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1. Introduction 

A foreland basin system with its asymmetric basin geometry extends from the frontal areas 

of a mountain-building belt to the margin of craton and includes, as defined by DeCelles 

and Giles [1], wedge-top, foreland basin, forebulge and backbulge. Foreland basins have 

been well modeled based on the concept of flexed lithosphere under tectonic loading of 

thrust sheets and sediments deposited into the basin [2, 3, 4]. Rapid subsidence in a ancient 

foreland basin and the uplifted forebulge at its distal part has been viewed as the result of 

tectonic loading due to active thrust sheet emplacement [5, 6, 7, 8]. Corresponding to each 

episodic thrust belt advancement, a coarsening-upward clastic wedge would form and 

prograde into the newly subsided foreland basin [9, 10, 11].  

Characteristics of sedimentary sequences in a foreland basin are, thus, related to dynamic 

and kinematic modes of orogen-foreland basin evolution. Inversely, such characteristics can 

be used to investigate tectonic motion of the adjacent orogen [12, 13]. Different models for 

the development of a foreland basin predict distinct stratigraphy architecture across the 

basin. An elastic plate model predicts that the asymmetric foreland basin with the uplifted 

forebulge would migrate toward the craton as the rising orogen advances [14, 15, 16] and 

that the continuous migration of the orogen-foreland basin pair would leave a regional 

unconformity in the basin, which is younger toward the craton [17, 18]. The strata sequences 

overlying and onlapping at the unconformity have been viewed as the initial deposits of the 

foreland basin development [19, 20, 21, 22, 23]. The elastic model can be applied to infer the 

scale of erosion at the forebulge unconformity and the rate of strata onlapping across the 

unconformity under the conditions of variable crustal rigidity and variable migration rate of 

the orogenic wedge [22].  

If a visco-elastic model is applied, the stress imposed on a loaded lithosphere would be relaxed 

and the foreland basin would become narrower and deeper with the forebulge migrating 
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toward the orogen [2]. This would cause lithofacies belts to migrate back-and-forth between 

the mountain-building belt and craton and form a more complicated stratigraphic architecture 

at the basin and superimposed unconformities at the distal part of the basin [24, 25]. 

In many studies of foreland basin, the addressed deflexed plates are characterized by 

continental crust with heterogeneous mechanical property; the heterogeneity is manifested 

by a torn plate as the base of a foreland basin [26] or by lateral variation in crustal rigidity 

[27, 28, 29, 30]. More importantly, the mechanical heterogeneity is due to the fact that the 

predecessor of a peripheral foreland basin is a rifted continental margin with large-scaled 

normal faults distributed within the stretched continental crust and, for such reason, the 

location of foreland basin would migrate from the most stretched crust with the least 

rigidity to a complete nonstretched crust [31, 32, 33]. Therefore, an initially narrow-deep 

foreland basin would evolve into a wide-shallow one. In addition, pre-existing and 

syntectonic normal faults would influence the development of foreland basin sequences and 

shape an atypical time-spatial distribution of lithofacies in the basin [22, 34, 35, 36, 37]. 

Before the 1990s in the last century, the proposed models for foreland basin sequences 

basically assume that a foreland basin is filled up with deposits right after it forms. Lately, 

time lag between erosion in the mountain side and deposition in the basin has been put into 

consideration when investigating and simulating a model of foreland basin sequences [38, 

39, 40, 41, 42, 43]. In response to each episode of active thrust faulting, newly formed 

foreland basin by rapid subsidence would not be filled up with sediments in the early time; 

therefore, according to the theoretical model [4], the sediment-starved basin would be deep 

and narrow and accumulate deep water sediments in an “underfilled” state [39, 40, 41]. In 

the following stage, the orogenic wedge began to uplift and the consequential erosion 

provided the sediments to fill up the basin when the large-scale thrust faulting wane. From 

that moment, the basin gradually becomes widened and shallow and step into the 

“overfilled”  state characterized by shallow water deposits [44]. Generally speaking, in 

response to each episode of large-scale thrust faulting in the orogenic belt, the subsidence 

rate in a basin, which is related to the rates of advancement of the front of orogenic belt and 

change of orogenic wedge morphology, the sediment supply rate and the global sea level 

change rate would all together affect the tectonostratigraphic architecture, time-spatial 

distribution of lithofacies and the superimposed unconformities in the basin [39, 40, 41, 42, 

45, 46, 47, 48, 49]. Some models suggest that timing of rapid subsidence at different locations 

in a foreland basin has different tectonic implication [40, 41, 43]. 

In a young and on-going mountain building belt, such as that in Taiwan, the geological 

records in the foreland basin and fold-and-thrust belt are still well preserved and can be 

utilized to study the tectonostratigraphy problems and to test validity of different models 

for the problems. Taiwan is located on the convergent plate boundary between the Eurasian 

and Philippine Sea plates; its tectonic belts are aligned from east to west: the island arc in the 

Coastal Range, the suture zone along the Longitudinal Valley Fault Zone, the inner 

mountain-building belt of high-grade metamorphism in the Basement Complex, the outer 

mountain-building belt of low-grade metamorphism in the Backbone and Hsuehshan 

ranges, the imbricate fold-and-thrust belt in the Western Foothills, and the foreland basin 

(Figure 1, [50]). According to the model and definition of DeCelles and Giles [1], the coastal 

plain and its subsurface settings of southwestern Taiwan has been located in the distal part 

and the adjacent forebulge of the foreland basin system since the Late Neogene [23, 51, 52, 

53, 50]. The present day forebulge is located on the central line of the Taiwan Strait [23, 51, 

52]. Owing to the paragenetic relationship between the foreland basin and the adjacent 
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mountain belt, the stratal sequences, lithofacies and subsidence history of the basin, 

especially those in the distal part and the forebulge of the basin system, would not only 

record the evolutionary history of the basin itself but also provide the most crucial 

indicators to infer the kinematics of the mountain-building process.  
 

 

Fig. 1. Tectonic map of Taiwan and its adjacent areas. In the text of this article, the onshore 

foreland areas cover the alluvium and terrace gravel in the coastal plain, the outer fold-and-

thrust belt (OFATB) and the inner fold-and-thrust belt (IFATB) in the Western Foothills. 

Note that, on this map, the Paleogene basin does not appear in the eastern part of the 

Taiwan Strait. This is because the Neogene settings are predominant in that area and almost 

overprint the Paleogene settings. WF, Western Foothills; HR, Hsuehshan Rang; BR, 

Backbone Range; BC, Basement Complex; LVFZ, Longitudinal Valley Fault Zone; CR, 

Coastal Range (From Yang et al. [50]). There are two rifted basins in the Neogene settings 

and the study area is in the northern margin of the southern basin. 
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The main purpose of this study is to integrate the well bore and seismic data to work on the 

analysis of subsidence history, stratal sequences and lithofacies in the distal part of the 

foreland basin in southwestern Taiwan (Figure 2). All the previous studies of the foreland 

basin in western Taiwan assumed that the mountain-building belt and foreland basin 

system have been continuously migrating westward to the craton since the initiation of the 

Taiwan orogeny [53, 54, 23, 50, 51]; they commonly regarded the deposits in the basin as a 

mega-sequence unit, based on which the time-spatial variation in lithofacies has been 

investigated and the geometry of the basin has been reconstructed. On the other hand, Yang et 

al. [55] analyzed the subsidence curves by Chi et al. [56] and pointed out that the tectonic 

development of the foreland basin and its counterpart in the mountain-building belt is 

episodic rather than continuous as proposed by Suppe [57]. Yang et al. [58] further proposed 

that the distal part of the foreland basin is characterized by superimposed unconformities in 

the subsurface and attributed the unconformities, with the bounded sequence units of third-

order scale, and the following rapid subsidence to the episodic active thrust faulting in the 

mountain-building belt. The present article is the expansion of that proposed by Yang et al. 

[55, 58] and attempts to propose much more thorough descriptions and analysis of 

tectonostratigraphy in the distal part of the foreland basin in southwestern Taiwan. The first 

part of our works is to analyze in detail the subsidence curves in the distal part of the basin 

and to give a tectonic mode of epeirogenic movement in that area. We then propose two time-

stratigraphy profiles based on the works of nanno-fossil age-dating from well bore data and 

seismic interpretation; we propose a more detailed and different tectonostratigraphic model 

from the previous studies. In the final part of this paper, we investigate the tectonic 

implications of the tectonostratigraphic model for the recent Taiwan orogeny.  

2. Regional geology and previous studies 

The Taiwan mountain-building belt is the result of the arc-continent collision between the 

Eurasia and Philippine Sea plates starting since the Pliocene (Figure 3; [59, 60, 61, 62]). 

During the orogeny, the westward vergent fault-and-thrust belt has also been propagating 

from the northeast toward the southwest owing to the oblique collision [63]. Age dating of 

nanno-fossil zones in the Coastal Range indicates that the age of the initial collision was 4 

million years (My) [64]. Studies of sedimentary rock in the thrust belt show that the oldest 

sediments derived from the encroaching orogen are the Upper Pliocene [65]. However, Teng 

[66] suggested that the initial subsidence in the foreland basin due to tectonic loading of the 

growing orogenic wedge was in the Early Pliocene or at 5 Ma before present (bp). Teng [67] 

proposed that, according to the kinematic analysis of relative movement between the 

Eurasia and Philippine plates, the northern tip of the Philippine Sea plate started to collide 

with the boundary between continental and oceanic crusts in the Eurasian plate around 12 

to 10 My bp and obducted over the passive margin of the Eurasian plate at 7 My bp. He also 

proposed that the mountain-building belt in northern Taiwan started to expose subaerially 

and propagate southward at 5 My and that a foreland basin in western Taiwan has 

developed since then. Huang et al. [68, 69] suggested that the timing of arc-continent 

collision should be at 6.5 My bp in northern Taiwan and 5 My bp in southern Taiwan. 

Prior to the orogeny, the western Taiwan was located on the Eurasian passive continental 

margin (Figure 3) and had been went through two discernable major phases of Tertiary 

extensional tectonics (Sun, 1982; Yuan et al., 1989; Lin et al., 2003; Yang et al., 2006). The 
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Fig. 2. Location map of well sites and seismic lines used for subsidence curve calculation 

and stratigraphy cross-section construction in this study. Locations of the east-west and 

north-south stratigraphy cross-sections are also shown in the map. The main subsurface 

structures in the study area are east-west striking normal faults. Part of foothills belt, which 

is characterized by fold and thrust structures, occurs to the east of the study area. 
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older phase primarily developed in the Paleogene period and ended in the Middle 

Oligocene [70, 71, 51, 52], forming a regional unconformity across the entire area of passive 

margin of southeastern China Mainland [70, 72]. However, the age of initiation of the post-

rift sequences varies everywhere in the newly formed post-rift basin. In southwestern 

Taiwan, the age of the strata right overlying the regional unconformity is in NN1 zone [56]. 

The latest phase of the extensional tectonics initiated in the Middle to Late Miocene [73, 74, 

70, 75 , 76, 77, 78, 71, 79, 51, 80] and formed two rifted basins separated by a basement high 

that stood nearly perpendicular to the front of thrust belt [80, 52]. The study area in this paper 

is located right on the northern margin of the southern rifted basins (Figure 1). The basin is 

composed of two opposite half-grabens (Figure 4), with its width increasing toward the 

northeast, indicating greater extension of the basin to the northeast (Figure 1; [80, 52]). The 

extensional tectonics is characterized by normal faults striking mainly east-west in the basin 

(Figures 1 and 2). The basin rifting has been propagating toward the southwest and the eastern 

part of the basin with greater extension now is buried beneath the fold-and-thrust belt [80]. 

The simple-shear model for the extension [81, 82] is applicable to interpreting the 

formation of the basin, because of not only the asymmetric feature across the basin but 

also its uplifting margins and subsiding center [70, 80]. This means that in the  

 

 

 

Fig. 3. Tectonic evolution of western Taiwan since the Late Miocene. Before the arc-continent 

collision, the passive margin of the Eurasia plate encountered the latest phase of extensional 

tectonics commencing from the Middle or Late Miocene. In the early stage of arc-continent 

collision, the preexisting normal faults that are close to the deformation front were 

reactivated while the extensional tectonics continued in the area to the west. In the latest 

stage, the inner part of the foothills belt have been dominated by low-angle thrusting while 

the reactivated normal faults and extensional tectonic stepped back to the foreland areas. 

More details about the structural setting in the foreland areas are given by Yang et al. [50]. 
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Fig. 4. Seismic sections showing half-grabens in the offshore area of southwestern Taiwan. 

The locations of the seismic lines are shown in Figure 1. The seismic lines run across the 

rifted basin, which formed during the latest phase of extensional tectonics. The rifted basin 

is composed of two opposed half-grabens with their widths widening to the east. 

study area the foreland basin initially developed on the previously uplifted margin of the 

extensional basin [74, 70, 52]. Subsurface geology also indicates that normal faulting was still 

going on in the earlier stage of the foreland basin until the encroaching thrust sheets altered 

the local stress regime and caused the normal faulting to cease and step back cratonward 

[70, 52]. Although some studies attributed the latest stage of subsidence in the basin to the 

tectonic loading from the fold-and-thrust belt [83], so far no evidence has been found to 

indicate that the latest rifting and the recent collision were genetically related. 

Referring to the geometric relationship between the passive continental margin and the 

thrust front, Suppe [57] assumed a constant migration rate for the westward advancement of 

the thrust belt and measured the rate of orogen growth and propagation along the passive 

continental margin. Based on the concept of critical taper of orogenic wedges, he also 

proposed that the mountain belt reached its today’s elevation at about 3 My bp and that the 

cross-section width and area of the mountain range hadn’t changed any longer since then 

[57].   

The foreland areas in western Taiwan are equivalent to the areas covering the onshore fold-

and-thrust belt (Western Foothills in Figure 1), the coastal plain outcropping with alluvial 

and terrace deposits, and the offshore Tungyintao, Nanjihtao, and Penghu basins developed 

in the Paleogene time (Figure 1). The fold-and-thrust belt is included as a part of the 

foreland area because its tectonic development has been strongly influenced by pre-existing 

normal faults. The coastal plain in southwestern Taiwan is located in front of the Taiwan 

mountain-building belt and the subsurface geological data from the coastal plain indicates 

that the thickness of upper Neogene, and depth of its correspondent sedimentary basin as 

well, increases dramatically toward the mountain-building belt to the east [70, 50, 52]. As for 

the offshore areas, structural cross sections [84, 85, 86, 49] through the Taiwan Strait show 

that the backbulge of DeCelles and Giles’ [1] foreland basin system is almost equivalent to 
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the linear zone connecting the Tungyintao, Nanjihtao, and Penghu basins; therefore, the 

entire Taiwan Strait can be considered as the western part of the foreland.  

Covey [53] was the first study on the foreland basin in western Taiwan; he suggested that 

the strata of the upper Pliocene to Recent in the foothills belt and coastal plain are the 

foreland basin sequences, which are characterized by the sedimentary facies that are 

shallower upward and orogenward and record the history of westward migration of the 

orogenic belt. Based on Suppe’s [57] kinematic model of orogenic evolution, Covey [54] 

proposed that an underfilled foreland basin (corresponding to deeper water facies) in the 

early stage evolved into an overfilled one (corresponding to shallow water and continental 

facies) in the later stage and then entered a steady state in the following stage, i.e., the 

subsidence was balanced by the sediment accumulation in the basin. During cratonward 

migration of the orogenic belt the sequences in the proximal part of the basin were 

cannibalized into the mountain-building belt and a new space was created for sediment 

accumulation at the same time in the distal part of the basin. Thus, cross-secton width and 

area of the basinal profile remained constant through the time. This may be observed in 

the sedimentary sequences which monotonously consist of prograding shallow marine, 

deltaic and fluvial deposits. Covey [53] suggested that the initiation of the foreland basin 

was at 3 My bp. Based on the analysis of subsidence history in the onshore and offshore of 

western Taiwan, Chou et al. [88] comes to the same conclusion.  

However, some studies suggested that the initiation of foreland basin development is 

earlier. Sedimentary facies in the foothills belt give some signatures of tectonic loading from 

the mountain-building belt to the east at 5 My bp [66]. In their model for calculating the 

rigidity of crust in western Taiwan, Shiao and Teng [85] first proposed that the boundary 

between the Miocene and Pliocene is the base of the foreland basin. Yu and Chou [23], using 

subsurface well bore and seismic data in the offshore of northwestern Taiwan, identified a 

regional unconformity at the boundary between the Miocene and Pliocene, on which the 

Pliocene strata onlapping westward to the craton. In other words, the time gap between the 

overlying and underlying strata of the unconformity increases to the craton. They suggested 

that the characters of the unconformity indicate the erosion and uplifting in a forebulge [22]; 

therefore, they regarded the regional unconformity as the base of the foreland basin. The 

unconformity in southwestern Taiwan that was previously interpreted as the initiation of 

the latest stage of extensional tectonics was also regarded as the southward extending part 

of that in northwestern Taiwan [23]. The interpretation about the age of foreland basin 

initiation was followed by Lin and Watts [50] and Lin et al. [51], by whom the age were 

more definitely assigned as 6.5 Ma.  

Among the most recent studies, Simoes and Avouac [89], using the isopach maps of each 

sequence of the Neogene in the offshore and onshore of western Taiwan by Shaw [90], 

calculated the rate of westward migration of the orogenic belt since the foreland basin 

initiated at 6.5 My bp. Tensi et al. [91] also used Shaw’s [90] isopach maps to infer the 

location of the forebulge during the past 12 My. Both studies pointed out that the inferred 

migration rate of the mountain-building belt and its associated foreland basin is not 

coincident with the rate, which is well constrained, of relative motion between the Eurasia 

and Philippine Sea plates today. The rate of southward migration of the mountain-building 

belt by Simoes and Avouac [89] is far less than that of relative motion between the plates 

and the inferred locations of the forebulge before 5 My bp by Tensi et al. [91] which implies 

an unreasonable width of the foreland basin.  
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3. Analysis of subsidence history  

Subsidence curves (Figure 5) from the distal part of the foreland basin of southwestern Taiwan 

were calculated using stratigraphic thicknesses from well bore data. Subsidence histories were 

determined by "backstripping" methods [92, 93]. Decompaction constants used to restore 

stratal thicknesses are from the empirical porosity-vs.-depth curve compiled by Sclater and 

Christie [93]. The thickness ratio of sandstone to shale was measured to decide the 

decompaction constant for each sequence unit. To acquire the original strata thickness for 

constructing the burial history and the subsidence curves, we adopt the biostratigraphic units 

of nonno-fossil zone, which are regarded as more corresponding to the chronostratigraphic 

units, as an interval to be decompacted. The correlation between absolute ages and nanno-

fossil zones was based on the works of [64] and Okada and Bukry [94]. 

In addition to the decompaction corrections, which gave the curve of “total subsidence” , 

effect of sediment loading, depositional water depths and eustatic sea level fluctuation were 

also corrected in order to obtain the subsidence which is caused by tectonic loading. 

Traditionally, lithofacies and their corresponding depositional environments have been 

used to infer the local relative sea level. Nevertheless, the controlling factors for lithofacies 

change are more complicate. In order to avoid the controversies in interpreting the 

depositional water depths, statistic method based on foraminiferal fossil assemblages was 

adopted to evaluate the paleo-water depths for subsidence curve calculation. The range of 

eustatic sea level fluctuations during the Neogene was less than 250 meters [95]. This 

component of accommodation was not corrected from the subsidence curves shown below 

but does not affect the position of major inflection points of  the curves.  

All the subsidence curves were calculated based on the strata overlying the regional 

unconformity that represents the end of the Paleogene extensional tectonics and the 

beginning of the post-rift stage in the Neogene time. As mentioned above, the latest phase of 

extensional tectonics initiated in Middle to Late Miocene with uplifting in the basin margin 

and a remarkably localized unconformity occurs in the subsurface of coastal plain of 

southwestern Taiwan. 

The correlative conformity from a continuous succession of well bore data can be viewed as 

the onset of uplifting and can be obtained by comparing the complete succession with the 

nearby eroded ones. The onset of uplifting is around 10 My bp for all the calculated 

subsidence curves. The magnitude of erosion by uplifting were estimated and used to 

calculate a complete subsidence history prior to the onset of the uplifting. To estimate the 

thickness of the eroded strata and their sedimentation rate, we used some wells such as J 

and R, which preserve the continuous succession in the localities closer to the basin center. 

The sedimentation rate then was multiplied with the time gap between the age of strata 

right underneath the unconformity and that of correlative conformity to obtain the thickness 

of eroded strata for each drilled well. It must be emphasized that, since the drilled wells 

with thickness of complete succession are located closer to the basin center, where is 

characterized by greater magnitude of subsidence, the thickness of eroded strata for the 

other drilled wells should be the maximum estimation. 

The subsidence curves indicate a gradually decreasing rate of subsidence during the post-

rift phase prior to the onset of uplifting. The uplifting then was followed by another phase 

of rapid subsidence. The onset age of the intial rapid subsidence varies in the study area, but 

in general it is stepwisely younging to the northwest (Figure 5), indicating a progressive 

onlapping of deposits at the unconformity. However, the variation in age of initial rapid  
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Fig. 5. Subsidence curves from drilled wells in the study area and location map of well sites 

with different ages of initial rapid subsidence. Arrow heads on each subsidence curve mark 

the ages of rapid subsidence initiation, which can be discerned as around 7, 5 to 4, 2 and 0.4 

My. The well sites can be divided into three groups based on the age of initial rapid 

subsidence. Subsidence curves were modified from Chi et al. [56]. Detailed discussions of 

the subsidence curves are given in the text.  

subsidence is not continuous across the entire study area; rather, the ages of onset of initial 

rapid subsidence can be discerned as around 7, 5 to 4, 2 and 0.4 My, although each age is 

within a small range of time. The well sites can be divided into three groups based on the 

age of initial rapid subsidence (Figure 5). In general, the well sites of younger ages of initial   

subsidence are located closer to the northwest. The first group of well sites with initial rapid 

subsidence onset at 7 My bp are located in the southeastern part of the study area. The 

subsidence curves show that rapid subsidence was followed by a period of slow subsidence, 

which in turn was followed by the next rapid subsidence with stepwise increasing rate 

(Figure 5). It is noticeable that even the subsidence curve from the drilled well of continuous 

succession shows the similar geometry of subsidence curve. The second group of well sites 

with initial rapid subsidence onset during 5 to 4 My bp are located to the northwest of the 
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first group. Although the age of rapid subsidence is younger, the subsidence curves show 

the same geometry. The third group, which is represented by only one well site with initial 

rapid subsidence starting at 2 My bp, located at the northwestern part of the study area. The 

subsidence curve shows a convex-upward geometry, indicating an increasing rate of 

subsidence. 

Comparison among the four groups of subsidence curves indicates that those subsidence 

curves that mark the earlier initial rapid subsidence also record the younger phases of rapid 

subsidence (Figure 5). Therefore, the entire area in the distal part of the foreland basin in 

southwestern Taiwan had underwent four discernible episodic phases of rapid subsidence 

starting at 7, 5 to 4, 2, and 0.4 My bp. The time-spatial distribution of the onset ages of rapid 

subsidence indicates that the area affected by the tectonic loading, which is manifested by 

rapid subsidence, have been progressively expanding to the northwest. Among the first 

group of well sites, well G is an exception; it is located among the well sites of younger 

rapid subsidence. Its tectonic implications will be deciphered in the next section after we 

demonstrate the subsurface structural and stratigraphic features from seismic interpretation.  

4. Time-stratigraphy architecture 

The local exploration geologists who work on the subsurface geology in the coastal plain of 

southwestern Taiwan used to adopt the boundaries of lithostratigraphic unit when working 

on the stratigraphic correlation. The lithofacies identification for each litho-stratigraphy unit is 

based on that of type section occurring in the foothills belt. Using the boundaries of litho-

stratigraphy units for stratigraphic correlation is applicable to the strata deposited in the 

Miocene, during which the subsidence was slow in comparison with that in the later foreland 

basin period (Figure 5) and eustatic sea level fluctuation overwhelmed tectonics in shaping the 

stratigraphic architecture. Under such condition, the boundaries of litho- and 

chronostratigraphic units are nearly parallel or even identical [75, 77]. However, the situation 

is different for the foreland basin sequences, of which lithofacies change dramatically from that 

occurs in the foothills belt to that in the subsurface in the coastal plain [53, 54]. The lateral 

lithofacies changes even appear in local area; biostratigraphic study results from the southern 

part of this study area by Wu et al. [96] indicate that the sedimentary cycles are not coincident 

to the eustatic sea level fluctuation and, instead, strongly affected by tectonics. The study of 

sedimentary environments of the section in the foothills belt also gives the same conclusion 

[97]. In order to accurately illustrate time-spatial distribution of strata in the distal part of the 

foreland basin, we used the top of nanno-fossil zones from the drilled wells as the time line to 

construct a time-stratigraphic cross-section across the study area. Previous studies [74, 53, 77, 

78, 23, 52] have shown that the base of the latest rift settings, and the foreland basin as well, in 

southwestern Taiwan deepens from the basement high in the northwestern part of the study 

area to the east and south. We constructed both north-south and east-west lines of time-

stratigraphy cross-section; the former could be used to investigate the effect of the normal 

faulting on the stratigraphic architecture while the later would illustrate a typical asymmetric 

stratigraphic profile across a foreland basin.    

The line of east–west stratigraphy cross-section extends from the near shore area in the west 

to the area very close to the thrust front of the foothills belt in the east (Figure 2). The well 

sites are mostly located in the western and eastern parts of the line. The stratigraphic 

architecture in the middle part is mainly constrained by seismic interpretation, which will be 
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addressed below. The stratigraphy cross-section (Figure 6a) shows an eastward thickening 

succession, which is punctuated by two regional unconformities, which become 

conformities to the east. The localities of transition between the unconformities and their 

correlated conformities shift to the west. The time gap between the strata underlying and 

overlying the unconformities also increases to the west. Well J is at the eastern end of the 

line and its succession is continuous from the sequences of extensional basin to that of 

foreland basin. To its west, strata of NN11-13 onlap at the unconformity that is at the base of 

the foreland basin and pinch out at very short distance. In the middle part of the line the 

strata of NN11-13 appear again but terminate at a southeast-dipping normal fault that can 

be unequivocally interpreted on the seismic section line W (Figure 6b). The normal fault is 

the major boundary fault occurring along the northern margin of the latest extensional 

basin. Distribution of strata NN-14 continuously extends to the west until where they are 

truncated by another younger regional unconformity. The unconformity at the base of the 

strata NN 11-13 and 14 also merges with the younger unconformity to the west and forms 

another unconformity with large time gap between the underlying and overlying strata. 

Strata of NN 15-18 are truncated by the younger unconformity in the area between wells G 

and H; the stratigraphic architecture of transition between unconformity and the correlated 

conformity is constrained by the interpretation on seismic section line W (Figure 6b). Strata 

of N19 are ubiquitously overlying the younger unconformity and its correlated conformity 

across the entire cross-section. Comparing to entire foreland basin sequences, especially 

those between two unconformities and their correlated conformities, the eastward 

thickening of each unit of nanno-fossil zone, except strata of NN11, is not so remarkable. 

The most widespread units, NN14 and NN19, uniformly spread to the west where their 

thickness obviously decreases or they are truncated by the younger unconformity.  

In order to illustrate the variation in stratal units across the boundary normal fault zone, 

part of the northern segment of north-south stratigraphy cross-section was designed to 

overlap with east-west cross-section (Figure 2). The stratigraphic architecture on north-south 

stratigraphy cross-section (Figure 7a) is similar to that on east-west cross-section; the 

foreland basin sequences thicken toward the basin center to the south and are truncated by 

two major regional unconformities, of which the spatial distribution of the younger one 

steps back to the north. Still, north-south cross-section shows some more complicated 

features of stratigraphic architecture, which are highly related to the normal faulting during 

the development of foreland basin. Thickening of the foreland basin sequences is not 

gradual but appears stepwise across several major normal faults of prominent displacement. 

In the northern part of the cross-section, stratal units of NN11-13 overlying the older 

unconformity are deposited in the downthrown side of the normal faults and separated 

from those deposited in the basin center where the units become conformable on the 

underlying strata. In the southern part of the cross-section, the strata of NN11, the oldest 

stratal unit overlying the older unconformity, are truncated by a local unconformity, which 

can be correlated to the stratal unit of NN12. Similarly, the stratal units of NN11-13, 

including the local unconformity between the units of NN11 and NN13, terminate at 

another major south-dipping normal fault. The existence of normal fault in shaping 

distribution of the stratal units of NN11-13 can be clearly illustrated by the interpretation on 

the seismic line N (Figure 7b). The boundary between the stratal units of NN11-13 and 

NN14, as shown on seismic section line N (Figure 7b), shows as an undulating feature, 

indicating erosion cutting down to the underlying strata. The scale of erosion is too significant   
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Fig. 6. Time-stratigraphic architecture of the foreland basin sequences shown by (a) east-

west stratigraphy cross-section and (b) seismic line W for local stratigraphy constraint. 
The inset map shows location of the stratigraphy cross-section. The range of the seismic line 
is also marked on the stratigraphy cross-section. Although spatial distribution of strata is 
affected by normal faulting, the stratigraphic architecture illustrates westward younging 
stratigraphic settings, including the spatial distribution of the unconformities with their 
correlated conformities and the overlying strata. The normal fault that controls the 

deposition of localized strata of NN11-13 is constrained by the interpretation of the 
seismicc line W. 
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to be detected by nanno-fossil dating and, therefore, the corresponding unconformity does not 

appear on the stratigraphy cross-section. Nonetheless, its implication of sedimentation in the 

scheme of foreland basin will be addressed below. Localized distribution of the strata of 

NN15-17 underlying the younger unconformity is also shown on north-south stratigraphy 

cross- section (Figure 7a). Interpretation on the seismic section line N (Figure 7b) indicates that 

such distinct stratigraphic feature can be attributed to fault block tilting by normal faulting.  

Wheeler diagrams (Figure 8) were constructed based on the stratigraphy cross-sections to 

illustrate time-spatial distribution of each nanno-fossil zone. On the east-west diagram 

(Figure 8a), the time gap of each regional unconformity increases to the west where the 

strata of NN19 directly overly the strata of NN6-7, the sequences prior to the foreland basin 

development. The diagram also shows that the basin margin, as defined by the boundary of 

eroded regime, has been migrating back-and-forth during the foreland basin development. 

The margin of the basin migrated toward the front of mountain-building belt to its farthest 

position during the NN11 zone and then started to retreat to the craton. The basin expanded 

cratonward rapidly to its maximum extent during the deposition of the strata of NN14. By 

the end of NN14, the basin margin migrated toward the front of mountain-building belt 

again and arrived at its easternmost position at NN8. Nonetheless, the easternmost position 

of the basin margin at this time is more cratonward than that at NN11, indicating 

cratonward shifting of the entire stratigraphic settings. 

On the north-south diagram (Figure 8b), back-and-forth migration of basin margin still can 

be shown; however, the time-spatial distribution of strata of NN11-13 and NN15-18, which 

are coeval with the development of regional unconformities, are highly related to normal 

faulting of large displacement and occur in the downthrown side of the faults. Nonetheless, 

the ubiquitous unconformity-based stratal units, NN14 and NN19, basically are not affected 

by the normal faulting.  

5. Discussions 

Subsidence curves (Figure 5) and stratigraphy cross-sections (Figures 6, 7 and 8) in the study 

area give some important constraints for proposing any tectonostratigraphic models of 

foreland basin development in western Taiwan. In the sections below, we give some 

discussions regarding the controversies about several important related issues, including the 

initial time of foreland basin development, sedimentology of boundaries of third-order 

sequences and eustatic effects on the stratigraphy architecture. Once they are clarified, the 

tectonic implications of foreland basin sequences would be unraveled. 

5.1 Onset time of foreland basin development 
Rapid subsidence events starting at 5 to 4 and 2 My indicated by the subsidence curves can 

be well correlated to the unconformities and the overlying ubiquitous strata of NN14 and 

NN19. However, rapid subsidence event initiated at 7 My bp is not so well defined on the 

stratigraphy cross-sections (Figures 6, 7 and 8) because of onlapping of stratal units of 

NN11-13 at the unconformity occurs in the easternmost part of the study area. Since most 

part of the study area is located on the northern uplifting margin of the extensional basin, 

rapid subsidence following the uplifting at any places of the study area would be taken as 

the onset of tectonic loading during the foreland basin development. The onset age of the 

rapid subsidence at 7 My is very close to and might be correlated to that of the previously 

proposed initiation of the foreland basin in western Taiwan at the end of Miocene [85, 23, 49,  
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Fig. 7. Time-stratigraphic architecture of the foreland basin sequences shown by (a) north-

south stratigraphy cross-section and (b) seismic line N for local stratigraphy constraint. The 

inset map shows location of the stratigraphy cross-section. The range of the seismic line is also 

marked on the stratigraphy cross-section. Spatial distribution of strata is highly affected by 

normal faulting; to the north of the normal fault located between wells O and P, the older 

unconformity is primarily at the base of strata of NN14 but is overlain by strata of NN11-13 in 

the downthrown side of normal fault of large displacement. To the south, foreland basin 

sequences are rather continuous, only disrupted by a local unconformity. Nonetheless, the 

stratigraphic architecture illustrates that stratigraphic settings, including the spatial 

distribution of the unconformities with their correlated conformities and the overlying strata, 

generally are younging to the north. Relationship of normal faulting with the irregular 

distribution of strata of NN11-13 can be illustrated on the interpreted seismic line N. 
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Fig. 8. Wheeler diagrams of (a) east-west and (b) north-south stratigraphy cross-sections, 

illustrating time-spatial distribution of the foreland basin sequences. On the east-west 

diagram, the time gap of each regional unconformity increases to the west where the strata 

of NN19 directly overly the strata of NN6-7. The basin margin, as defined by the boundary 

of eroded regime, has been migrating back-and-forth during the foreland basin 

development. On the north-south diagram, time-spatial distribution of strata of NN11-13 

and NN15-18 are highly related to normal faulting and occur in the downthrown side of the 

faults. 
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50, 51, 89]. However, this contradicts some study results from northwestern Taiwan [66, 88], 

where the ages of initiation of foreland basin development have been dated younger than that 

in southwestern Taiwan. Considering the tectonic evolution of oblique collision for forming 

the mountain-building belt, the age of initiation of foreland basin development in the study 

area could only be younger than that in the northern areas. In addition, as pointed out by some 

previous studies [89, 91], the position of foreland basin margin in southwestern Taiwan at 6.5 

My bp is not consistent with that deduced from the modern relative motion between the 

Eurasia and Philippine Sea plates. The occurrence of the stratal units of NN11-13 might give 

some answers to the controversy; the strata of the units, except that in the easternmost part of 

the study area where actually is in the basin center, were mainly accumulated in downthrown 

side of the major normal faults (Figures 6, 7 and 8), indicating that deposition of the units are 

highly related to the normal faulting. Therefore we suggest that the rapid subsidence onset at 7 

My bp is the result of the normal faulting and rule out the possibility of foreland basin 

development onset at that time. We also suggest that the foreland basin had not commenced 

until the rapid subsidence onset at 5 to 4 My bp or the beginning of NN14.    

5.2 Sedimentology of sequence boundaries 
Subsidence curves (Figure 5) reveal four rapid subsidence events following uplifting and the 

causal unconformities. The resultant stratigraphic architecture can be divided into several 

sequence units of third-order scale bounded by the unconformities and their correlated 

conformities (Figures 6a and 7a). We demonstrate some prominent sedimentological features 

below to argue that the sequence boundaries are caused by or at least highly related to tectonic 

processes.  

Well Q is located in the southern part of the study area. In terms of basin architecture, it is in 

the downthrown side of a major normal fault that is the demarcation between the uplifted 

margin and the basin center during the foreland basin development (Figures 2 and 7a). The 

subsurface succession from that well is continuous above the unconformity of 7 My bp 

between the stratal units of NN8 and NN11 (Figure 9). Sedimentary cycles of coarsening-

upward can be identified as the sequence units of third-order scale and the sequence 

boundaries are at the unconformity-correlated conformities of 5 to 4, 2 and 0.2 My (Figure 

9), distinctively. The characteristics of periodic coarsening upward sequences indicate a 

strong tectonic signature that can be comparable to other examples in some tectonically 

active belts [9, 10, 11]. The tectonic origin for the unconformities is also supported by the 

calculated magnitude of erosion of the unconformities in the Plio-Pleistocene [98], which 

scale is larger than that could be caused by eustatic sea level fall during the same period. 

The well bore data was correlated to a seismic line tied to the well and the interpreted 

seismic profile shows that the sequence boundaries are characterized by prominent canyon 

morphology to the south of the well site (Figure 9). The largest scale of down-cutting 

morphology is the boundary at the base of the stratal units of NN19. The morphology of 

each submarine canyon has been studied and reconstructed in detail by Fuh et al.[99, 100] 

using a dense grid of seismic sections with some well bore data in the area between wells Q 

and R. The reconstructed morphology of submarine canyons shows that the regional trends 

of the axis of submarine canyons are parallel with that of the mountain-building belt, 

implying that the formation of the unconformities is related to the orogeny. Their studies 

also show that the submarine canyons gradually developed southward, consistent with the 

general trend of southward propagation of the mountain-building belt, but bounced back to 
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the north relative to the preceding one when the most prominent canyon was developing at 

the base of NN19 [99]. Such back-and-forth pattern of submarine canyon migration is 

correlated to that shown on the stratigraphy cross-sections (Figures 6a and 7a) to the north. 

 

 

Fig. 9. Sedimentary cycles revealed by electric log data from well Q and their correlated 

sequences in the interpreted seismic line S. The sedimentary cycles are characterized by 

coarsening-upward sequences and are based by small-scaled unconformities, which turn 

into large-scaled down-cutting morphology of submarine canyons to the south. 

5.3 Eustatic effects on stratigraphy architecture 
A previous study of sequence stratigraphy of an outcropped section in the foothills belt 

[101] recognized several unconformities, including the one coeval with that of 2 My in the 

coastal plain, and suggested that the unconformities are the results of eustatic sea level 

fluctuation. In order to clarify the effect of eustasy on sedimentation of the foreland basin 

sequences in our study area, we compare the onset ages of rapid subsidence to the sea level 

fluctuation curves. The comparison demonstrates that the strata overlying the 

unconformities were deposited during the periods of sea level high stand or falling stage 

(Figure 10); the stratigraphy development is out-of-phase to the eustatic cycles. Therefore, 

the stratigraphic features in the foreland basin cannot be explained by eustatic sea-level 

fluctuation. Since the distribution of the strata directly overlying the unconformities is 

ubiquitous and not affected by the normal faults we suggest that such out-of-phase events 

should be related to subsidence induced by the telescopic effect of tectonic loading. 
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Fig. 10. Comparison of ages of rapid subsidence initiation to the eustatic sea level fluctuation 

[95] since the Late Miocene. All the rapid subsidence recorded in the foreland basin 

sequences happened in the sea level high stand or falling stages. 

5.4 Tectonostratigraphic model for basin evolution 
We have ruled out the possibility of eustatic effects on the stratigraphic architecture in the 

distal part of foreland basin. We suggest that the stratigraphic architecture, which is mainly 

shaped by the major unconformities, implies eastward migration of forebulge during 

episodic westward movement of the fold-and-thrust belt and later progradation of 

deposition toward the craton. Here, we propose a tectonostratigraphic model for the basin 

evolution in southwestern Taiwan since the beginning of latest extensional tectonics and 

through the foreland basin development. 

The study area had been in the uplifted margin of the latest rifted basin up to 7 My bp 

(Figure 11a). The area encountered major normal faulting from 7 My bp to 4 My bp and syn-

rift deposits were accumulated in downthrown side of the normal faults (Figure 11b), 

causing irregular spatial distribution of the stratal units of NN11-13 in the basin margin 

(Figures 7a and 8b). By the end of NN13 or at 5 to 4My bp, second phase of uplifting began 

(Figure 11c) and was followed by rapid subsidence and deposition of the ubiquitous strata 

of NN14 and the overlying strata onlapping toward the craton (Figure 11d ). By the end of 

NN18 or at 2 My bp, the third phase of uplifting began, caused part of strata of NN14 and 

the overlying strata to be eroded (Figure 11e). From 2 My bp on, the uplifted area started to 

subside again and received another unit of ubiquitous strata of NN19 (Figure 11f.). The 

eroded area during the third phase of uplifting at 2 My bp, which boundary is defined by 

the transition between the unconformity and its correlated conformity, migrated cratonward 

relative to that of the preceding one.  

www.intechopen.com



 Tectonics 

 

190 

 

Fig. 11. Tectonostratigraphic model for the foreland basin evolution in southwestern Taiwan 

since the beginning of latest extensional tectonics and through the foreland basin 

development. Detailed descriptions for each stage are given in the text. 

5.5 Tectonic implications 
The characteristics of the subsidence history and stratigraphy architecture strongly imply 

that the foreland basin evolution favors the tectonostratigraphic model proposed by 

Flemings and Jordan [40] and Jordan and Flemings [41]. In their models, unconformity 

within the foreland basin sequences might represent active thrusting in the mountain-

building belt, during which forebulge migrates toward the thrust front and causes uplifting 

in the distal part of the basin, while the rapid subsidence represents the later stage and 

quiescence of thrusting, during which sequences prograde toward the distal part of the 

basin and onto the unconformity. In southwestern Taiwan, sedimentation of the ubiquitous 
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stratal units of NN14 and NN19 may represent the quiescent period of active thrusting in 

the mountain-building belt.    

Migration rate of the forebulge in the distal part of the foreland basin can be approximately 

measured based on the eastern limit of each unconformity and the western limit of each 

westward onlapping sequences (Figure 12). The back-and-forth variation in positions of the 

above stratigraphic settings would provide some significant clues to infer the kinematics of 

recent orogen-foreland basin development. The result indicates that the migration rate was 

slower in the early stage but higher in the final stage than that derived from the previously 

proposed kinematic model of steady migration of the orogenic belt [57]. This implies that 

the pre-collision extensional tectonics might have caused weaker lithosphere beneath the 

foreland basin and that once the foreland basin migrated onto the less stretched lithosphere 

the basin would expand rapidly into the craton.  

 

 

Fig. 12. Positions of the transition between the unconformities and their correlated 

conformities and the cratonward limitation of the distribution of unconformity-bounded 

sequences. The positions are determined based on the stratigraphy cross-sections (Figures 6a 

and 7a). Discussions of tectonic implication of variation in the positions are given in the text 

6. Conclusions 

1. Subsidence curves calculated from foreland basin sequences indicate that there are several 

rapid subsidence events at 7, 5 to 4, 2 and 0.2 My bp. The age of the initial rapid subsidence 

is younger toward the craton. The well sites that are characterized by earlier subsidence also 

record the other later events of rapid subsidence. Thus, the distal part of foreland basin 

encountered four discernible episodic events of rapid subsidence after the onset of rifting.  
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2. The stratigraphy cross-sections show that there are at least two unconformities in the 

foreland basin sequences, which divide the mega-sequence unit into several sequences of 

third-order scale. The characteristics of the unconformities are: 1, they merge into one 

unconformity toward the craton; 2, the time gap of each unconformity increases toward the 

craton, except where normal faulting created accommodation space for accumulation of 

older strata overlying the unconformity; 3, the spatial distribution of the younger 

unconformities with their correlated conformities shifts toward the craton. 

3. Analysis of stratigraphy cross-sections indicates that the onset of foreland basin 

development was at 5 to 4 My bp, younger than that proposed in some previous studies. 

4. The time-spatial distribution of the unconformities indicates back-and-forth migration of 

the basin margin in the distal part of foreland basin. The overlying sedimentary cycle of 

coarsening-upward sequences also implies the tectonic influence on the deposition of the 

foreland basin sequences in southwestern Taiwan.  

5. The stratigraphic features in the foreland basin cannot be solely explained by eustatic sea-

level fluctuation and the unconformities might result the episodic thrusting activity in the 

mountain-building belt to the east, which would cause eastward migration of forebulge and 

later progradation of deposition toward the craton. 

6. The distal part of foreland basin in southwestern Taiwan had been in the uplifted margin 

of the latest rifted basin up to 7 My bp. The area encountered normal faulting from 7 My bp 

to 4 My bp. By the end of NN13 or at 5 to 4My bp, uplifting that corresponds to forebulge in 

the distal part of foreland basin began and was followed by rapid subsidence and 

deposition of the ubiquitous strata of NN14 and the overlying strata onlapping toward the 

craton. Close to 2 My bp, uplifting of the forebulge started again and caused part of strata of 

NN14 and the overlying strata to be eroded. From 2 My bp on, the uplifted area started to 

subside again and received another unit of ubiquitous strata of NN19.   

7. The migration rate of the forebulge in the distal part of foreland basin was slower in the 

early stage than that derived from the previously proposed kinematic model for the steady 

migration of the orogenic belt. This implies that the pre-collision extensional tectonics might 

have caused weaker lithosphere beneath the foreland basin and that once the foreland basin 

migrated onto the less stretched lithosphere the basin would expand rapidly into the craton. 
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