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1. Introduction

Nowadays, induction machines play important role in electromechanical energy conversion in
industry. These machines are often operated in critical conditions where can cause unexpected
failures and outages. Generally, stator and bearing faults, broken rotor bar and end-rings,
air-gap irregularities are some of the major faults in an induction machine (Al-Shahrani, 2005;
Sprooten, 2007) which may be situated the induction machines in out of service (Siddique
et al., 2005). Fourier analysis for stator currents (Bellini et al., 2001; Benbouzid, 2000; Jung
et al., 2006), torque and rotor speed, acoustic noise and temperature analysis (Siddique et

al., 2005) are some classical techniques which introduced for identification and diagnosis of
induction machines faults. Additionally, other heuristic methods were proposed to monitor
of the induction machines for fault detection. For instance, neural network modelling were
applied to monitor an induction machine for fault detection (Su & Chong, 2007). Also, space
vector of rotor magnetic field (Mirafzal & Demerdash, 2004) based on artificial intelligent
approaches and pendulous oscillation of the rotor magnetic field were proposed. Recently,
a new technique based on the analysis of three-phase stator current envelopes was presented
(Mirafzalet & Demerdash, 2008). In all monitoring and fault detection techniques, we need
to tune up the monitoring systems based on response of induction machines for proper
operations. However, experimental set up for testing any arbitrary fault conditions are not
practical. Thus, an accuracy dynamic and steady state models of induction machines are very
important for this propose.
Also, for dynamical modelling of induction machines, space harmonic distribution, core
saturation and loss are often neglected in abc quantitative and two-axis methods (Krause et
al., 1995). Thus, these approaches do not have an efficient accuracy for modelling of induction
machines in asymmetrical and non-linear conditions. For considering distribution rotor bars,

coupled magnetic circuit method (Muñoz & Lipo, 1999), abc quantitative based on rotor bar
currents (Alemi & Nazarzadeh, 1996) can be utilized. Furthermore, winding function method
may be used to include the stator winding distribution effect in the air gap flux (Luos et al.,
1995). However, in all mentioned methods, the core saturation, stator and rotor teeth effects
and distributions of the rotor and stator windings can not be investigated, simultaneously.
Also, Finite Element Method (FEM) is a professional technique for analysis of any
electromagnetic systems, which needs to magnetic and geometry details of the systems (Faiz
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et al., 2002). This method is very accurate and flexible, but due to complexity, the dynamical
modelling of an induction machine is quite complicated. Contrary to FEM, the Magnetic
Equivalent Circuit Method (MECM) can apply to analysis of the electro magnetics problems
with lower complexity. Magnetic saturation, space harmonics in stator and rotor teeth, stator
windings and distributed structure of a squirrel-cage rotor can be considered by MECM for
modelling and analysis of any induction machines (Jeong et al., 2003; Ostovic, 1989). In this
approach, the non-linear reluctances of flux paths use to configure magnetic equivalent circuit.
This method has less complexity than FEM for dynamical modelling of induction machines.
Therefore, developing an exact details model of induction machine for analysis of transient,
sensitivity and fault diagnosis in the asymmetrical conditions are very essential.
The present chapter introduces methodology of MECM for modelling and analysis of
asymmetrical non-linear systems in transient and steady state conditions. MECM is very
suitable method for finding a generalized accurate dynamical model of squirrel cage induction
machines with asymmetrical conditions. For evaluation of the method, several simulations
in linear and non-linear conditions are made. Also, some simulations results for induction

machines with broken bar faults and core saturation conditions are included to illustrate
capability of the method in asymmetrical conditions.

2. Electric and magnetic based model of squirrel cage induction machines

For detailed modelling of any electromagnetic systems, we have to find a correlation between
electric and magnetic variables of the system. Generally, a set of non-linear differential
equations presents dynamical model of a electromagnetic system that by using numerical

analysis, transient response of the electrical variables can be obtained. In addition, non-linear
algebraic equations illustrate non-linear relations between electrical and magnetic variables.
MECM provides an augmented model of the electromagnetic systems, in which we can
achieve all variables of the systems in transient and steady state, simultaneously. Also, the
main advantages of MECM for modelling of induction machines are; simple algorithm for
including distribution winding, stator and rotor teeth effects and magnetic core saturation
phenomena. Global non-linear model of squirrel cage induction machines can be offered
in algebraical (magnetic) and differential (electric) equations which will be presented in the
following sections.

3. Magnetic equivalent circuit of induction machines

Fig. 1 shows a part of rotor and stator structures for a typical squirrel cage induction
machine that magnetic circuit elements are presented for rotor and stator teeth and yoke.
Numbers of rotor and stator teeth are considered by h and l, respectively. Also in this figure,
magnetic mutual permeances of rotor and stator teeth in air gap are shown. Due to non-linear
characteristics of flux and magnetic current in iron core, permeances of the rotor and stator in
the magnetic cores are illustrated as non-linear elements. Gi,j is linear permeance of flux path

between ith stator and jth rotor teeth in the air gap.

3.1 Magnetic node equations

Due to the fact that magnetic permeances of each stator and rotor teeth make several magnetic
loops in the air gap, we apply node magnetic potential equations to the each air gap nodes for
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Fig. 1. Magnetic equivalent circuit of induction machine

simplicity in algebraic magnetic equations. For instance, sum of magnetic fluxes in ith air gap
node (stator tooth) have to be zero; thus we can write:

(

us
i − us

i+1

)

Gsσ +
(

us
i − us

i−1

)

Gsσ + (us
i − ur

1) Gi1 + · · ·+ (us
i − ur

l ) Gil = φst
i (1)

where us
i , ur

i and φst
i are magnetic potential of stator, rotor and flux of ith stator tooth and

Gsσ and Gi,j are permeances of stator neighbour slots and mutual permance between ith stator

with jth rotor teeth, respectively.
Similar Eq. (1), continuity principle in the teeth fluxes at ith rotor node yields as:

(

ur
i − ur

i+1

)

Grσ +
(

ur
i − ur

i−1

)

Grσ + (ur
i − us

1) Gi1 + · · ·+ (ur
i − us

h) Gih = −φrt
i (2)

In Eq. (2), φst
i and Grσ are flux of ith rotor tooth and permeance of rotor slot, respectively.

Consequently, node potential equations for equivalent circuit of Fig. 1 along the air gap can
be written as:

AssUst + AsrUrt = Ψst (3)

ArsUss + ArrUrt = −Ψrt (4)
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where Ass ∈R
h×hâĂć, Arr ∈R

l×l and Asr ∈R
h×l are air gap permeance coefficients matrices

that we can written as:

Ass=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2Gsσ+
l

∑
j=1

G1,j −Gsσ 0 · · · 0 0 −Gsσ

−Gsσ 2Gsσ+
l

∑
j=1

G2,j −Gsσ · · · 0 0 0

...
...

...
. . .

...
...

...

−Gsσ 0 0 · · · 0 −Gsσ 2Gsσ+
l

∑
j=1

Gh,j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

Arr =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2Grσ+
h

∑
i=1

Gi,1 −Grσ 0 · · · 0 0 −Grσ

−Grσ 2Grσ+
h

∑
i=1

Gi,2 −Grσ · · · 0 0 0

...
...

...
. . .

...
...

...

−Grσ 0 0 · · · 0 −Grσ 2Grσ+
h

∑
i=1

Gi,l

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

Asr = AT
rs =

⎡

⎢

⎢

⎢

⎣

G1,1 G1,2 · · · G1,l

G2,1 G2,2 · · · G2,l
...

...
. . .

...
Gh,1 Gh,2 · · · Gh,l

⎤

⎥

⎥

⎥

⎦

(7)

Also, Ψst ∈ R
h×1, Ψrt ∈ R

l×1, Ust ∈ R
h×1 and Urt ∈ R

l×1 are stator and rotor teeth fluxes
vectors, stator and rotor magnetic scalar potentials vectors, respectively. These vectors can be
presented as:

Ψst =
[

φst
1 φst

2 · · · φst
h

]T
(8)

Ψrt =
[

φrt
1 φrt

2 · · · φrt
l

]T
(9)

Ust =
[

ust
1 ust

2 · · · ust
h

]T
(10)

Urt =
[

urt
1 urt

2 · · · urt
l

]T
(11)

In Eq. (5), Gsσ is linear permeances between each successive stator slots with constant
geometric permeability. This permeance can be obtained from (see Fig. 1):

Gsσ = µ0
Asσ

Lsσ
(12)

Similarly, for Grσ we can write:

Grσ = µ0
Arσ

Lrσ
(13)

where Asσ, Lsσ, Arσ, Lrσ and µ0 are cross section and length of stator and rotor slot opening
and air permeability, respectively. Furthermore, mutual permeance between ith and jth slots
of the rotor and stator teeth depends to rotor mechanical angle (γi(t)), momentarily. Fig.2-a
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(a) Geometric of the stator and rotor teeth

(b) Approximation function

Fig. 2. A typical air gap permeance between stator and rotor teeth

shows a typical geometry of the stator and rotor teeth. In this case, stator and rotor mutual
permeance can be approximated by:

Gi,j(γ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Gmax 0 < γ < γ′
t 2π − γ′

t < γ < 2π

Gmax

1 + cosπ
γ−γ′

t

γt−γ′
t

2
γ′

t < γ < γt

Gmax

1 + cosπ
γ−2π+γ′

t

γt−γ′
t

2
2π − γt < γ < 2π − γ′

0 γt < γ < 2π − γt

(14)

where γt and γ′t are two mechanical angles which are depended to the stator and rotor teeth
geometry. For instance, in Fig. 2-a; γt and γ′t can be obtained as:
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γt =
wst + wrt + oss + osr

Dag
(15)

γ′
t =

|wst − wrt|
Dag

(16)

where wst, wrt, oss and osr are dimensions of stator and rotor which are shown in Fig. 2-a and
Dag is :

Dag =
Dsi + Dro

2
(17)

The maximum value of air gap permeance Gmax can be written as

Gmax = µ0
l × min [wst, wrt]

δ
(18)

where l and δ are lengths of machine and air gap.

3.2 Magnetic mesh equations

Eqs. (3) and (4) present l + h node equations which are shown relation between magnetic
potentials of teeth nodes with stator and rotor teeth fluxes. Attention to Fig. 1, two neighbour
stator teeth and yoke paths make a simple mesh in each stator slots, that sum of the magnetic
potentials in these mesh have to be zero. For instance, magnetic mesh equation in ith and
(i + 1)th stator teeth and yoke can be written as:

ust
i − ust

i−1 −ℜst
i−1φst

i−1 +ℜst
i φst

i +ℜsy
i φ

sy
i = FS

i (19)

Similarly, mesh equation for ith rotor tooth and yoke with (i + 1)th rotor tooth can be obtained
as:

urt
i − urt

i−1 +ℜrt
i−1φrt

i−1 −ℜrt
i φrt

i +ℜry
i φ

ry
i = Fr

i (20)

Thus, magnetic mesh equations for all rotor and stator meshes can be expressed as:

AustUst + AΨsy
Ψsy + AϕstΨst = Fs (21)

AurtUrt + AφryΨry + AφrtΨrt = Fr (22)

In Eqs. (21) and (22), Aφst ∈ R
h×h and Aφrt ∈ R

l×l are diagonal coefficients matrices of the
stator and rotor teeth reluctance that we can find as:

Aφst=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℜ
(

Bst
1

)

0 0 · · · 0 −ℜ
(

Bst
h

)

−ℜ
(

Bst
1

)

ℜ
(

Bst
2

)

0 · · · 0 0
0 −ℜ

(

Bst
2

)

ℜ
(

Bst
3

)

· · · 0 0
...

...
...

. . .
...

...

0 · · · 0 · · · ℜ
(

Bst
h−1

)

0

0 · · · 0 · · · −ℜ
(

Bst
h−1

)

ℜ
(

Bst
h

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)
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Aφrt=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−ℜ
(

Brt
1

)

0 0 · · · 0 ℜ
(

Brt
l

)

ℜ
(

Brt
1

)

−ℜ
(

Brt
2

)

0 · · · 0 0
0 ℜ

(

Brt
2

)

−ℜ
(

Brt
3

)

· · · 0 0
...

...
...

. . .
...

...

0 · · · 0 · · · −ℜ
(

Brt
l−1

)

0

0 · · · 0 · · · ℜ
(

Brt
l−1

)

−ℜ
(

Brt
l

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

also Aφsy ∈ R
h×h and Aφry ∈ R

l×l are stator and rotor yoke reluctance coefficients matrices
which can be written as

Aφsy=diag
(

ℜ(Bsy
1 ),ℜ(Bsy

2 ), · · · ,ℜ(Bsy
h )

)

(25)

Aφry=diag
(

ℜ(Bry
1 ),ℜ(Bry

2 ), · · · ,ℜ(Bry
l )

)

(26)

which Ψsy ∈ R
h×1, Ψry ∈ R

l×1 are stator and rotor yoke fluxes vectors and Fs ∈ R
h×1 and

Fr ∈ R
l×1 are stator and rotor ampere-turn vectors, respectively. These vectors are considered

as:

Ψsy =
[

φ
sy
1 φ

sy
2 · · · φ

sy
h

]T
(27)

Ψry =
[

φ
ry
1 φ

ry
2 · · · φ

ry
l

]T
(28)

Fs =
[

Fs
1 Fs

2 · · · Fs
h

]T
(29)

Fr =
[

Fr
1 Fr

2 · · · Fr
l

]T
(30)

Also, Aust ∈ R
h×h and Aurt ∈ R

l×lare constant matrices which are given by:

Aust=Aurt=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0 −1
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(31)

3.3 Teeth and yoke flux relations

For completing of the magnetic model of an induction machine, we need to find a relation
between teeth and yoke fluxes in mesh equations (Eqs. (21) and (22)). Attention to Fig. 1,
the relations between stator teeth and yoke fluxes can be obtained by applying magnetic flux
continuity principle in the yoke nodes. Thus, we have:

φ
sy
i = φst

i + φ
sy
i+1 (32)
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Similarly, relation between the rotor fluxes are:

φ
ry
j+1 = φrt

j + φ
ry
j (33)

Eqs. (32) and (33) can be presented in matrix form as:

Ψst = AsytΨsy (34)

Ψrt = ArytΨry (35)

where Asyt ∈ R
h×h and Aryt ∈ R

l×l can be written as

Aryt= −Asyt=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
1 0 0 · · · 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(36)

In a squirrel cage induction machine, a stator winding is not concentrated in single slot, but it
is distributed along air gap for harmonics reduction, full utilization of core and reduction of
mechanical stress to the winding. Thus, flux of stator coil equals the sum of fluxes of stator
teeth in the coil pitch. If three phase flux vector of the stator windings denotes as Ψ3φ, we can
find a matrix relation between stator teeth and windings fluxes as:

Ψ3φ = Mc f Ψst (37)

where Mc f ∈ R
3×h is a connected matrix which can be obtained based on the connection

diagram of stator windings.

4. Core saturation characteristic

Generally, magnetic cores of any electrical machines have non-linear characteristic curve
(B−H), thus the elements of reluctance matrices in Eqs. (23) and (24) are depended to their
fluxes. For inserting the non-linearity characteristic of the magnetic core to mesh equations,
a non-linear permeability dependent to the core field density are used. For this purpose, a
non-linear permeability is defined as:

µ(B) = µ0µr(B) =
∂B

∂H
(38)

So, the reluctances of flux path in the stator and rotor cores can be written as:

ℜ
(

Bk
i

)

=
Lk

i

µ(Bk
i )Ak

i

k = sy, st, ry, rt
i = 1, 2, . . .

(39)

where Lk
i and Ak

i are ith length and cross section of flux path in the stator and rotor cores,
respectively. Tangent, exponential and piecewise linear functions may be used to approximate
the saturation curve (Chen et al., 2005). In this chapter, the magnetic core permeability is
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Fig. 3. Core saturation curve

considered as:
µ (B) = b × ea×B2

(40)

where a and b are two constants which can be chosen for the best fitting of the saturation curve
(B−H) with this relation. By integrating Eq. (38) and combining with Eq. (40), the magnetic

field intensity H can be written as

H (B) =
∫

1

µ (B)
dB =

√
πEr f

(√
a × B

)

2b
√

a
(41)

where Er f is error function which is defined as: (Gautschi, 1964):

Er f (B) =
∫

eB2
dB (42)

For instance, Fig. 3 shows a saturation curve (B − H) for a silicon steel core that we can find
two constants in Eq. (40) for the best fitting of the saturation curve. In this case, the two
constants can be found as:

a = −0.8

b = 1000
(43)

5. Excitation vectors of reluctance network

For determining relations between three phase currents with ampere-turn in the stator
magnetic circuits, we give a contour between (i − 1)th and ith stator teeth, yoke and slot in

Fig. 1. Also, we suppose that combining of three phase conductors are placed in the stator
slots. Therefore, by applying Ampere’s law to this contour, (i)th ampere-turn of the stator
magnetic circuits (Fs

i ) in Eq. (21) can be expressed as:

Fs
i = wa

i ia + wb
i ib + wc

i ic (44)
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Fig. 4. Single layer distributed winding with 24 slot

where wa
i , wb

i and wc
i are conductor numbers of phase a, b and c in the ith stator slot,

respectively. Values and signs of these parameters will depend to connections and directions
of windings in the ith slot. For instance, Fig. 4 shows a single layer three phase winding with
two poles and 24 slots, which can generate a rotating magnetic field in the air gap. In this
case, relation between ampere-turn of the stator magnetic circuits and stator currents can be
determined as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Fs
1

Fs
2

Fs
3
...

Fs
22

Fs
23

Fs
24

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−wa 0 0
−wa 0 0

0 0 wc

...
...

...

0 wb 0
−wa 0 0
−wa 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎣

ia

ib

ic

⎤

⎦ (45)

Thus, the stator ampere-turn vector (Fs) in Eq. (21) may be presented as

Fs = Wcis (46)

where Wc ∈ R
h×3 , is a connection matrix that shows number of conductors in all of the stator

slots. Also, is is a vector of three phase currents that we can arrange as:

is =
[

ia ib ic
]T

(47)

In single layer winding, each slot can carry only one phase current, thus rows of the connection
matrix in Eq. (46) have only one non-zero element. These non-zero elements can be
determined by attention to stator winding topology.
In other respect, currents of rotor bars in squirrel cage induction machines are equal to
current of conductors in the rotor slots. Therefore, similar to above mentioned method; the
ampere-turn in rotor slots (Fr) in Eq. (22) can be determined by:

Fr = ib (48)
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where ib , the rotor bars currents vector is defined as

ib =
[

ib
1 ib

2 · · · ib
l

]T
(49)

Substituting Eqs. (34), (35), (46) and (48) into (21) and (22) and combining with Eqs. (3) and
(4), the magnetic algebraic equations of squirrel cage induction machines in matrix form can
be augmented as

⎡

⎢

⎢

⎣

Aφsy+AφstAsyt 0 Aust 0
0 Aφry+AφrtAryt 0 Aurt

−Asyt 0 Ass Asr

0 Aryt Ars Arr

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Ψsy

Ψry

Ust

Urt

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Wcis

ib

0
0

⎤

⎥

⎥

⎦

(50)

Due to core saturation characteristic is a non-linear curve, the matrix Eq. (50) is non-linear and
some coefficient matrices depends to the core fluxes density. Thus, ordinary methods cannot
be employed for solving Eq. (50). Furthermore, rotor and stator currents are depended to
stator three phase source voltages and rotor speed in differential equation forms. Therefore,
for detailed analysis of squirrel cage induction machine, it is necessary to solve an electric,
mechanic and magnetic algebraic differential equations, simultaneously

6. Electrical voltage equations of squirrel cage induction machines

Generally, a set of differential equations in an electrical machine is used to describe rates of
the electrical and mechanical variables. These equations establish the relationship between
fluxes, currents and the three phase source voltage variables. In the next section, rotor and
stator voltage relations are be derived.

6.1 Stator voltage equations

For an induction machine, we can write electrical differential equations in stator windings as:

Vs = Rsis +
d

dt
Λs (51)

where Vs and Rs are voltage and stator resistances matrix, respectively which are defined by

Vs =
[

va vb vc
]T

(52)

Rs = diag
[

ra rb rc
]

(53)

Moreover, Λs is linkage flux vector and equals to the product of turn number of stator
windings and the phase fluxes. Thus, we can write:

Λs =
[

λa λb λc
]T

(54)

Λs = wcΨ3ϕ (55)

By substituting Eqs. (34) and (37) into (55), we obtain:

Λs = wcMc f AsytΨsy (56)
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Fig. 5. Structure of squirrel cage rotor

6.2 Rotor voltage equations

Fig. 5 shows a structure of squirrel cage rotor in an induction machine. The rotor topology has
l + 1 mesh, thus we can write l + 1 independent differential equations to describe electrical
dynamic of rotor variables. Suppose, the rotor rings segments have a symmetrical structure,
thus number of l independent equations will be enough for modelling of the rotor dynamics.
According to Fig. 1, jth tooth of rotor is surrounded by jth and (j+ 1)th rotor bars. Thus, based
on currents directions of bars and ring segments which are shown in the Fig. 4; the voltage
equation in this loop can be given by:

d

dt
φrt

j = −2ir
j+1rr

j+1 − ib
j rb

j + ib
j+1rb

j+1 (57)

This relation can be rearranged in the matrix form and the electrical differential equations for
the rotor cage can be obtained as

d

dt
Ψrt = −2JrRrir − ArytRbib (58)

where the vector ir ∈ R
l×1,Rb ∈ R

l×l and Rr ∈ R
l×l denote ring segment currents, rotor bar

and ring segment resistance matrices, receptively. These vectors are given by:

ir =
[

ir
1 ir

2 · · · ir
l

]T
(59)

Rr = diag
[

rr
1 rr

2 · · · rr
l

]

(60)

Rb = diag
[

rb
1 rb

2 · · · rb
l

]

(61)
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Also, constant matrix Jr ∈ R
l×l is defined as

Jr =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(62)

Moreover, there are two current vectors in left hand side of Eq. (58) which have to find a
relation between them. For this propose, Kirchhoff’s Current Law (KCL) can be used to
determined a relation between rotor bars and ring segments currents. By applying KCL to
jth node (bar) in the rotor cage (Fig. 4), we can write:

ib
j = ir

j+1 − ir
j (63)

Therefore, for l nodes in the rotor cage; Eq. (63) can be expressed in matrix form as:

ib = Arytir (64)

By substituting Eqs. (64) into (58), we can get:

d

dt
Ψrt =

(

−2JrRr + ArytRbAryt
)

ir (65)

Up to this stage, two separate sets of non-linear equations are derived to established of
algebraical (magnetic) and dynamicalal (electric) models of a squirrel cage induction machine.
By combining of Eqs. (50), (51) and (65), the total algebria-differential equations of the system
can be augmented as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

wcMc f Asyt p 0 0 0 Rs 0

0 Arytp 0 0 0 2JrRr−ArytRbAryt

Aφsy+AφstAsyt 0 Aust 0 −Wc 0
0 Aφry+AφrtAryt 0 Aurt 0 Aryt

−Asyt 0 Ass Asr 0 0
0 −Aryt Ars Arr 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ψsy

Ψry

Ust

Urt

is

ir

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vs

0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(66)

where p denotes time derivative operator ( d
dt ).

6.3 Mechanical differential equations

Some of the matrix coefficients in Eq.(66) are depended to mechanical instantaneous angle
γ. In variable speed conditions, the mechanical variables of the system can be determined

by solving differential equations of the rotor angel and speed. Generally, mechanical torque
balance equation can be expressed as:

J
dω

dt
= Tem − Tl (67)
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Quantity Symbol Value
Power P 1.1kw
Voltage V 220V
Frequency f 50Hz
Number of pole p 2
Stator resistance rs 5Ω

Rotor bar resistance rb 20µΩ

Rotor ring sector resistance re 1.1µΩ

Inertia moment j 0.02kgm2

Number of turns per slot 68
Number of rotor slots 18

Table 1. Parameters of squirrel cage induction machine

in which
dγ

dt
= ω (68)

also, ω, J, Tl and Tem are the rotor angular speed, total inertia on the shaft, load torque and
electromagnetic torque, respectively. The electromagnetic torque is depended to mmf along
air gap and derivative of air gap permeances with respect to rotor angel (γ) (Ostovic, 1989).
For an induction machines, we can express as:

Tem =
h

∑
i=1

l

∑
j=1

(

ust
i − urt

j

)2 dGi,j (γ)

dγ
(69)

By substuting Eqs.(7), (10) and (11) into (69), air gap electromagnetic torque can be obtained
as:

Tem =
(

UT
st − UT

rt

) d

dγ
Asr (Ust − Urt) (70)

Therefore, the mechanical non-linear differential equations (67) to (70), with the magnetic
non-linear differential-algebraic equations (66), describe the generalized non-linear dynamic

model of squirrel cage induction machine. Because of non-linearity of the model, the
advantage numerical solution methods must be used. In the next section, some simulation
results are presented for demonstration of capability validation of the new model. After that,
asymmetrical situations of squirrel cage induction machine such as broken rotor bar fault with
saturation effects are analysed and evaluated.

7. Simulations and experiment of results

Table 1 shows the electrical parameters of the squirrel cage induction machine which is used
to obtain numerical simulation and experimental results. Air gap, rotor and stator slots and
other main dimensions of the induction machines are presented in Fig. (5) and windings
connection diagram are assumed similar to Fig. (4). In the next section, some different
dynamical conditions are implemented to obtain numerical results of the non-linear model
of induction machines.
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Fig. 6. Basic construction and main diameters and stator and rotor slot shapes

7.1 Simulation in healthy condition

For simulation study, the healthy conditions of a squirrel cage induction machine with
saturable iron core are given. At first, free starting-up is considered and at t = 0.3sec, a
mechanical load (Tl = 10Nm) is applied to the rotor shaft. The results of the simulations
are shown in Figs. 7 and 8. Speed-torque transient acceleration of the system is presented in
Fig. 7-a, that rotor speed reaches to steady state value at about t = 0.2sec. Also, transient
electromagnetic torque are shown in Fig. 7-a where low order harmonics are appeared in the
electromagnetic torque on the transient duration. This is a common behaviour in the induction
machines, which can be obtained from classical method such as two axes theory. But the high
order harmonics in transient and steady state are also appeared in the results. At t = 0.3sec
load torque changes form zero to Tl = 10N.m, electromagnetic torque increase by decreasing
of the rotor speed. Fig. 7-b shows dynamic of three phase stator currents which decrease
by increasing the rotor speed. Other dynamic performance for flux and rotor bar currents
are shown in Fig. 8. The results show that, high order harmonics are observed in the rotor
and stator teeth fluxes and currents. The rotor teeth and slots are moved opposite the stator

teeth and slots, thus radial fluxes will have variable permeances in the air gap. This is caused
a slot harmonics appears in the the all variables of the system. Fig 8-a illustrates that, slot
harmonics deform the stator teeth flux in the transient and steady state conditions. Because of
the machine is symmetric, all variables of machine such as the stator currents and stator teeth
flux are balanced.

7.2 Simulation in faulty condition

In this simulation , analysis of the induction machine with a broken bar is done to determined
the steady state performances of the machine. Fig. 9-a shows the steady state current of the
stator winding with linear and non-linear core characteristics. The rotor speed and torque
are 307.7rad/sec and 10N.m, respectively. Similar to the last conditions, slot harmonics are
appeared on the stator currents in the both causes (linear and non-linear magnetic core).
However, stator current has low order harmonics with the non-linear iron core. Stator teeth
fluxes in two cases are approximately equal. Also, Fig. 9-c presents that the bar currents near
to the broken bar are strongly changed. But attention to Fig 9-d, this situation is not appeared
in induction machine with non-linear magnetic core. Therefore, disturbances of rotor broken

bar in the saturated machines cannot effectively transfer to the stator currents.
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Fig. 7. Starting-up transient of induction machine

8. Conclusion

In this chapter, a generalized non-linear dynamical model of the squirrel cage induction
machines was presented. In this modelling, magnetic saturation effects in iron core, space
harmonic distributed of fluxes in the rotor and stator teeth, the stator windings and rotor bar
distribution were considered. Some simulations results showed that, presented model has

high accuracy and efficiency for asymmetrical analysis such as broken bar conditions. The
effects of broken bar will not clearly appear when the machine core is saturated.
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Fig. 8. Starting-up transient of induction machine
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Fig. 9. Steady state fluxes and currents of faulty induction machine with a broken bar for
linear and non-linear core
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