Three-phase Four-wire 
Systems,”, pp. 3220-3225,2008 

[43] T.H. Nguyen , Paul K.W. Chan, Y. Shrivastava,  S.Y.R. Hui, “A Three-Dimensional 
Space Vector Modulation Scheme for Three-Level Three-wired Neutral Point 
Clamped Converters,”,pp. 2307-2314,2005 

[44] Jing Tang, Man-Chung Wong , Yingduo Hun, “Novel Five-Level Inverter PWM Control 
in 3-Phase 4-Wire System for Power Quality,” ,pp. 579-584,2002  

[45] Ning-Yi Dai , Man-Chung Wong, Yin-Duo Han, “Controlling Tri-level Center-Split 
Power Quality Compensator by 3-Dimensional Space Vector Modulation,” , pp. 
1692-1697,2003 

[46] Man-Chung Wong, Jing Tang, Ying-Duo Han, “Cylindrical Coordinate Control of 
Three-Dimensional PWM Technique in Three-Phase Four-Wired Trilevel Inverter,” 
IEEE Transaction On Power Electronics, Vol. 18, No. 1,pp. 208-220, January 2003 

[47] Ning-Yi Dai,Man-Chung Wong,Ying-Duo Han, “Three-Leg Center-Split Inverter 
Controlled by 3DSVM under dc Variation,”,pp. 1362-1367 

[48] Salem M. Ali, Marian P. Kazmierkowski, “PWM Voltage and Current Control of Four-
Leg VSI,”,pp. 196-201,1998 

[49] Ojo, O.; Kshirsagar, P.M. “Concise modulation strategies for four-leg voltage source 
inverters” IEEE 33rd Annual Power Electronics Specialists Conference,  pesc 02. 
vol.1, pp. 238 – 243, 2002.  

[50] Ojo, O.; Kshirsagar, P.M. “Concise modulation strategies for four-leg voltage source 
inverters” Power Electronics, IEEE Transactions on , Vol. 19, Issue: 1 , pp. 46 –53, 
Jan 2004. 

[51] Liu, C., Peng, D., Lai, J., Lee, F.C., Boroyevich, D., Zhang, R. “Fourlegged converter 3-D 
SVM scheme over-modulation study” Applied Power Electronics Conference and 
Exposition, APEC Fifteenth Annual IEEE , Vol.1 , pp. 562 -568 , 2000. 

[52] Gan Dong, Olorunfemi Ojo, “Design Issues of Natural Reference Frame Current 
Regulators with Application to Four Leg onverters”, Proc. Of IEEE-PESC ’05, pp. 
1370-1376. 

www.intechopen.com



The Space Vector Modulation PWM Control Methods Applied on Four Leg Inverters   

 

261 

[53] Gan Dong, Olorunfemi Ojo, “Current Regulation in Four-Leg Voltage-Source 
Converters”, IEEE Transactions on Industrial Electronics, vol.54, no 4, Aug. 2007, 
pp. 2095-2105. 

[54] Fanghua Zhang, Yangguang Yan, “Selective Harmonic Elimination PWM Control 
Scheme on a Three-Phase Four-Leg Voltage Source Inverter,” IEEE 
TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 7, JULY 2009. 

[55] M. J. Ryan, R. W. De Doncker, and R. D. Lorenz, “Decoupled control of a 4-leg inverter 
�via a new 4 4 transformation matrix,” in Proc. IEEE Power Electron. Spec. Conf., 

1999, pp. 187–192. 
[56] Jang-Hwan Kim, Seung-Ki Sul,Prasad N. Enjeti, “A Carrier-Based PWM Method with 

Optimal Switching Sequence for a Multi-level Four-leg VSI,” IAS,pp. 99-105, 2005 
[57] Maxim A, Dybko, Sergey S. Tumaev, Sergey V. Brovanov, “A Power Losses Calculation 

in a Four-legged Three-level Voltage Source Inverter,” 10th International 
Conference and seminar EDM, Sections VI, pp. 365-369, JULY 1-6, ERLAGOL,2009 

[58] Worrajak Muangjai, Suttichai Premrudeepreechacharn, “Implementation of a Carrier-
based Three-dimensional Space Vector PWM Technique for Three-phase Four-leg 
Voltage Source Converter with Microcontroller,” ICIEA,pp. 837-841, 2009 

[59] Praveen Kumar M, Mahesh Kumar Mishra, Sandeep Joseph, “Switching Minimization 
of Three-phase Four-leg Dynamic Voltage Restorer,” 2009 

[60] Salem M. Ali, Marian P. Kazmierkowski, “Current Regulation of Four-Leg PWM-
VSI,”,pp. 1853-1858,1998 

[61] Verdelho, P.; Marques, G.D, “A current control system based in ┙┚0 variables for a four-
leg PWM voltage converter,” Proceedings of the 24th Annual Conference of the 
IEEE Industrial Electronics Society, 1998. IECON '98. Vol. 3, pp. 1847 – 1852.  

[62] Reza Nasiri, Student, Ahmad Radan, “Pole-Placement Control Strategy for 4-Leg 
Voltage-Source Inverters,” 1st Power Electronic & Drive Systems & Technologies 
Conference,pp.74-79,2010 

[63] V. Yaramasu, J. Rodriguez, B. Wu, M. Rivera, A. Wilson and C. Rojas, “A Simple and 
Effective Solution for Superior Performance in Two-Level Four-Leg Voltage Source 
Inverters: Predictive Voltage Control,”  

[64] Nikhil Prabhakar, Mahesh K. Mishra, “Dynamic Hysteresis Current Control to 
Minimize Switching for Three-Phase Four-Leg VSI Topology to Compensate 
Nonlinear Load,” IEEE Trans ON Power  Electronics, Vol. 25, No. 8,pp. 1935-1942, 
August 2010  

[65] N.V. Nho and M.J. Youn, “Carrier PWM algorithm with optimised switching loss for 
three-phase four-leg multilevel inverters,” ELECTRONICS LETTERS Vol. 41 No. 1, 
6th January 2005 

[66] N.V. Nho and M.J. Youn, “Carrier PWM algorithm with optimised switching loss for 
three-phase four-leg multilevel inverters,” ELECTRONICS LETTERS Vol. 41 No. 1, 
6th January 2005 

[67] Salvador Ceballos, Josep Pou, Jordi Zaragoza, José L. Martín, Eider Robles, Igor Gabiola, 
Pedro Ibáñez, “Efficient Modulation Technique for a Four-Leg Fault-Tolerant 
Neutral-Point-Clamped Inverter,” IEEE Trans On Ind. Elect.Vol. 55, No. 3,pp. 1067-
1074, March 2008 

[68] O´ scar Lo´pez, Jacobo A´ lvarez, Jesu´s Doval-Gandoy, Francisco Freijedo, Alfonso 
Lago and Carlos M. Pen˜alver, “Four-Dimensional Space Vector PWM Algorithm 
for Multilevel Four-Leg Converters,” 2008 

[69] Fernando Botteron, Robinson F. de Camargo, Humberto Pinheiro Hilton A. Griindling, 
Jose R. Pinheiro and Helio L. Hey, “On the Space Vector Modulation and Limiting 

www.intechopen.com



 Electric Machines and Drives 

 

262 

Algorithms for Three-phase Four-Leg Voltage Source Inverter in abc Coordinates,” 
, pp. 12-17,2002 

[70] Manuel A. Perales, M. M. Prats, Ramon Portillo, Jose L. Mora, Leopoldo G. Franquelo, 
“Three Dimensional Space Vector Modulation for four-leg inverters using natural 
coordinates,”, pp. 1129-1134,2004 

[71] Rui Wu, Donghua chen, shaojun xie, “ A Three-dimentsional Space Vector Modulation 
Algorithm in A-B-C Coordinate Implementation By FPGA”,pp. 1017-1075,2005 

[72] Man.Wong, J.Tang and Y.Han “Three-Dimensional Pulse-Width Modulation Technique 
in Three-level Power Inverters for Three-Phase Four-Wired System”, IEEE Trans. 
on Power Electronics, 16(3), pp.418 -427, May 2001. 

[73] A.Kouzou, Mahmoudi M.O, Boucherit. M.S, “Comparative Study of the SVPWM 3D 
Algorithms Used for four-leg inverters”, SSD09,6th International Multi-Conference 
on Systems, signals and Devices. Djerba Tunisia. 23-26 March 2009. 

[74] Richard Zhang, V. Himamshu Prasad, Dushan Boroyevich and FredC.Lee, “Three-
Dimensional Space Vector Modulation for Four-Leg Voltage-Source Converters”, 
IEEE Transaction on Power Electronics, Vol.17, No.3, pp 314-326, May2002 

[75] R. Zhang, D. Boroyevich, H. Prasad, H. Mao, F. C. Lee, and S Dubovsky, “A three-phase 
inverter with a neutral leg with space vector modulation,” in Proc. IEEE-APEC’97 
Conf., 1997, pp. 857–863. 

[76] R. Zhang, H. Prasad, D. Boroyevich, and F. C. Lee, “Analysis and design of a three-
phase inverter with a neutral leg,” in Proc. EPE’97 Conf., 1997, pp. 1.170–1.175. 

[77] H. Prasad, D. Boroyevich, and R. Zhang, “Analysis and comparison of space vector 
modulation schemes for a four-leg inverter,” in Proc. IEEEAPEC’ 97 Conf., 1997, 
pp. 864–871. 

[78] E. Ortjohann, A. Mohd, N. Hamsic, A. Al-Daib, M.Lingemann, “ three-Dementional 
Space Vector Modulation Algorithm for Three-leg Four Wire voltage source 
Inverters,”  POWERENG,pp. 605-610, April 12-14,2007, Setubal, Portugal 

[79] M. G. Villala, E. Ruppert F, «  3-D Space vector PWM for Three-leg four-wire Source 
Inverter,” 35th annual IEEE Power electronics Specialists conference,pp. 3946-3951, 
Aachen, Germany,2004 

[80] E. Ortjohann, A. Mohd, N. Hamsic, M. Lingemann, W. Sinsukthavorn, D. Morton,  “A 
Novel Space Vector Modulation Control Strategy for Three-leg Four-Wire Voltage 
Source Inverters,” 

[81] Xiangsheng Li, Zhiquan Deng, Zhida Chen, and Qingzhao Fei, “Analysis and 
Simplification of Three-dimensional Space Vector PWM for Three-phase Four-leg 
Inverters,” 

[82] Kouzou A, Mahmoudi M.O, Boucherit M.S, “A new 3D-SVPWM algorithm for Four-leg 
Inverters,” IEEE International Electric Machines and Drives Conference, IEMDC 
'09.pp. 1674 – 1681, May 2009. Miami, Florida, USA 

 

www.intechopen.com



Electric Machines and Drives

Edited by Dr. Miroslav Chomat

ISBN 978-953-307-548-8

Hard cover, 262 pages

Publisher InTech

Published online 28, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The subject of this book is an important and diverse field of electric machines and drives. The twelve chapters

of the book written by renowned authors, both academics and practitioners, cover a large part of the field of

electric machines and drives. Various types of electric machines, including three-phase and single-phase

induction machines or doubly fed machines, are addressed. Most of the chapters focus on modern control

methods of induction-machine drives, such as vector and direct torque control. Among others, the book

addresses sensorless control techniques, modulation strategies, parameter identification, artificial intelligence,

operation under harsh or failure conditions, and modelling of electric or magnetic quantities in electric

machines. Several chapters give an insight into the problem of minimizing losses in electric machines and

increasing the overall energy efficiency of electric drives.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kouzou A, Mahmoudi M.O and Boucherit M.S (2011). The Space Vector Modulation PWM Control Methods

Applied on Four Leg Inverters, Electric Machines and Drives, Dr. Miroslav Chomat (Ed.), ISBN: 978-953-307-

548-8, InTech, Available from: http://www.intechopen.com/books/electric-machines-and-drives/the-space-

vector-modulation-pwm-control-methods-applied-on-four-leg-inverters



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


