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1. Introduction

DFIG wind turbines are nowadays more widely used especially in large wind farms. The
main reason for their popularity when connected to the electrical network is their ability to
supply power at constant voltage and frequency while the rotor speed varies, which makes
it suitable for applications with variable speed, see for instance (10), (11). Additionally,
when a bidirectional AC-AC converter is used in the rotor circuit, the speed range can be
extended above its synchronous value recovering power in the regenerative operating mode
of the machine. The DFIG concept also provides the possibility to control the overall system
power factor. A DFIG wind turbine utilizes a wound rotor that is supplied from a frequency
converter, providing speed control together with terminal voltage and power factor control
for the overall system.

DFIGs have been traditionally used to convert mechanical power into electrical power
operating near synchronous speed. Some advantages of DFIGs over synchronous or squirrel
cage generators include the high overall efficiency of the system and the low power rating
of the converter, which is only rated by the maximum rotor voltage and current. In a
typical scenario the prime mover is running at constant speed, and the main concern is the
static optimization of the power flow from the primary energy source to the grid. A good
introduction to the operational characteristic of the grid connected DFIG can be found in (5).
We consider in this paper the isolated operation of a DFIG driven by a prime mover, with
its stator connected to a load—which is in this case an IM. Isolated generating units are
economically attractive, hence increasingly popular, in the new era of the deregulated market.
The possibility of a DFIG supplying an isolated load has been indicated in (6), (7) where some
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114 Electric Machines and Drives

mention is made of the steady-state control problem. In (8) a system is presented in which the
rotor is supplied from a battery via a PWM converter with experimental results from a 200W
prototype. A control system based on regulating the rms voltage of the DFIG is used which
results in large voltage deviations and very slow recovery following load changes. See also
(9; 12) where feedback linearization and sliding mode principles are used for the design of the
motor speed controller.

This paper presents a dynamic model of the DFIG-IM and proves that this system is
Blondel-Park transformable. It is also shown that the zero dynamics is unstable for a certain
operating regime. We implemented the passivity-based controller (PBC) that we proposed
in (3) to a 200W DFIG interconnected with an IM prototype available in IRII-UPC (Institute
of Robotics and Industrial Informatics - University Polytechnic of Catalonia). The setup
is controlled using a computer running RT-Linux. The whole system is decomposed in a
mechanical subsystem which plays the role of the mechanical speed loop, controlled by a
classical PI and an electrical subsystem controlled by the PBC where the model inversion was
used to build a reference model.

The proposed PBC achieves the tracking control of the IM mechanical rotor speed and flux
norm, the practical advantage of the PBC consists of using only the measurements of the two
mechanical coordinates (Motor and Generator positions). The experiments have shown that
the PBC is robust to variations in the machines” parameters.

In addition to the PBC applied to the electrical subsystem, we proposed a classical PI
controller, where the rotor voltage control law is obtained via a control of the stator currents
toward their desired values, those latter are obtained by the inversion of the model.

In the sequel, and for the control of the electrical subsystem a combination of the PBC +
Proportional action for the control of the stator currents is applied. The last controller is a
combination of PBC + PI action for the control of the stator currents.

The stability analysis is presented. —The simulations and practical results show the
effectiveness of the proposed solutions, and robustness tests on account of variations in
the machines’” parameters are also presented to highlight the performance of the different
controllers.

The main disadvantage of the DFIG is the slip rings, which reduce the life time of the
machine and increases the maintenance costs. To overcome this drawback an alternative
machine arrangement is proposed, in section 6, which is the Brushless Doubly Fed twin
Induction Generator (BDFTIG). The system is anticipated as an advanced solution to the
conventional doubly fed induction generator (DFIG) to decrease the maintenance cost and
develop the system reliability of the wind turbine system. The proposed BDFTIG employs two
cascaded induction machines each consisting of two wound rotors, connected in cascade to
eliminate the brushes and copper rings in the DFIG. The dynamic model of BDFTIG with two
machines’ rotors electromechanically coupled in the back-to-back configuration is developed
and implemented using Matlab/Simulink.

2. System configuration and mathematical model

The configuration of the system considered in this paper is depicted in Fig.1. It consists of a
wound rotor DFIG, a squirrel cage IM and an external mechanical device that can supply or
extract mechanical power, e.g., a flywheel inertia. The stator windings of the IM are connected
to the stator windings of the generator whose rotor voltage is regulated by a bidirectional
converter. The electrical equivalent circuit is shown in Fig. 2. The main interest in this
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configuration is that it permits a bidirectional power flow between the motor, which may
operate in regenerative mode, and the generator.

Battery bank i Pri hanical !
with converter H rimary mechanica i

! energy source

1

DC-bus

Controller
(PI+PBC)

— Inverter

v

Fig. 2. Equivalent circuit of the DFIG with IM.

In Fig. 3, we show a power port viewpoint description of the system. The DFIG is a three—port
system with conjugated power port variables! prime mover torque and speed, (17, wg), and
rotor and stator voltages and currents, (v,g,1,G), (vsG, isg), respectively. The IM, on the other
hand, is a two—port system with port variables motor load torque and speed, (trp, wp), and
stator voltages and currents. The DFIG and the IM are coupled through the interconnection

UsG = UsMm
s = —ism- 1)
Lm w,
_’ _»
er er DFIG VSM = VSG M

— _TLM

“’G‘T ‘+ _‘TLG

Fig. 3. Power port representation of the DFIG with IM.

To obtain the mathematical model of the overall system ideal symmetrical phases with
uniform air-gap and sinusoidally distributed phase windings are assumed. The permeability

! The qualifier “conjugated power" is used to stress the fact that the product of the port variables has the
units of power.
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116 Electric Machines and Drives

of the fully laminated cores is assumed to be infinite, and saturation, iron losses, end winding
and slot effects are neglected. Only linear magnetic materials are considered, and it is further
assumed that all parameters are constant and known. Under these assumptions, the voltage
balance equations for the machines are

Asg +Rsglsc = UsG 2)
}\rG +Rigiic = UG 3)
}\SM + RsmisM = Usm 4)
Am+Remirm = 0 (5)

where Asg, A6 (Asp, Arm) are the stator and rotor fluxes of the DFIG (IM, resp.), Lsg, Ly, Linc
(Lsm, Ly pm, Liyp) are the stator, rotor, and mutual inductances of the DFIG (IM, resp.); Ry, R, g
(Rsm, Ry p) are the stator and rotor resistances of the DFIG (IM, resp.).

The interconnection (1) induces an order reduction in the system. To eliminate the redundant
coordinates, and preserving the structure needed for application of the PBC, we define

AscM = AsGg — Asm

which upon replacement in the equations above, and with some simple manipulations, yields
the equation

A+ Ri = Bu,g (6)

where we have defined the vector signals

)\rG irG
A= ASGM ;1= IsG ’
ArM LM

and the resistance and input matrices

Ric I, (Rsg+R I, RymI
R:diag{ \r,G/ 2 ( sG SMZ 2 \\r/]\é 2 }, B— [ I, 0 ]TER6X2
Ry R, R3

To complete the model of the electrical subsystem, we recall that fluxes and currents are
related through the inductance matrix by

A = L(0)i, 7)
where the latter takes in this case the form
Lich LmGe_]”GGG 0
L(0) = | Lmce!"e® (L +Lam)la  —Lymel"mPum (8)
0 _LmMe_]nMeM Lerz

where ng, n) denote the number of pole pairs, 6,05 the mechanical rotor positions (with
respect to the stator) and to simplify the notation we have introduced

o — [ e ], |- [ 0 -1 ] T N [ cos(x) —sin(x) } (T,

Om 1 0 sin(x)  cos(x)
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1 [LrM(LsG + LsM) - L%qM]IZ _LmGLrMeilnceG _L111GL111Me7](HGQG7”M‘9M>
L71(0) = A —LgLryel 6% LicLimD Ly Lype! ™M 9)
_LmGLmMel(ncec—nMem) L,cLype”/"Mom [L,G(Lsg + Lop) — L%nGM2
o[t L
/ /
Ly Ly L
where
2 2
A = Ly[Lym(LsG + Lsm) — Liym] — LemLiyg <0 (11)
We recall that, due to physical considerations, R > 0, L(8) = LT(f) > 0and L71() =
T
L= () > 0.

A state-space model of the (6-th order) electrical subsystem is finally obtained replacing (7)
in (6) as

Ye:A+RL(O)"'A = Bo,g (12)
The mechanical dynamics are obtained from Newton’s second law and are given by
Yot JmO 4+ B =T — 11 (13)

where [, = diag{Jg, Jm} > 0 is the mechanical inertia matrix, By, = diag{Bg, By} > 0
contains the damping coefficients, 1, = [11g, 7L M]T are the external torques, that we will
assume constant in the sequel. The generated torques are calculated as usual from

T= { ;i } - —;;9 (AT[L(G)]_lA). (14)

From (7), we obtain the alternative expression

T= %a% (iTL(O)i> .

The following equivalent representations of the torques, that are obtained from direct
calculations using (7), (8) and (14), will be used in the sequel

[ —Lugi,gJe /"%isg
[T (15)
- _LmMiZG]e]nMGMirM

_Rscﬁ—icRszv{)‘\zGM](AsGM_LmMelnMGMirM) o
- 16

nm AT
Rom ArM]ArM

2.1 Modeling of the DFIG-IM in the stator frame of the two machines
It has been shown in (4) and (3) that the DFIG-IM is Blondel-Park transformable using the
following rotating matrix:

elJo) 0 0
Rot(c,0c,0pm) = | 0  eUlotncde)) 0 (17)
0 0 eJ(o+ncbc—nmbm))
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where ¢ is an arbitrary angle.
The model of the DFIG-IM in the stator frame of the two machines is given by (see (4) and (3)
for in depth details):

~ ~

Ma al, —ngg] bl 0 e I
Asmc | +| ab—ngbs] el —ch+npom] Asvc | =| L | oG
A 0 —dl  chh —npOm] ArM 0 (18)
ARSI = ARE
JM@wMm 0  Bum wm — AL cTArm —TLM
or
e _ _ ?;'G [ DL
Asmc |+ (R+Lgngbe + Lynmom) | ism | = | L | Org
ArM irM | 0 (19)
[ Jewa ]+ [ Bg 0 } [ we ]Jr{ fAimcIAG :{ e }
JM@wm 0  Bum wm —fALcTAm —TLM

Aspmc corresponds to the total leakage flux of the two machines referred to the stators of the
machines.
Lspic represent the total leakage inductance.

with
R.cl 0 0
R=1 Righ (Rsg+Rsm)l —Rymb
0 0 Ryl
7 J o0 0 0 0
Lec=Lmc| =] J O |etly=Lym| 0O ] ]
0 0 0 0 —J —J

. e 5 1-1 5 11 5 1-1 5 -1
with the positive parameters: a = R,gLy;, b = RygL 1 ¢ = RemLy 4 = RemLoye

e= (I/{\rc + Rsg + Rspp + R\r M)Ls_]\}IG' f= Ls_A}IG' and the following transformations:

~ LinG jnce 24 LG jnco

ArG — L_e]ﬂc GArGr U6 = L_e]nc Ger
rG rG

T LmM 0 -~ LrG Oc:

Mmoo = I el MAr M, IrG = L el “iyG
rM mG

3. Properties of the model
In this section, we derive some passivity and geometric properties of the model that will be

instrumental to carry out our controller design.

3.1 Passivity
An explicit power port representation of the DFIG interconnected to the IM is presented in
Fig.4
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VrG irG
— —
.G WG
— D — .
. iov
lsG S >
VsM = VsG
2
-TMm Wy
—> —>

Fig. 4. Explicit power port representation of the DFIG with IM.

Claim 1. The interconnection of the DFIG with the IM presented in the explicit power port

UrG IrG
representation in Fig.4 is a passive system? with the passive map TG = | —wg
—TLM WM
)M UrG e
Proof. Consider the Fig. 4, % = [ > ] is passive = TG — | —wg | ispassive ?
M
—TLM WM

For this purpose, we have to prove that [ (UrTGirG — TLGgWG — TLMCUM) > 0. We know that
each machine separately is passive (see [1])

2 is a passive system < / (U’TGZ',,G — T cwg + iSTMst> >0 (20)
2p is a passive system < / (UsTcisG — TLMCUM> >0 (21)

where equation (1) has been used in (20) and (21). Let’s consider

d £ / (U;Girc — TL.gWwg + isTMUsM> >0 (22)
Using the energy conserving principle [ il,,0p = — [il 056 yields
d= / <U;TGirG ~ TLGC‘)G> — /iSTGUSG (23)
From (21) we have
—/zk%cé—i/UMwM (24)
Finally (23) and (24) yields
/(#ﬁm—mec—HMwM>2d20 (25)

Hence, the passivity of the DFIG interconnected to the IM is proven
00od

2 Passive systems are defined here with no causality relation assumed among the port variables (13). This,
more natural, definition is more suitable for applications where power flow (and not signal behaviour)
is the primary concern.
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4. Zero dynamics

For the IM speed control, we are interested in the internal behaviour of the system when the
motor torque Ty is constant. In addition, for practical considerations, we are interested in the
control of the IM flux norm |A, |, where | - | is the Euclidean norm.

For the study of the zero dynamics regarding these two outputs, we consider the DFIG-IM
model® given by (18).

The control 7, is determined to obtain the desired equilibrium points of the DFIG-IM:

bc = 6m =0, g = 04 = Constant, On = 9'% = Constant,

1.6 = Tr.co = Constant, Tim = Trmo = Constant
X;FM/)IrM = ﬁﬁ = Constant > 0 (26)
The IM mechanical dynamics show that the desired equilibrium points are obtained if:
™ = Tz‘\iA = 1m0 = Constant
Hence: R
AL cTAm = T = T8y = Constant (27)

The equation (27) can also be expressed by replacing Asp;¢ by its value given by the third line
of the electrical subsystem (18):

f

53 ~ . ~ T
a (/\VM +cAm — ”M%IVWM) JArm = T
Hence

T < C g o~ o~ T < .
Z (AYM])WM — nMe;fwA,TMArM> = Z (ArM]ArM ~ nM%ﬁZ) =Ty =Ti =cte  (28)

The relative degrees of the outputs y; = [32 = )A\FTM/A\r mandy =1y = f /\;FMG ] A M, regarding
the input control v, are 2 and 1, respectively.

The zero dynamics of the mechanical subsystem (18) is stable, since the mechanical parameters
are positive.

Following on we will analyze the zero dynamics of the electrical subsystem considering the
equilibrium points such that (26), (27) and (28) are verified (we will omit the subscript d).

¢ Consequence of (26):

dB2 T < U Y
B o o A Am=0 et AT Am=0

dt
_ 3T % _ AT 3T 3 7 3T 1y
0 = ArMArM = d/\rM/\sMG — C/\rMArM -+ nMOMArM])\rM
with the electrical
subsystem of (18), it comes: 0 = d?fo (AsMG — %/A\rM)

Hence, with (26), it comes as solution of A4y g :
C ~ —~
AsmG = EArM +aJArm, Vo € R (29)

3 The zero dynamics analysis is independent from the chosen frame.
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¢ Consequence of (27) and (28):
Replace (29) in (27):

~ c ~ ~T o~
™ = f/\TTM <EIZ — (X]) ]/\7M = f“AIMAFM
Since //{VTM//LM = B? = Constant:
™ =f ﬁzzx = o= T_]\/12
fB
and with 1) = 0:
tv=fp* = a=0
Recall of consequences of (26), (27) and (28):
At the equilibrium, the solutions of A, belong to the following set:

A€ R | Al = B > 0, AT A = 0, A0y J A = & 6mp> B =0} (30
Am € R | AL A= B2 > 0,AL A M = 0,A,) rM—fTM+”MMﬁIﬁ— (30)

At the equilibrium, the solutions of A¢y;; belong to the following set:

c~ ~ ™ .
{/\sMG € R* | Aspg = A+ aJAm, a0 = f—ﬁMz,Dc = 0} (31)
Let take Xr M in the form :
XrM — ol (ptnmbu) [ lg ] (32)

with the form (32) and the constrains of (30), it comes:

B:O = XVM:(p—f—nMéM)]X,’M and X,TMX,,M:O

T d . . . d . . dT
A Armt = Fot by B® = (0+nmbum)p® = Fomt nbup® = p= ?ﬁ—Af = du
with « given by (31).
Hence the vectors Asyc and A M are completely defined by the outputs y; and y».
Analyzing the behaviour of the dynamics of the state A, :
the substraction of the two upper lines of (18) give:
Arg = (b+€)Asmc + Asmc — A + nmOmJArm
By replacing A¢p; by its value given by (31), the state becomes:
A c(b+e—d . ~ c A
Ao = {%b + (a(b + ) + nyby) ]] Ami+ (5 +a]) A
Using the general form (32) and its derivative under the constrains (30), yields:
A c(b+e—d . : ; ) N ~
MG = K%) —a(p+ ﬂMGM)) L+ (Oé(b +e)+nmbm+ (0 + ”MOM)E) ]} Arm

= (a1l +c2JJAm = Myl A,
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122 Electric Machines and Drives

with M; = w/c% + c% = Constant and y = arctan% = Constantif c; # 0, else v = 7.
Then, with (32):

O =

/XrG — Mle]“ref(PanMGM) [ g ] _ Mlﬁe]('y+p+nM9M) [
Consequently, ch; is of the form:
]e](7+p+”M9M) [ (1) } + Constant

because p = Oy =0,7=0and M; =0.
We can then conclude that the dynamics of A, is stable if the desired operating point satisfies:

p+nM9M7é0

Consequently, the zero dynamics (the dynamics of //LG) is unstable when the desired operating
point belongs to the slip line defined by:

p = —n MQ M
or in terms of the controlled outputs 82 and Tp;:

L%M : 2
™ =—75 0 —NmMOMP
LmMRT’M
With usual machine parameters, the operating point may belong to the slip line for very low
speed which is not the case with the considered operating points

5. Passivity-based controllers

The PBC achieves the IM speed and rotor flux norm control with all internal signals remaining
bounded under the condition g + 110y # 0. From a practical point of view it is interesting
to ensure the boundedness of the internal signals and in particular the stator current of the
two machines. For this purpose, two classical controllers (Proportional and Proportional plus
Integral) are applied or combined with the PBC on the stator current i,:.

In this section we address the stability analysis of the following controllers:

1 PBC: Passivity Based control;
2 PBC + P : Passivity Based control + Proportional action on the stator currents iyg;

3 PBC + PI : Passivity Based control + Proportional plus Integral actions on the stator
currents iyg.

As defined in (3) a nested loop control configuration is adopted for the PBC control of the
DFIG with the IM system. We propose to design first a torque tracking PBC for ¥, and then
add a speed tracking loop around it. This leads to the nested-loop scheme depicted in Fig.
5, where C;; is the inner-loop torque tracking PBC and C,; is an outer-loop speed controller,
which generates the desired torque, and will be taken as a simple PI controller. The reader is
referred to (1) for motivation and additional details on this control configuration.
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d
D g = u -
o T t w
Controller M »  Controller Z e Z M,
(Mechanical) ¢ m

’_' ’_' (Electrical) (A ?

Fig. 5. Nested-loop control configuration.

5.1 PBC
To derive the torque tracking PBC we will shape the storage function H,(A), which has a
minimum at zero, to take the form

g L E W
HY = EATR IA>0 (33)

where A = A — A9, with A a signal to be defined. As suggested in (1), we propose to establish
the following relationship between A* and v,:

Bu,; = A%+ RL7(0)A% (34)
Comparing with (12) we see that this, so—called implicit representation of the controller, is
a “copy" of the electrical subsystem but evaluated along some desired trajectories. We will
prove now that this control action indeed shapes the storage function as desired. Combining
(34) with (12) yields the error equation for the fluxes

A+RLY(0)A = 0. (35)
The derivative of the desired energy function (33) along the trajectory of (35) is

HY = -ATL7'A <0 (36)

Hence, A(t) — 0 exponentially.
To complete our torque tracking design there are two remaining issues:

(i) find an explicit representation for the controller (34);

(ii) select A? such that, for any given desired trajectory 7y,(¢), we have
A(t) = 0= tm(t) = Ty (h);

52PBC +P
The PBC + P controller is given by the equation below:

Bu,g = A + RL™Y(0)A? 4 BK, (is — i%) (37)

where K, is a proportional positive gain. We have:

L 1
isg — il = A (L,Zl()‘rG — M6) + Ly (Asom — M) + Lag(Arm — )\fM)) (38)
1 s
= [ Ly Lhh Ly JQ-A)=[0 1, 0]L7(6)A (39)
\){_ _\Pf_/

with ng (i=1,3,j =1,3) and A are given by (10) and (11), respect. Then,
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Bu,g = AT + RL™Y(0)A? + K,BPL™1(9)A (40)
The closed loop error dynamic can be written as the following;:
A= —RL7Y(0)A — K,BPL(9)A (41)

Consider the desired energy function given by (33), its derivative along the trajectories of (41)
is:

Y = ATR71A
= —ATL Y @) A-ATRIBPL7Y(0)A
S—— —
>0 2

To prove that the error dynamic (41) is stable, it’s enough to prove that Q is a positive
semi-definite matrix:
T
RiA o 0 o

Q =R 'BPL71(6)

Q is positive semi-definite if:
XTox >0 X e Rro*!

r 1T

T 1 T Ly lez Léa
X'QX = A X 0 0 0 X (43)

1 0 0 0

B 1T 1 1
1. 1L1,2T 2Ly 2l

1 1T
| oLy O 0
L0

In order to prove that Q is positive semi-definite (since A < 0), it’s enough to prove that Q' is
negative semi-definite.

/ —LmcLyme’™%  IL,cLimDh  $L,GLymel ™M
Q = IL,GLrmb 0 0 (45)
SL,GLypeTmmbm 0 0

We can see that all the sub-determinant of Q’ are negative, hence the exponential stability of
the PBC + P controller is proven.
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5.3PBC + PI
The PBC + PI controller is given by the equation below:
_id -1 d . e
Bo,c = A + RL-1(9)A? + B (Kp(sz i) 1+ K, / (isc sz)> (46)
where K, and K; are the proportional and integral positive gains. We have:
. . -1
/(lsc —il) = E(ASGM —Mom) (47)
-1
= —[0 L 0](r-A% (48)
Ry e
P A
Then,
i d —1/p)d 1y Kinos
Bv,g = A" +RL™(0)A" + K,BPL™*(0)A — R—BP/\ (49)
2
The closed loop error dynamic is:
L ~ ~ K; ~
A= —RL7Y(0)A - K,BPL"()A + R—IBP/\ (50)
2

Consider the desired energy function given by (33), it’s derivative along the trajectories of (50)

is:

v = ATR7'A
= —ATL"YO)A - K,ATR™IBPL™1(0)A + %?\TR_lBPZ
2
- -~ - K; ~
= —ATLY @) A+AT [—ka—lBPL—l(e) + —LR7IBP| A
>0 ~~
AM

To show that the error dynamic (50) is stable, it’s enough to prove that M is a negative

semi-definite matrix:

K K ; K
| tmetivemete [ GLcLiu+ ] B LiLuel "
M=z 0 0 0
0 0 0

M is a negative semi-definite matrix if: XTMX <0 X € Rox1

K K K; K
) _‘Tp‘LmGLrMeInGGG {T&LrGLrM + ﬁ} I TK‘L',GLmMethGM
T . T K Ki
XTMX=g-X [T&LTGLM/I—}— m} b 0 0
T&LrGLmMe_]nMeM 0 0
AM!

(51)

(52)

To prove that M is a negative semi-definite matrix, it's enough to prove that M’ is a negative
semi-definite matrix, the calculus of the sub-determinants of this latter show that M’ is a

negative semi-definite matrix.
Hence the exponential stability of the PBC + PI controller is proven.
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126 Electric Machines and Drives

6. The construction for BDFTIG

To establish the complete mathematical representation of the dynamic behaviour of the
BDFTIG it is first necessary to clarify the kind of the electromechanical interconnection that
exists between the cascaded machines. One of the simplest ways to connect these two
machines is in the back-to-back method with no phase inversion on the rotor side, as shown
by Figure 6.

wp = 2uf

o/ \o 7 @ = e+ @alpr+pd)

Fig. 6. BDFTIG Back-to-Back Connection

We=Wp— Wm(PptP)

By this connection, the rotor currents produced by the two machines join in the subtractive
style, and the rotor voltages have the same signs, i.e. I;, = —I;c and V; = Vj¢. The chosen
connection really affects the distribution of the magnetic fields and flux inside the BDFTIG,
producing the two counter-rotating torques as will be discussed in the following sections.

6.1 Equivalent circuit analysis of the BDFTIG
Figure 7- shows the equivalent circuit of the BDFTIG from which the electrical system
equations can be derived.

L Ry |,

w, s
ép

Woe = Lctse— Linc Iy Wy = Linp lsp— Linc Usc Wep = Lop isp— Linp r

Fig. 7. Equivalent Circuit of the BDFTIG

To simplify the controller algorithm, the machine quantities should be expressed in the d-q
frame by employing Park’s and Clark’s transformation. The reason of this transformations is
to remove as many time-varying quantities from the system as possible. By converting the
three-phase machine to its two-phase equivalent and selecting the suitable reference frame,
all the time-varying inductances in both the stator and the rotor are eliminated, allowing for
a simple however complete dynamic model of the electric machine. From these equivalent
circuits the electrical equations of BDFTIG can be determined as shown in the next section.

6.2 Electrical system equations for BDFTIG
Starting with the power machine, the general form of the vector equations of the BDFTIG can
be written as:

S,
vlp = Rspidy + Lop— = + WpLspisy + Lmp—= + wpLmpipy
o], = Repidy + (Lspily + Lupity)s + (Lspi%, + Lunpit, )y
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Fig. 8. Equivalent Circuits of d-q BDFTIG
The flux linkage current relations are:
‘ng - Lspigp + meigp
dyd
: p d
ol, = Ryil,+ — top¥ (54)
di] did
. p .d sp .d
oy = Ropily + (Lrpily + Lupidp)s + (Lypify + Lunpidy)or
We have also:
T;Zp = Lrpigp + meigp
Y7, = Lpil, + Lupid, (55)
dy]
: p d
o], = Rypily+ — Tty (56)
: iy 7y
d _ : q 2
d
d . sp
Wy = Replfy+—— - w,¥l, (57)
did did
d ) "y A sp 4
vy = Rrpzrp -+ LYPW + wyLrpz,p + meﬁ + ermszp
Urp = rplrp + ( rplrp + mplsp)s + ( rplrp + mplsp)a)r
d
. r
ol, = Rppit,+ —dtp + wp¥, (58)
Electrical system equations for control machine:
. did _ di ,
UZC = Rsclgc + Lscd—stc + wcLsclgc + med—;c + wchcl;eic
UZC - RSCiZC + (LSCiZC + LmCi}qC)S + (LSCZZP + meifcﬂuc
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The flux linkage current relations are:

Tf']c = Lscigc + mei?c
¥4 = Lscily + Lincife (59)
UZC = Rscigc dts (60)
. di) . di! .
U?c —~ chlgc + chd—? + errcllric + med—stc + ermclsdc
U;LZC - chi;qc + (chi?c + meigc)s + (Lrpigp + LmCigc)wV
and:
T?c = chigc + meigc
Wi = Lycif + Luncid (61)
1. — R, r 62
Orce relye it (62)
J 4 did. g i, q
Use = Rycige + LSCW — weLgclse + meg — WeLctye
vfc = Rsci‘sic + (Lscitsic + meifc)s - (Lscisqc + meigc)wc
. pd
vgc = RSCZZC + dtSC - wc‘ch (63)
Ve = chlrc + chg + weLrelye + meg + wyLmcige
U;’ic = chife + (LVCZrC + meigc)s + (Lrplrp + Lincide)wy
g d¥e
vl = Rydh+ dt’C + w, ¥, (64)

As mentioned before, for the BDFTIG with the back-to-back configuration and with no phase
inversion, the rotor currents of the individual machines have the opposite signs, the fluxes
inside the rotor combine to produce the essential rotor flux, hence; i,, = —iyc = ir, ¥y =
1IIrp — Yy, Orp = Ure,y 0= Urp — Orc

dil dif, dif
Og = Rrplr + Lrp d + a)rLrpl + me dt + ermp sp + chlr + ch d + errcld
dil .
meﬁ — ermclgc
But Lr - Lrp + ch and Rr - Rrr) + ch
dil d'q dil .
0;7 = er, +L,— I + errzr + Limp—,- T + “’errﬂsp Lonc diC w,mezfc
0? == er;? “l_ (Lrlr “l_ melsp - melsc)s ‘I‘ (L;'Zr “l_ melsp - melgc)CL)r
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The flux linkage current relations are:

Y] = Lyil + Lmpidy — Licile

Y7 = Ll + Lupid, — Luncil; (65)
q

ol = Rl dtf w, ¥? (66)

] did did, did, .

0, = err + er_ + errlr + me it + ermplsp Lie— dt — Wy Lcise

ol = err + (err 2 mezsp = mezsc)s N (err s mezsp £ mezg,:)wr
d

00 = R, dt* w, ¥ (67)

The electrical torque creation in the power machine is governed by the same principles that
apply to any induction machine. The general equation of the electrical torque in this case is

simply: Y p
.= (E> ¥, (68)

In the d-q reference frame, however, the last equation is rearranged to show the torque as a
function of certain control parameter. As the power machine is grid connected, it will have a
constant voltage. The torque could be:

P
Ty = ; ( 277 > (Tgplgp - Tgpﬂp) (69)
It is clear from the above equation that the only control variables are the d-q components of
the stator current, because the power machine stator fluxes are almost constant. Furthermore,
when the controller reference frame is aligned with one of the flux components, the number of
the control variables is reduced. To derive the electrical torque for the control machine, we can
use the same general equation for the electrical torque. This case cannot be simplified because
the stator fluxes of the control machine will be variable. The control machine torque must be
expressed as a function of the excitation current and the purpose in this research is to provide
a flexible power control of the BDFIG. So the next equation is the control machine torque, and
it is given in terms of the future control quantities.

o= =3 (%) Loc(iif - i) (70)
The option of the rotor current as the second variable is clearly shown and that there exists
an electric coupling between the two stators of the BDFTIG, which is achieved through the
common rotor current. This reflects the behaviour of the inner workings of the BDFTIG. The
total electric torque (Te) for the BDFTIG is the sum of the individual electrical torques of both
machines:

3 d.q .
T, = 2 [By(¥hyid, — ¥,if)) + PeLone(ie — iL)] 71)

The electric torque equation is defined by the friction and total inertia of the power and control

machines:
dwy,

T. =T + (Bg + Bf)wm + (]s +is) dr

(72)
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Rearranging the last equation to derive the shaft speed:

dwm 1 p c

Hence, the shaft speed is
T.—T
wm = —— b (73)
(B + BE) + (js +js)s

6.3 Simulation of the BDFTIG Model

The BDFTIG model was tested to determine if it was a true representation of the actual
generator. Using Matlab/Simulink to test the BDFTIG, the main tests consisted of disabling
one side of the BDFTIG and applying a constant AC voltage on the opposite side, at the
same time as changing the load torque to allow both motoring and generation modes of
operation. The short circuit test consisted of shorting the stator side of the control machine,
and a natural speed of 900 rpm was recorded, because both machines have four poles each,
as shown in Figure 9. For the next test, the load torque was decreased at time 2.25s to put
the BDFTIG into the generation mode as shown in Figure 10. The system responded as
expected by increasing its speed and moving into the super-synchronous mode of operation,
the electrical torque changed at the same time as the load demand. In this section, the dynamic
model of the generator was developed based on the selected d-q reference frame. The model
was implemented and tested in MATLAB/Simulink. The simulation results verified that the
model can correctly describe the dynamic behaviour of BDFTIG design.

1000

900 : B D e LT P —

BOD |- - - SRR e R TR e EEE TR E e P E P [k, SERTEETEN —
FOO [----mmm oo e LT PP LA —

BOD [-----m oo e EGRE CELEEE R ELY b e —

Speed [rpm]

500 - om oo S S S — R -

400 - - e L EEE L LR EE TP P —

i i
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Torque [M.m]

Fig. 9. Speed-Torque Curve of BDFTIG with short circuit test.
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Fig. 10. Generation Mode of BDFTIG.
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In this section, the dynamic model of the generator was developed based on the selected
d-q reference frame. The model was implemented and tested in MATLAB/Simulink. The
simulation results verified that the model can correctly describe the dynamic behaviour of
BDFTIG design.

7. Experimentation

In order to validate the new controllers, experiments were conducted on a real system. The
following controllers were implemented: PBC, PBC+Proportional action on stator currents, PI
controller on stator currents, and a combination of PBC and PI control. The experiments were
done in the IRII-UPC (Institute of Robotics and Industrial Informatics - University Polytechnic
of Catalonia) where a 200W DFIG interconnected with an IM prototype is available (see Fig.
(11)). The setup was controlled using a computer working under RT-Linux operating system.
With the PBC, only the position sensors of the Generator and the Induction machine were
used for the control. For the Proportional and PI controllers of the electrical subsystem,
measurement of the two stator currents were also needed. In order to show the behaviour
of the system under different load conditions, a non-measured load torque was applied.

>romax 3 Jeulin 188 016
AD215BY
Isolation Amplifier 80% of 46V 75% of 42V
/P ‘ SERVO AMPLIFIER Iz

Advanced Motion Control

Three Phase Inverter
Vbus
+

Promax 2

#SD

% e -
74HC244 ; 1
Buffer Non-Inverting Jeuiin 188 019
c

ADC - 12BNCs

7

WAV

PCI8133

Protection B’ |

U* (16)
V4 (17)

off
W+(18) 3 3 L
PWMs
U-(34)
) 3 3 L
3 Vbus
T
Promax 1 Promax 2 = =
Encoder 360 Encoder 100
2 12 2 12 pulses/revol. pulses/revol.
M speed G speed

W omv|

4 A ®) e 1o ) e

< DC Motor Generator Motor 3ph Brake

[Sah:n‘l) A’ |1a 2s0mv [_” L_i || [_”L—i

)

Qv 94 9

)

AD215BY Isolation Amplifier
j 1:13
2

112
— 1A-250mV,__| Hall Sensor EH050
sw Board Channel Signal O 2
ada [ [ . p [AHO1 Inverter
7 . .

jada: P 7 ! 2, notA notB M; 2
ada: —] E

=

O

1

1000rpm
W

DL10050

AD215BY Isolation Amplifier
T 1134
2

— | [ 1A-280my__|Hall sensor EHo50

~|=[=[=]<]o!

IE‘
<I<]<g <

O

[rofs —mr==

2 [T 2
Select 12 DAQs 2

1000rpm | DL10050
Ly v

f o g Gl Ierer
i B!
notAnot8 |
N

Fig. 11. Experimental setup

Since a load torque sensor was not available for the acquisition, we built an estimator of the
resistive torque based on the measurement of the mechanical IM speed.
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7.1 Estimation of the load torque
The mechanical dynamics of the IM is given by:

TmOm = T — Tim — BmOm (74)

Since the asymptotic stability of the electrical subsystem X, is proven we can consider that in
the steady state Ty — T]‘f/l(exponentially). Then,we have in the steady state the following:

Imbm = T —Tim — Bmbu (73)
™ML
Hence, a linear load torque observer was designed (with 1, I; are design parameters):
Omm = (Tz‘f/f - ’fML) /Im + i (@mm — Wmm) (76)
e = b(@wm— Wmm) (77)

7.2PBC
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Fig. 12. PBC-(a) Regulated Motor speed and its reference. (b)Generator speed. (c) DFIG & IM
rotor position. (d) Generator torque (e) Motor desired torque.
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Figure 12 presents the mechanical IM speed and its smooth reference, the mechanical DFIG
speed, the DFIG and IM rotor positions, the DFIG torque 75 and the IM desired torque t,.
The real IM speed tracks the reference very well, i.e. low overshoot and no steady state error
are observed. Figure 13 shows the stator currents is; and iz, and their references over a
suitable period of time. The stator currents do not track exactly their desired values but are
bounded. This is because the goal of the PBC is to track the IM speed and to keep internal
signals bounded.

Figure 14 shows the DFIG rotor currents i,G, and 7,5, and their references over a period of
time. Again, these currents are sinusoidal and bounded.

Figure 15 presents the DFIG rotor voltages v,5, and v,5;, the IM rotor speed w;,»; and its
estimation @y, the estimated IM load torque %y, and the estimated IM speed, given by

www.intechopen.com



From Dynamic Modeling to Experimentation of
Induction Motor Powered by Doubly-Fed Induction Generator by Passivity-Based Control 133

isa & lspA)

Il 1 1 1 L Il I 1 1 L
193.74 193.76 193.78 193.8 193.82 193.84 193.86 193.88 193.9 193.92 193.94
(a)

d
scaA)

la &

Il 1 1 1 L Il 1 1 | 1
193.74 193.76 193.78 193.8 193.82 193.84 193.86 193.88 193.9 193.92 193.94
(b) t(s)

o
s & lsap)
°
§
|

T 1o -

20| 1 1 I I i 1 1 | i
193.74 193.76 193.78 193.8 193.82 193.84 193.86 193.88 193.9 193.92 193.94
(©) t(s)

Fig. 13. PBC-(a) isq, igp (b) i%,, isa (c) i%, igp
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Fig. 14. PBC-(a) i,Ga, irGh (0) 96, irGa (©) %y, ivgo-
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Fig. 15. PBC-(a) v;Ga, vyGp (b) Wimm, @mm (€) TML-

(76)-(77), is tracking the real speed. Hence, a good estimation of the real IM load torque is
obtained. It has to be noticed that the IM rated torque is 0.7 Nm.

It can be concluded that the PBC provides good practical performance even when the applied
load torque is twice the magnitude of the nominal load torque of the IM.

73PBC +P

05 &0,, (rad)
v s o
\%
i
—
[\

(d) (s)

2f [e— ]
T 1 A T |
2 o .
EE B
> B

75

(€ 1(s)

Fig. 16. PBC+P-(a) Regulated Motor speed and its reference. (b)Generator speed. (c) DFIG &
IM rotor position. (d)Generator torque (e) Motor desired torque.

As with the PBC alone, the results obtained with the PBC+P are given in figures 16-19. On the
whole, the system behaviour is the same as the PBC alone. One difference that is noticeable is
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Fig. 18. PBC+P-(a) i,Gy, ircp () i%, irGa (€) 1%y, irGo-

the small error between the desired stator currents and the real ones thanks to the proportional

controller.

The PBC+P controller exhibits good practical performance but not significantly better than
those obtained with the PBC alone.

7.4PBC + PI

Again, as for the PBC and the PBC+P controllers, figures 20-23 show the results. It can be
seen in figure 21 that the integral actions on the stator currents do not decrease the error
significantly between the real and desired values in comparison with the results for the PBC+P
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Fig. 22. PBC+PI-(a) i,Ga, irp () 1%, irGa (€) %y, irGp-

controller (see fig. 17). This is due to the fact that the reference values are sinusoidal and that
the bandwidth of the PI controllers cannot be increased sufficiently experimentally.

It can be concluded that the PI action on the stator currents does not improve significantly the
performance obtained with the PBC+P controller.

7.5PI
The PI control law (with Kj, and K; are proportional and integral gains) is given below:

Boyg = B (Kplisg — i) + Kilise — i%c) ) (78)
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Fig. 24. PI-(a) Regulated Motor speed and its reference. (b)Generator speed. (c) DFIG & IM
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Finally, in order to obtain a significant comparison between controllers, a Pl-based control
has been designed without a PBC, i.e. there is one PI controller for each stator current.
Figures 24-27 show the results. These results show clearly that the system behaviour is much
deteriorated in comparison with the results obtained with the previous controllers. Even if
there is no IM speed error in the steady state, the speed does not track its reference during
transients, and there is a speed error when a load torque is applied. This is mainly due to the
saturation of the desired IM torque at a value four times its nominal value. Consequently, the

stator currents are very large, i.e. their magnitude is about twice those currents with the PBC,
and so significant stator losses can be expected.
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These results show that the PI control alone of the stator currents is not efficient for the
control of the DFIG+IM system. The PBC, with or without P or PI actions, shows much better
performance.

7.6 Robustness tests

In order to highlight the performances of the controllers, and check their behaviour in the
presence of machine parameter variations, a change in the DFIG and IM rotor and stator
resistances is applied. In the real case, the resistances of a machine increase with temperature.
In this case, all the resistances of the two machines used in the controllers are decreased by
40% when the "Switch on Parameters" signal value goes from 0 to 1 (see figure 31). This test
has been carried out with the four controllers (i.e. PBC, PBC+P, PBC+PI and PI). The results
show that all the controllers are robust to a large change in machine resistances. To be brief,
only the results obtained with the PBC are reported here.

Figure 28 presents the mechanical IM speed and its smooth reference, the mechanical DFIG
speed, the DFIG and IM rotor positions, the DFIG torque 7; and the IM desired torque Ty;,.
The real IM speed tracks very well the reference, i.e. low overshoot and no steady state error
are observed. Figure 29 shows the stator currents is; and iy, and their references over a period
of time. The stator currents do not track exactly the desired values but are bounded. This is
because the goal of the PBC is to track the IM speed and to keep internal signals bounded.
Figure 30 shows the DFIG rotor currents i,g, and 7,g;, and their references over a period of
time. Again, these currents are sinusoidal and bounded.

Figure 31 presents the control signals v,, and v, gy, the rotor IM speed w51 and its estimation
@mm, and the "Switch on Parameters" signal. These results illustrate the robustness of the PBC
when the parameters are varied.

8. Conclusion

Speed-torque tracking controllers for an IM powered by a DFIG have been presented. The
joint system extracts energy from a primary mechanical source that is transformed by the
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Fig. 28. PBC-robustness test-(a) Regulated Motor speed and its reference. (b)Generator
speed. (c) DFIG & IM rotor position. (d) Generator torque (e) Motor desired torque.
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Fig. 30. PBC-robustness test-(a) i,Ga, iyp (b) i%,, irGa () 1%y, irGp-

Fig. 31. PBC-robustness test-(a) v,G,, vrgp (b) Wimm, @mm (c) Switch.
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DFIG, which at the same time controls the speed of the IM making use of the rotor voltage of
the DFIG as a control variable. A complete stability proof for inner loop control is given. The
proof of the overall scheme including the outer speed loop follows verbatim from (1) and is
omitted here for brevity.
The main advantage of the PBC is that it requires the measurement of only two mechanical
positions for the speed tracking. The PI controller applied to the inner loop provides good
performance but saturation in the transient state can be observed. Robustness tests were
performed to observe the behaviour of the controllers to machine parameter variations. All
the proposed controllers were found to be robust towards variation in machine resistances.
Also, a power flow analysis can be undertaken between the generator, the IM and the grid
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in order to optimize the efficiency of the overall system. A comparison of the experimental
results of the proposed PBC, PI, PBC+P and PBC+PI algorithm is presented in Table 2. It is
based on the performance obtained practically with the different controllers. In addition to the
comparison criteria of Table 2, it is proposed to check the following to see what their effects
are on the controllers’performance:

2
* ey = nl—T Y [w M(i) — wrerml(i )] indication about the IM speed tracking error. Where
n is the length of the sampled data and T is the sampling time;

2
* ¢, = % Yo [isGu(i ) — igG Wi )} indication about the stator current tracking error in the
phase g;

e Observed magnitude of i5g,;

* Payg, = Ly | [tc(i)wg(i)] indication about the rotor average value of the instantaneous
absorbed power in the DIFG;

* Pavg, = % Y1 [tm(i)wp(i)] indication about the rotor average value of the instantaneous
absorbed power in IM;

| || Rs(Q) | Rr(Q)l Ls(mH)|Lr(mH)|Lm(mH)| ](Nmz/radj

DFIG] 0.365 | 0.559 | 0.938 [0.938 | 12975 [4.358 x 103
M [[05 [o02 [ 12 1.2 9.00 | 1.1x10°°

Table 1. The parameters for DFIG and IM

| I PBC | PBC+P | PBC+PI | PI |
WRefM 500—1000 500—1000 500—1000 500—1000
[rpm] —1400—800 —1400—800 | —1400—800 | —1400—800
(1%t order filter) | (1% order filter) (15! order filter) (15! order filter)
T pm [N.m] 05— 145—05{05—-14—-05 05—1—05305— 1.15— 0.5
settling time
of Wrerm 0.4s 0.4s 0.4s 0.4s
settling time
of wy 0.1s 0.1s 0.1s 2s
wg [rpm] 1500 1500 1500 1500
ey x 10° 2.9 4.8 5.7 38.6
ei ., x10° 37 2.65 2.68 0.25
Observed magnitude
of i, [A] 5 7 8 10
Pavg,. [W] 4.7 5.6 5 9
Pavg,, [W] 58.9 74.4 70.7 177.9

Table 2. Comparison table of experimental results

If we take in account the problem of speed tracking of the IM interconnected to the DFIG and
according to the robustness tests and the experimental results presented in Table 2 we can say
that the PBC controller provided the best performance.

In addition, this paper has provided the detailed analysis of operational principles of the
BDFTIG.
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