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1. Introduction

The Monte Carlo (MC) simulation technique is a powerful method for calculating
thermodynamic averages of physical quantities of many-body systems. The physical property
we focus on in this Chapter is molecular rotational motion. The rotational degrees of freedom
in molecular crystals give rise to temperature- and/or pressure-driven transitions between
phases with freely rotating, quasi-freely rotating, or orientationally ordered molecules.
Orientationally disordered crystals represent a state of matter between the liquid and the
purely crystalline state, and can be compared to liquid crystals. In liquid crystals, however,
translational order is destroyed and orientational order is preserved, while in molecular
crystals translational order persists while molecules are (partially) orientationally disordered.
For a review on molecular crystals we refer to Lynden-Bell & Michel (1994). The molecular
crystals we envisage can be as simple as solid hydrogen, but as complex as protein crystals.
Also, we do not restrict ourselves to crystals containing only one type of molecule, or to
three-dimensional (3D) molecular arrangements. An example of a heterogeneous molecular
crystal is fullerene-cubane, C60.C8H8, while fullerene molecules like C60 or C70 packed inside
a carbon nanotube (CNT) provide an instance of a one-dimensional (1D) molecular chain.
MC simulations provide an excellent tool for the computational study of the different phases,
and the transitions between them, of molecular crystals. First, molecular crystals typically
consist of molecules interacting via van der Waals interactions, which can be relatively easy
modeled using phenomenological potential models. Secondly, the main advantage of MC
simulations is the possibility to directly change pressure and temperature, and to examine
how the crystal’s structure (from the point of view of molecular order/disorder) changes
accordingly.
While the actual implementation of molecular rotations in (MC) simulations is typically
covered in textbooks, e.g. Allen & Tildesley (1987) and Frenkel & Smit (2002), the actual
characterization of molecular rotations and orientations has received much less attention. In
this Chapter, we present a method to assess molecular rotational motion within molecular
crystals based on the concept of orientational mean-squared displacements (OMSDs). The
technique provides an efficient way for describing different rotational regimes of individual
molecules and of the molecular crystal as a whole. From a computational point of view, the
method has the advantage that only a limited number of parameters has to be sampled and
stored to obtain the necessary information on molecular motion and ordering.
We consider rigid molecules, so that each molecule has three translational and three rotational
degrees of freedom. The context of the present Chapter assumes a fully set-up MC simulation
of a system of molecules, in any ensemble, with all the usual ingredients like interaction

17

www.intechopen.com



potentials, periodic boundary conditions, minimum-image convention, trial moves, etc.
included. In the next section, we formally define OMSDs and demonstrate how they can be
used to quantify molecular motion. In Sect. 3, we turn to the practical implementation of
the OMSD method. We also recall how to perform rotational MC trial moves and provide
a memory-efficient way of doing simulation runs. Next (Sect. 4), we present two examples
where OMSDs have been used to extract information on molecular orientations. In Sect. 5 we
provide a Chapter summary.

2. OMSDs: general formulation

2.1 Definition

During a MC simulation, a sequence of orientations is generated for every molecule.
To fix ideas, let us focus on one type of molecule. The concepts introduced here are
easily generalizable to multi-component molecular crystals. As a molecule adopts various
orientations, for any point�ri fixed with respect to the molecule, e.g. an atom or a bond (when
speaking of a bond and its coordinates, the center of the bond is understood), a set of locations
{�ri(p), p = 1, . . . , P} is produced. Here, i labels the considered molecule, p labels subsequent
MC steps and P is the total number of MC samples. The coordinates �ri = (xi, yi, zi) of this
“monitored” point are defined with respect to the local cartesian system of axes (o, x, y, z),
where the origin o coincides with the molecule’s center of mass, and the axes (x, y, z) are fixed
and parallel to the global coordinate system’s axes (X,Y,Z).
For a freely rotating molecule, the set {�ri(p)} eventually (for P −→ ∞) covers a sphere with
radius |�ri|. If we consider the same monitored point for every molecule, |�ri| ≡ r is independent
of the molecular index i. In fact, it is advisable to use the same monitored point for every
molecule, and we will work under this assumption throughout the whole Chapter. If the
molecule does not rotate at all, �ri(p) ≡ �ri is constant. In Fig. 1, the example of a rotating
square is shown, with the middle point of one of the edges as the monitored point.

Fig. 1. Two configurations p and p′ of a rotating square. The middle point of one of the edges
is chosen as the monitored point�ri, the fixed point�r0 lies on the y-axis. When the square
adopts various orientations, the distance ui = |�ri −�r0| between�ri and�r0 (dashed lines) varies
accordingly. If the square rotates freely in three dimensions, the monitored point�ri describes
a sphere with radius |�ri|.

The idea behind OMSDs is to calculate for every molecule, after each MC step, the square of
the distance ui(p) between the monitored point�ri(p) and a fixed point �r0 = (x0, y0, z0):

ui(p)
2 = |�ri(p) −�r0|

2 =
[
xi(p) − x0

]2
+

[
yi(p) − y0

]2
+

[
zi(p) − z0

]2. (1)
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The fixed point �r0 has to be defined with respect to the local coordinate system (o, x, y, z)
associated with the molecule i under consideration. We take the same fixed point for every
molecule. In Fig. 1 the fixed point�r0 is chosen on the y-axis. The OMSD associated with the
chosen fixed point is then obtained by averaging over all MC steps:

〈u2
i 〉 =

1
P

P

∑
p=1

ui(p)
2. (2)

It is also useful to average over all molecules in the system:

〈〈u2〉〉 =
1
N

N

∑
i=1

〈u2
i 〉, (3)

with N the total number of molecules. As we will illustrate in Sect. 4, the overall OMSD
〈〈u2〉〉 [Eq. (3)] is a good measure for oriental motion in the system when all molecules rotate
simultaneously in a similar way, while the molecular OMSDs 〈u2

i 〉 [Eq. (2)] can be used to
characterize orientationally ordered phases.

2.2 Characterization of orientational regimes using OMSDs

By carefully choosing the monitored and fixed points, it is possible to compare the numerically
obtained OMSDs 〈u2

i 〉 with analytically calculated values. As an example, let us choose the
point (0, 0, z0) as the fixed point, and consider three special cases of molecular motion: (i) free
three-dimensional (3D) rotation, (ii) free rotation about the z-axis and (iii) no rotation (i.e. a
fixed orientation).
Free 3D rotation. The analytical calculation of 〈u2

i 〉 is most easily done by introducing
spherical coordinates:

xi = ri sin θi cos φi, (4a)
yi = ri sin θi sin φi, (4b)
zi = ri cos θi. (4c)

Here,�ri = (xi , yi, zi) stands for the monitored point of molecule i. The squared distance u2
i

then reads

u2
i = r2

i − 2riz0 cos θi + z2
0. (5)

To calculate the analytical OMSD, we apply the formula for the 3D orientational average of a
quantity f ≡ f (θi, φi),

〈 f 〉a =
1

4π

∫ 2π

0
dφi

∫ π

0
sin θidθi f (θi, φi), (6)

for f = u2
i . The result reads

〈u2
i 〉a = r2

i + z2
0. (7)

Here, we write 〈u2
i 〉a for the analytical result to distinguish it from the numerical result 〈u2

i 〉
[Eq. (2)]. The former follows from an integration, the latter from a summation.
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Free rotation about the z-axis. In the case of free rotation about the z-axis, the average reads

〈 f 〉a =
1

2π

∫ 2π

0
dφi f (φi), (8)

which for f = u2
i results in

〈u2
i 〉a = r2

i − 2riz0 cos θi + z2
0. (9)

Fixed orientation. If the molecule does not rotate, one simply has

〈 f 〉a = f , (10)

so that

〈u2
i 〉a = r2

i − 2riz0 cos θi + z2
0. (11)

A characterization of molecular motion can be obtained by comparing the numerical and
analytical OMSD values, 〈u2

i 〉 and 〈u2
i 〉a, respectively. However, the resulting values do not

uniquely define an orientational regime. In the analytical analysis shown above, one finds
the same value for free rotation about the z-axis (‘free z-rotation’) and for no rotation. The
remedy for this is to introduce additional fixed points. Repeating the analytical calculation
for fixed points (x0, 0, 0) and (0, y0, 0) shows that with more than one fixed point, a distinction
between the three regimes considered above is possible. The resulting analytical OMSD values
for�r0 = (x0, 0, 0), (0, y0, 0) and (0, 0, z0) are summarized in Table 1. Note that the use of only
(x0, 0, 0) and (0, 0, z0) already allows to distinguish between the three proposed rotational
regimes, but that the use of only (x0, 0, 0) and (0, y0, 0) does not. This shows that it is important
to decide beforehand which fixed points to use. To avoid ambiguous situations, it is best to
implement the calculation of OMSDs based on three fixed points of the type (x0, 0, 0), (0, y0, 0)
and (0, 0, z0).

�r0
〈u2

i 〉a
free 3D rotation free z-rotation no rotation

(x0, 0, 0) r2
i + x2

0 r2
i + x2

0 r2
i − 2rix0 sin θi cos φi + x2

0
(0, y0, 0) r2

i + y2
0 r2

i + y2
0 r2

i − 2riy0 sin θi sin φi + y2
0

(0, 0, z0) r2
i + z2

0 r2
i − 2riz0 cos θi + z2

0 r2
i − 2riz0 cos θi + z2

0

Table 1. Analytical OMSD values 〈u2
i 〉a for three well-chosen fixed points �r0. Note that for

free rotation about the z-axis, the value of θi is indeed fixed and not averaged out. Likewise
for θi and φi in the case of no rotation.

3. OMSDs: implementation

3.1 Implementation of random rotations in a MC simulation

Whereas performing translational moves of molecules in a MC simulation is straightforward,
implementing 3D orientational motion is less trivial. First, molecular orientational jumps in a
MC simulation have to be generated in a random way, and secondly, it has to be possible to
attribute a controllable amplitude to a rotation. Therefore, the explicit use of Euler rotations is
not recommended. Popular modern approaches are based on quaternions — for more details
we refer to Allen & Tildesley (1987), Frenkel & Smit (2002) and Vesely (1982). We suggest the
following procedure: (i) first select a random unit vector�s ≡ (sx, sy, sz) originating from the
molecule’s center of mass and (ii) then rotate the molecule about�s over α. The angle α is then

454 Applications of Monte Carlo Method in Science and Engineering

www.intechopen.com



a direct measure for the rotional jumps’ amplitude and the interval where its value should
be randomly selected from can be adjusted — before definitive data collecting — to yield the
desired acceptance rate (typically 50%) for rotational MC trial moves.
The generation of a random unit vector in three dimensions�s = (sin θ cos φ, sin θ sin φ, cos θ),
in other words randomly choosing a point on a sphere with radius 1, is not achieved by
choosing uniformly random values for the polar and azimuthal angles θ and φ in the intervals
[0, π] and [0, 2π[, respectively [Miles (1965)]. (Note that in two dimensions it does suffice to
randomly choose ψ between 0 and 2π for �s ≡ (sx , sy) = (cos ψ, sin ψ) to be a random unit
vector.) The correct recipe reads

sx =
√

1 − q2
1 cos q2, (12a)

sy =
√

1 − q2
1 sin q2, (12b)

sz = q1, (12c)
q1 = 2r1 − 1, (12d)
q2 = 2πr2, (12e)

where r1 and r2 are random numbers uniformly distributed in the interval [0, 1[. Rotating the
point�r ≡ (x, y, z) of the molecule about�s over α results in the point

�r′ =�r‖ +�r⊥ cos α + (r⊥ ×�s) sin α, (13)

where

�r‖ = (�s ·�r)�r, (14a)

�r⊥ =�r−�r‖. (14b)

In the more common form of a matrix multiplication, one has

�r′ = R�s(α)�r (15)

with R�s(α) given by

R�s(α) =

⎛

⎝

s2
x(1 − cos α) + cos α sxsy(1 − cos α) + sz sin α szsx(1 − cos α) − sy sin α

sxsy(1 − cos α) − sz sin α s2
y(1 − cos α) + cos α sysz(1 − cos α) + sx sin α

szsx(1 − cos α) + sy sin α sysz(1 − cos α)− sx sin α s2
z(1 − cos α) + cos α

⎞

⎠ .

(16)

3.2 Sampling OMSDs. Resetting the monitored point

The following remarks apply generally to any molecular crystal, possibly with several types of
molecules in it, but to fix ideas, we take the example of a system of benzene molecules, C6H6.
Let us consider one molecule, labeled i, and take one of its six C atoms as the monitored point
and label that atom C1. After starting the MC simulation, it is likely that the point C1 will drift
away from its initial position. At equilibrium, the molecule might rotate three-dimensionally,
or rotate about an axis, or adopt a fixed orientation. In any case, it is important to start
sampling OMSDs only after equilibrium has set in — which applies in fact for all quantities
sampled in a MC simulation — since the path the atom C1 has been describing before
equilibrium is bound to bias the outcome of the value of 〈u2

i 〉.
A more subtle issue arises from molecular symmetry and the equivalence of points related by
symmetry operations. Continuing with the benzene example, we now consider two molecules
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i and j, and monitor their C1 atoms. Again, after the start of the MC simulation, both atoms
are likely to drift away from their initial positions. Note that the initial positions can coincide
(in the case of identical molecular orientations at initialisation), but that they do not have
to (in the case of random molecular orientations at start-up). If, after equilibrium has set in,
the molecules adopt the same fixed orientation, it is probable that atom C1 of molecule i and
atom C1 of molecule j are differently positioned (Fig. 2). This typically occurs upon cooling: at
high temperature the molecules rotate, and at low temperature the system is orientationally
ordered. In the latter case, different positions of C1 for molecules i and j result in different
OMSD values for molecules i and j, although their orientations are the same.

Fig. 2. Benzene molecules i (left) and j (right) in equivalent orientations, but with the atoms
Ck and Hk (k = 1, . . . , 6) differently located. With C1 as the monitored point, the distances ui
and uj (dashed lines) between the monitored point and the fixed point�r0 (here chosen on the
y-axis) are different.

A remedy for this is to introduce a fixed reference orientation, which we call standard
orientation, and to “reset” the monitored point when starting to sample OMSDs. In the present
example, we define the standard orientation as the configuration with all atoms in the z-plane,
and two C atoms lying on the y-axis (Fig. 3). The C atom with y > 0 is labeled C1 and chosen to
be the reference monitored point. When equilibrium has set in, the C atom of the molecule —
in its present orientation — closest to the C1 atom of the molecule in the standard orientation
is chosen as the dynamic monitored point�ri. In this way, molecular symmetry is accounted
for, and different realizations of one molecular configuration result in the same ui values —
and consequently, in the same OMSD values. Note the importance of the choice of a standard
orientation, and the dynamic redefinition of the monitored point.
The foregoing is valid for any choice of monitored point — atoms, bonds, or any other locus.
Rather than choosing one particular point (e.g. a C atom), a family of equivalent points (e.g.
six C atoms) related by symmetry operations (e.g. six-fold rotations about the z-axis) is chosen;
the point then actually monitored is the point closest to one of the equivalent points (e.g. C1)
having a precise location for the molecule in the standard orientation. We point out that the
reset procedure is required for every molecule in the system.

3.3 Program flow and data management

Having defined OMSDs, discussed how to use them for characterizing rotational regimes,
and having made some practical remarks on random rotations and resetting the monitored
points, we now turn to a discussion of how to practically include the calculation of OMSDs in
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Fig. 3. Benzene molecule in the standard orientation (gray), with the carbon atom labeled C1
— the reference monitored point — on the y-axis. Resetting the dynamic monitored point is
done by identifying the carbon atom closest to the reference monitored point as shown right
where the present molecular orientation (black) is superimposed on the standard orientation
(gray).

a real MC simulation of a molecular crystal. We also suggest a way to manage the resulting
data, with the advantage of limited data storage in combination with unlimited simulation
run lengths.
Standard orientations. Reference monitored points. As discussed above, for every type of
molecule present in the simulated system, a standard orientation has to be defined first.
Then, for every type of molecule, a family of points, related by symmetry operations of the
molecule, has to be identified. For a molecule in the standard orientation, one of these points
has to be defined as the reference monitored point. Let us recall the example of a crystal
of benzene molecules: the standard orientation is shown on the left in Fig. 3, the family
of symmetry-related points consists of the six C atoms, and the C atom with coordinates
(x = 0, y > 0, z = 0) is the reference monitored point.
Rotation matrices. Sequential runs. It is convenient to put every molecule in its standard
orientation at startup, and to describe the orientational state of molecule i by a rotation matrix
Ri, so that at any time during the simulation, the current position�r′ of an atom (or any point
rotating along) of the molecule is obtained as�r′ = Ri�r, where�r is the atom’s position when
the molecule is in the standard orientation. This does not prevent to initially put the molecules
in random orientations, which is in fact recommended: instead of the identity matrix I every
molecule then has an initial rotation matrix of the type R�s(α) [Eq. (16)] associated with it.
During the simulation, if a rotational MC move with rotation matrix R�s(α) is accepted, the
matrix Ri has to be updated to Rs(α)Ri . The matrix Ri is an array variable, and at the end
of a program run of, say, Q steps, it is stored. When restarting the program, the matrices Ri
are reloaded to regenerate the actual molecular orientations. We stress that it is not necessary
to store the matrix Ri after every MC step, only at the end of a program run, to allow for a
restart. This keeps data storage limited. We recommend to produce a long run of P MC steps
by repeatedly running the MC program for Q MC steps. Here, Q is a divisor of P so that
P = LQ, with P, Q and L integers. The main advantages of restarting, valid in general when
performing (MC) simulations, is that one can quickly study preliminary results, and that one
can always resort to a previous, backed-up, simulation state in case of a machine crash. An
additional advantage is that one can add features to the program without losing the simulation
history. Finally, the memory required for storage can be easily reduced by reducing Q.
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Dynamic monitored points. When equilibrium has set in, the sampling of OMSDs (and other
quantities) can be started with. First, as explained above, the monitored points have to be
reset. This is best done in a separate routine reset. For every molecule, the point closest to
the reference monitored point has to be identified, and marked as the dynamic monitored
point�ri. Typically, the result of this marking is an index referring to a specific atom (bond, ...)
of molecule i. In Fig. 2, for the benzene example, the dynamic monitored point for molecule
i has to be identified with C6 and for molecule j with C4. OMSDs are calculated using the
dynamic monitored point.
OMSDs. After each MC step p, the distance squared ui(p)

2 [Eq. (1)] is calculated and stored
for every molecule i.1 After the first run (let us call it the l = 1 run) of Q steps after resetting
the monitored points, the OMSDs are obtained as

〈u2
i 〉

l=1 = 〈u2
i 〉

′ =
1
Q

Q

∑
p=1

ui(p)
2. (17)

Here, the apostrophe refers to the last set of Q values while the superscript l refers to the total
set of P = lQ simulation steps; the two sets obviously coincide for l = 1. This calculation
is best done in a separate routine process. After a second run (l = 2) of Q steps (without
having reset the monitored points, otherwise it would again be a l = 1 run), the OMSDs
resulting from the second run only have to be calculated first:

〈u2
i 〉

′ =
1
Q

Q

∑
p=1

ui(p)
2. (18)

The overall OMSDs, combining the l = 1 and l = 2 runs, are then obtained as

〈u2
i 〉

l=2 =
1
2
〈u2

i 〉
′ +

1
2
〈u2

i 〉
l=1. (19)

In general, after L runs of Q MC steps each, and without resetting the monitored points
between runs, the overall OMSDs, based on P = LQ MC simulation steps, read

〈u2
i 〉

l=L =
1
L
〈u2

i 〉
′ +

L− 1
L

〈u2
i 〉

l=L−1, (20)

where 〈u2
i 〉

′ is the OMSD based on the last (L-th) run of Q steps only. In Fig. 4, the whole
procedure is illustrated schematically. In this way, not the whole series of ui(p)2 values has to
be stored, but only the last sequence. Simulation runs of Q MC steps can be added infinitely,
while the required amount for storage memory remains constant. The reset routine should

1 In principle, a MC simulation can be performed without storing any sampled quantities. In the case
of squared distances, for example, it suffices to add all values of ui(p)2 during the simulation and to
divide the resulting sum by the number of samples afterwards. When one does store sampled values
like ui(p)

2, one has the choice to store them in an array variable, or to write them to disk. Storing
(the last set of Q) samples has the advantage of having a “history” one can examine for debugging or
physical understanding purposes. Particularly important is the evolution of the energy, which should
not decrease when equilibrium has set in. Which programming style to use should depend on which
optimization level one wants to achieve, which further depends on machine parameters (e.g. RAM and
disk memory, I/O management, ...), and on personal taste. We leave it up to the reader to decide which
style to use. To illustrate the concept of OMSDs in a clear way, we have opted for a description where
sampled quantities are stored.
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reset the counter l to 1. The process routine calculates 〈u2
i 〉

′ and 〈u2
i 〉

l and increments l to
l + 1. Note that this way of updating average values based on the previous average value and
on the last set of additionally calculated values can be applied to any sampled quantity (e.g.
total energy, molecular translational mean-squared displacements, ...).

l = 1 l = 2

1 . . . Q

︸ ︷︷ ︸

〈u2
i 〉

′ = 1
Q

Q

∑
p=1

ui(p)
2

〈u2
i 〉

l=1 = 〈u2
i 〉

′

1 . . . Q

︸ ︷︷ ︸

〈u2
i 〉

′ = 1
Q

Q

∑
p=1

ui(p)
2

︸ ︷︷ ︸

〈u2
i 〉

l=2 = 1
2 〈u

2
i 〉

′ + 1
2 〈u

2
i 〉

l=1

...

. . .

l = L

1 . . . Q

︸ ︷︷ ︸

〈u2
i 〉

′ = 1
Q

Q

∑
p=1

ui(p)
2

︸ ︷︷ ︸

〈u2
i 〉

l=L = 1
L 〈u

2
i 〉

′ + L−1
L 〈u2

i 〉
l=L−1

Fig. 4. Scheme for calculating OMSDs based on P = LQ MC simulation steps arising from
repeated runs of Q simulation steps.

4. Case studies

After having introduced OMSDs and their practical implementation, we illustrate the
usefulness of the concept with two examples involving rotating fullerenes: a 3D crystal
containing C60 molecules, and a chain of one-dimensionally confined C70 molecules. Apart
from applying the procedures discussed in the preceding sections, we add some extensions to
the OMSD method along the way.

4.1 Fullerene-cubane: orientational ordering in a molecular crystal of C60 molecules

Fullerene-cubane, consisting of C60 and C8H8 molecules, is a unique example of a
molecular crystal combining highly symmetrical — icosahedral and cubic — molecules with
stoechiometry 1:1 [Pekker et al. (2005)]. At room temperature the crystal lattice is face-centered
cubic with the fullerene molecules rotating freely, while below T ≈ 140 K they adopt fixed
orientations within an orthorhombic lattice. The cubane molecules do not rotate in both the
high- and the low-T phase, their faces are aligned with the crystal planes. Note that by “fixed
orientations” the absence of molecular reorientations is understood; thermal librations are of
course present (and are actually reproduced in MC simulations as will be seen from the OMSD
values shown below).
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In Verberck et al. (2009), an isothermal-isobaric (NpT-ensemble) MC simulation with simple
Lennard-Jones pair interactions is reported, and the concept of OMSDs as outlined in the
preceding sections is used to study the rotational behavior of the C60 (and C8H8) molecules
upon cooling from T = 300 K to 50 K. Here we give an outline of how the OMSD treatment for
the C60 molecules in fullerene-cubane is set up, and briefly discuss the results. For full details
and an interpretation of the results in its physical context we refer to Verberck et al. (2009).
The standard orientation is shown in Fig. 5(a): three two-fold symmetry axes of the icosahedral
C60 molecule coincide with the coordinate axes. The set of equivalent monitored points is
chosen to be the set of the 30 double bonds (fusing hexagons of the soccer-ball shaped
molecule). The double bond with coordinates (0, 0, zd = 3.48 Å) — for a molecule in the
standard orientation, as the definition requires — serves as the reference monitored point [Fig.
5(b)]. Finally, the fixed point�r0 is chosen to coincide with the reference monitored point. We
stress that the fixed and reference monitored points do not necessarily have to be the same.

(a) (b)

Fig. 5. (a) A C60 molecule, represented as a soccer ball with 12 pentagons (black) and 20
hexagons (white and shaded), in the standard orientation. (b) Projection onto the (y, z)-plane
of a C60 molecule in the standard orientation. Double carbon-carbon bonds are shown thicker
than single bonds. The double bond with coordinates (0, 0, zd = 3.48 Å) is marked by a white
dot.

As stressed above, a reset to determine the dynamic monitored point �ri is required before
starting the sampling sequence of P MC steps. In the present example, the dynamic monitored
point�ri for molecule i is its double bond closest to the reference monitored point (0, 0, zd =

3.48 Å).
Since the fixed point has vanishing x- and y-components, the analytical OMSDs for free 3D
rotation and no rotation are r2

i + z2
d and r2

i − 2rizd cos θi + z2
d, respectively (see Table 1), which

reduce to

〈u2
i 〉a = 2z2

d = 24.22 Å (free 3D rotation) (21a)

and

〈u2
i 〉a = 2z2

d(1 − cos θi), (fixed orientation) (21b)

respectively, since ri = |�ri| = zd. We recall that |�ri| is indeed independent of the molecular
index i, since the standard orientation and the reference monitored point are the same for
every molecule.
As remarked already, working with only one fixed point �r0 is not enough to uniquely
characterize the orientational regime. Here, for example, a fixed orientation with θi = π/2
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results in the same OMSD value as for free 3D orientation. Note, however, that in this
specific case, a fixed orientation with θi = π/2 is impossible since then another double bond
would be closer to the reference monitored point, which would then instead have had to
be set as the dynamic monitored point at reset. In fact, due to the high symmetry of the C60
molecule, implying high numbers of equivalent points (e.g. the 30 double bonds), the dynamic
monitored point — in the case of no rotation or small librations — will always be close to the
reference dynamic monitored point. Consequently, there is an upper limit for the highest value
of θi. Taking the atomic coordinates of the C60 molecule into account, the maximal value for
θi is about 36◦ . (For the benzene example of the previous section, which is easier to visualize,
the maximal angle θi is 360◦/6 = 60◦ — see Fig. 3.)
In Verberck et al. (2009) the average of the dynamic monitored point was used as an alternative
fixed point�r0. We will label the OMSD values resulting from such a type of “dynamic fixed
point” as type II OMSDs, and call the OMSDs based on “static fixed points”, as in the original
definition of Sect. 2, type I OMSDs, and use superscripts I and II for labeling the associated
OMSD values. For type II OMSDs, the distances to be sampled are of the type

ui(p)
2 = |�ri(p) − 〈�ri〉|

2 =
[
xi(p) − 〈xi〉

]2
+

[
yi(p) − 〈yi〉

]2
+

[
zi(p) − 〈zi〉

]2, (22)

with

〈�ri〉 =
(
〈xi〉, 〈yi〉, 〈zi〉

)
=

1
P

P

∑
p=1

�ri(p). (23)

At first sight, this requires to store all�ri(p) =
(
xi(p), yi(p), zi(p)

)
values until the very end

of the whole series of L = P/Q simulation runs of Q MC steps each, and that only then
〈�ri〉 and 〈u2

i 〉 = 1
P ∑

P
p=1 ui(p)

2 can be calculated. However, applying the usual “trick” for the
evaluation of standard deviations in statistics,

〈u2
i 〉

II =
1
P

P

∑
p=1

ui(p)
2

=
1
P

P

∑
p=1

([
xi(p) − 〈xi〉

]2
+

[
yi(p) − 〈yi〉

]2
+

[
zi(p) − 〈zi〉

]2
)

=
1
P

P

∑
p=1

(
xi(p)

2 − 2xi(p)〈xi〉 + 〈xi〉
2 + yi(p)

2 − 2yi(p)〈yi〉 + 〈yi〉
2

+ zi(p)
2 − 2zi(p)〈zi〉 + 〈zi〉

2)

= 〈x2
i 〉 − 〈xi〉

2 + 〈y2
i 〉 − 〈yi〉

2 + 〈z2
i 〉 − 〈zi〉

2

= 〈r2
i 〉 − 〈xi〉

2 − 〈yi〉
2 − 〈zi〉

2

= z2
d − 〈xi〉

2 − 〈yi〉
2 − 〈zi〉

2, (24)

shows that storing the coordinates xi(p), yi(p) and zi(p) during a simulation sequence of Q
steps suffices. Indeed, the squares of the averages 〈xi〉, 〈yi〉 and 〈zi〉 are used to calculate the
OMSD value 〈u2

i 〉
l=1 = 〈u2

i 〉
′ = ∑

Q
p=1 ui(p)

2 based on the first simulation run of Q MC steps,
which is then updated each time a sequence of Q MC steps is added according to the scheme
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shown in Fig. 4. Again, the required computer memory remains constant (and can be reduced
by reducing Q), while segments of Q MC steps can be added ad libitum. Note that when
using a static fixed point, i.e. a point�r0 = (x0, y0, z0) that does not “dynamically” depend on
the simulation itself, the same approach involving the storing of the coordinates of�ri can be
used. Rather than calculating and storing the distance squared ui(p)

2 [Eq. (1)] after each MC
step and averaging at the end, one can calculate the averages 〈xi〉, 〈yi〉 and 〈zi〉 and use the
formula

〈u2
i 〉

I = z2
d − 2〈xi〉x0 − 2〈yi〉y0 − 2〈zi〉z0 + r2

0. (25)

This approach can be considered when combining the two types of fixed points (static or
dynamic) since for type II OMSDs 〈xi〉, 〈yi〉 and 〈zi〉 have to be calculated anyway. An
important property of type II OMSDs is that they vanish in the case of fixed orientations,
which follows trivially from�ri(p) = 〈�ri〉a:

〈u2
i 〉

II
a = 0 (fixed orientation). (26)

Note that this property complements the orientation-dependent outcome of 〈u2
i 〉

I
a [Eq. (21b)].

For free rotation, 〈�ri〉a =�0, so that

〈u2
i 〉

II
a = 〈|�ri|

2〉a = z2
d = 12.11 Å2 (free 3D orientation). (27)

Fig. 6. Averaged type I and type II OMSD values 〈〈u2〉〉I and 〈〈u2〉〉II for C60 molecules in
fullerene-cubane as a function of temperature T. The 300 K values correspond to the free
rotation values of 2z2

d = 24.22 Å2 and z2
d = 12.11 Å2, respectively (shown by horizontal

lines).

The type I and type II OMSD values resulting from the simulation, averaged over all
molecules, written as 〈〈u2〉〉I and 〈〈u2〉〉II [see Eq. (3)], respectively, are shown in Fig. 6 as a
function of temperature T. They nicely show a transition from freely rotating to orientationally
frozen molecules. Indeed, the 300 K values match the exact analytical values of z2

d and 2z2
d,

while at 50 K, 〈〈u2〉〉II ≈ 0, implying fixed molecular orientations. The small deviations of
〈〈u2〉〉II from zero (see Inset of Fig. 6) are a consequence of thermally induced librations. The
transition covers the temperature range 65 K � T � 110 K, which can be interpretated as a
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Fig. 7. Molecular 〈u2
i 〉

I OMSD values of the 500 C60 molecules in the simulation box, at
T = 50 K. Two groups of molecules, with values around 0.633 Å2 and 0.749 Å2 (shown by
horizontal lines), are clearly distinguishable.

slow freezing of the rotational motion, and could be observed experimentally as a continuous
diminishing of diffuse x-ray scattering.
The finite low-T values of 〈〈u2〉〉I correspond to specific fixed molecular orientations. It
is, however, wrong to a priori assume that all molecules adopt the same orientation. The
individual molecular 〈u2

i 〉
I values have to be examined to conclude upon the precise molecular

orientations. In Fig. 7, the T = 50 K 〈u2
i 〉

I values for the 500 C60 molecules in the simulation
box are shown. Interestingly, the values can be divided into two groups, with average values
〈u2

i 〉
I ≈ 0.633 Å2 and 〈u2

i 〉
I ≈ 0.749 Å2, corresponding to two classes of molecular orientations.

The details of the determination of the molecular orientations resulting in Fig. 7 fall beyond
the scope of the present Chapter; for a complete analysis we refer to Verberck et al. (2009). We
do point out, however, that it turns out useful to keep track of the averages 〈xi〉, 〈yi〉 and 〈zi〉
since they help to deduce the molecules’ orientations. Indeed, knowledge of 〈�ri〉 already fixes
the i-th molecule’s average orientation up to a rotation about the vector 〈�ri〉. Note that this
requires almost no extra programming and memory since averages of the dynamic monitored
points’ coordinates have already been included in the implementation of type II OMSDs [cfr.
Eq. (24)].

4.2 Nanopeapods: orientational behaviour in one-dimensional chains of C70 molecules

Our second example illustrating the concept of OMSDs is a chain of C70 molecules
encapsulated in a CNT. Such a system falls into the category of so-called nanopeapods,
nanotubes filled with atom or molecules. Historically, the insertion of C60 molecules was
reported first [Smith et al. (1998)], but many other peapod systems have been synthesized
and investigated by now. For a review, we refer to Monthioux (2002).
One of the interesting properties of C70@CNT systems is the dependence of the molecule’s
orientation on the tube radius R: for a small radius, the molecules adopt lying orientations
[Fig. 8(a)] while for larger R, molecules adopt standing orientations [Fig. 8(b)]. Obviously,
this a consequence of the molecule’s geometry and its van der Waals interaction with the
surrounding nanotube. Recently, a canonical-ensemble (NVT) MC simulation of C70 peapods
in a CNT modelled as a homogeneous carbonic cylinder was carried out in order to study the
temperature and the and radius dependence of the molecular motion of the one-dimensionally
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confined fullerene molecules [Verberck et al. (2011)]. In particular, OMSDs were used to
characterize the molecules’ rotational behavior. Here, as in the previous subsection, we discuss
how the OMSD analysis is set up, and point to possible additions.

(a)

(b)

Fig. 8. Carbon nanotubes filled with C70 molecules. (a) For a tube radius of 6.5 Å, the
molecules adopt lying orientations (the molecule’s long axis parallel to molecule’s long axis).
(b) For a radius of 7.3 Å, the molecules adopt standing orientations (at sufficiently low
temperatures).

As a first step, a standard orientation for the investigated molecules has to be defined. The
C70 standard orientation is shown in Fig. 9; it is a lying orientation. Next, a set of equivalent
monitored points has to be identified. A convenient choice is the pair of top and bottom
pentagons’ centers (0, 0,±zp), with zp = 3.99 Å. The point with the positive z-coordinate
is chosen as the reference monitored point (Fig. 9).

(a) (b)

Fig. 9. Projections of a C70 molecule in the standard orientation on the (a) (x, y)- and the (b)
(y, z)-plane. The two reference monitored points (0, 0, zt = 3.99 Å) and (xb = 3.49 Å, 0, 0) are
marked by white dots.

Rather than working with type I and type II OMSDs for one fixed point, as in the example
of the previous subsection, only type II OMSDs were used in Verberck et al. (2011), but for
two monitored points. We therefore introduce superscripts II,1 and II,2. The second set of
monitored points is the ring of five bonds in the equatorial plane (z = 0) of the C70 molecule
in the standard orientation; the point (xb, 0, 0) with xb = 3.49 Å is set as the second reference
monitored point (Fig. 9). For free 3D rotations, we have — see the previous subsection —
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〈u2
i 〉

II
a = 〈|�ri|

2〉a so that the type II OMSDs read

〈u2
i 〉

II,1
a = z2

t = 15.90 Å2 (free 3D orientation), (28a)

〈u2
i 〉

II,2
a = x2

b = 12.15 Å2 (free 3D orientation). (28b)

For fixed orientations, the OMSDs vanish:

〈u2
i 〉

II,1
a = 0 (no rotation), (29a)

〈u2
i 〉

II,2
a = 0 (no rotation). (29b)

Another case of interest is free molecular rotation about the z-axis (cfr. Sect. 2). Using the
appropriate average for this case, Eq. (8), one easily obtains

〈�ri〉a =
〈
(ri sin θi cos φi, r sin θi sin φi, r cos θi)

〉

a = (0, 0, ri cos θi), (30)

so that, using Eq. (24),

〈u2
i 〉

II
a = r2

i (1 − cos2 θi), (31)

resulting in

〈u2
i 〉

II,1
a = z2

t (1 − cos2 θi) (free z-orientation), (32a)

〈u2
i 〉

II,2
a = x2

b(1 − cos2 θi) (free z-orientation). (32b)

The polar angle of the first dynamic monitored point equals 0 for lying and π/2 for standing
molecules, respectively, so that

〈u2
i 〉

II,1
a = 0 (lying, free z-orientation), (33a)

〈u2
i 〉

II,1
a = z2

t (standing, free z-orientation). (33b)

For the second dynamic monitored point θi = π/2 for any lying orientation. For standing
orientations, the value of θi can adopt any value between 0 and π, depending on the
molecule’s orientation with respect to its own long axis. Hence

〈u2
i 〉

II,2
a = x2

b (lying, free z-orientation), (34a)

〈u2
i 〉

II,2
a = x2

b(1 − cos2 θi) (standing, free z-orientation). (34b)

It can be shown that in the case of a standing molecule, rotating freely about the z-axis and
freely about its long axis (i.e. spinning freely), 〈cos2 θi〉 = 0 for the second dynamic monitored
point, so that

〈u2
i 〉

II,2
a = x2

b (standing, free z-orientation, free spinning). (35)

The various cases are summarized in Table 2.
It follows that only lying molecules rotating freely about the z-axis and absence of molecular
rotation can be unambiguously inferred from the pair (〈u2

i 〉
II,1
a , 〈u2

i 〉
II,2
a ). Free 3D rotations and

free rotations about the z-axis in combination with free spinning of the molecule about its
long axis result in the same OMSDs. The case of free z-rotation of a standing molecule, not
spinning about its long axis, and with a fixed polar angular value of θi = π/2 for the second
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〈u2
i 〉

II,1
a 〈u2

i 〉
II,2
a

free 3D rotation z2
t = 15.90 Å2 x2

b = 12.15 Å2

free z-rotation
lying 0 x2

b

standing free spinning z2
t x2

b
no spinning z2

t x2
b(1 − cos2 θi)

no rotation 0 0

Table 2. Analytical OMSD values 〈u2
i 〉

II,1
a and 〈u2

i 〉
II,2
a for reference monitored points (0, 0, zt)

and (xb, 0, 0), respectively, for several cases of interest.

dynamic monitored point, also results in the same pair of OMSDs. This accidental coincidence
can be easily resolved, though, by considering a third monitored point (e.g. any other bond
in the equatorial belt of the C70 molecule, see Fig. 9). On the other hand, the coincidence
for free 3D rotation and free z-rotation plus free spinning is hard to lift using OMSDs only.
A simpler solution, described in Verberck et al. (2011) is to monitor the z-coordinate of the
first dynamic monitored point. Indeed, for free 3D rotation, its value should be uniformly
distributed in the interval [−zt, zt], while for a permantly standing molecule (regardless of
whether it rotates about the z-axis and/or spins about its long axis) its value should be 0. To
extract the distribution of z-coordinate values in a MC simulation, it is necessary to make
a histogram. This can be either done on-the-fly, by incrementing the bin count of the bin
corresponding to the current z-coordinate, or in the process routine if the zi values of the
dynamic monitored point are stored during the simulation.

Fig. 10. Averaged type II OMSD values 〈〈u2〉〉II,1 and 〈〈u2〉〉II,2 for C70 nanopeapods with
three different radii R, as a function of temperature T. The free rotation values of z2

t = 15.90
Å2 and x2

b = 12.15 Å2 are shown by horizontal lines.

In Fig. 10, the OMSDs 〈u2
i 〉

II,1
a and 〈u2

i 〉
II,2
a , averaged over all (15) molecules, resulting from the

MC simulation are shown for three different radii, as a function of temperature. The smallest
tube radius, R = 6.5 Å, features lying molecules, freely rotating about the long axis of the
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tube (z-axis). At low temperatures, judging from the values of 〈u2
i 〉

II,2
a being slighly smaller

than x2
b, the free character of the rotations is only almost reached, which can be attributed to

intermolecular interactions favoring specific mutual orientations. At high temperatures, truly
free rotation has been achieved, but now the small deviation of 〈u2

i 〉
II,1
a from zero suggests

thermal fluctuations — very small tilts away from the ideal lying orientation.
For the highest radius, R = 7.3 Å, the OMSD values imply that molecules rotate freely,
either three-dimensionally or around the z-axis (with spinning). The procedure involving
histograms of the z-coordinates of the first dynamic monitored point mentioned above reveals
a transition from standing molecules at low temperatures to complex 3D rotations at higher
temperatures. For details, we refer to Verberck et al. (2011).
The intermediate radius R = 6.9 Å shows a transition from quasi-freely (cfr. R = 6.5 Å)
z-rotating lying molecules to — as follows from the z-coordinate histogram analysis — a
complex pattern of 3D molecular rotations.

5. Summary

In the present Chapter, we have introduced a method to quantify molecular rotational motion
in molecular crystals, and have shown how to embed it in a typical MC simulation. The key
concept is that of OMSDs, a rotational analogue of translational mean-squared displacements.
By carefully choosing a point that rotates along with a molecule, following it during the
simulation, and calculate its distance squared to a fixed point, a measure for the “degree of
rotation” of the molecule is obtained. We have shown how to properly set up this procedure
to avoid biassed results due to the initial equilibrating phase and due to molecular symmetry.
Also, we discussed practical issues required for the efficient implementation of the OMSD
technique.
Two examples of MC simulations where OMSDs were used — a 3D molecular crystal
consisting of C60 molecules and a 1D arrangement of C70 molecules in a nanotube —
were covered. The examples show the power of the OMSD method. By combining two
types of OMSDs and using more than one monitored point, it is possible to deduce the
rotational regimes of the molecules in a simulation box. Typical regimes are free 3D rotations,
free rotations about an axis, or no rotations. In the latter case, the examination of OMSD
values helps to determine the actual molecular orientations. The examples also provide
hints to resolve occasional ambiguities. Indeed, some types of rotational motion can be
indistinguishable within a certain set of OMSDs. In these cases, looking at average values
or histograms of coordinates of the monitored point(s) — which requires minimal additional
programming since these are parameters already required for the calculation of OMSDs — or
extending the set of OMSDs can resolve the problem.
For completeness, we point out that the procedures described in the preceding sections can
be easily extended to the case of a crystal of several types of molecules. It simply suffices to
define a standard orientation, monitored points (reference and dynamic) and fixed points for
each type of molecule, and to process the several molecular sublattices separately.
In summary, the OMSD method provides a way to map the huge number of variables (atomic
coordinates) in a MC simulation of a molecular crystal onto a very small set of quantities
completely describing the molecule’s rotational motion.
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