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1. Introduction 

As MOSFETs are downscaled to nanometric dimensions, ultra-thin body devices are 
required for an optimal electrostatic channel control. In such devices, quantization effects 
are likely to have a large impact on both electrostatics and carrier transport properties. 
Consequently, to accurately investigate electron transport in ultimate MOSFET architectures, 
the usual semi-classical transport models can no longer be applied and new simulation tools 
accounting for quantum effects in the electron transport description are becoming of great 
relevance. 
In the last few years, some works investigated the possibility to develop quantum models 
based on a particle description of transport. Given the strong analogy between Wigner and 
Boltzmann formalisms, the Monte-Carlo method commonly used for semi-classical 
transport simulation can be extended to the quantum case by considering the Wigner 
function as an ensemble of pseudo-particles (Shifren et al., 2003 ; Nedjalkov et al., 2004 ; 
Querlioz et al., 2006). This approach describes well the wave-like nature of particles and has 
been first applied to the one-dimensional (1D) simulation of double-barrier resonant 
structures. To treat quantization effects in an inversion channel, one may couple self-
consistently the 1D Schrödinger equation solved along the confinement direction with the 
multi-subband Boltzmann transport in the source-to-drain direction including 2D scattering 
rates (Lucci et al., 2005 ; Saint-Martin et al., 2006). This mode-space approach properly 
accounts for quantization effects in ultra-thin double-gate devices but is computationally 
intensive and may be difficult to extend to other architectures. Recently, some works 
combining the two previous methods for studying quantum transport in ultra-scaled 
double-gate MOSFETs have been published (Sverdlov et al., 2005; Querlioz et al., 2007). 
Alternatives to the mode-space approach are the quantum corrected potential methods 
(Ferry et al., 2000; Akis et al., 2001; Li et al., 2002; Tang et al., 2003; Tsuchiya et al., 2003; Fan 
et al., 2004; Ahmed et al., 2005; Riolino et al., 2006; Jaud et al., 2006) which have been 
demonstrated as an efficient way for including quantization effects in a semi-classical 
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particle Monte-Carlo simulator. Among these techniques, the Gaussian Effective Potential 
(GEP) formulation (Ferry et al., 2000; Akis et al., 2001; Li et al., 2002; Palestri et al., 2005; Jaud 
et al., 2006) is of great interest because it is weakly sensitive to the particle noise inherent in 
Monte-Carlo simulation and it is an alternative to the Schrödinger-Poisson based effective 
potential (Fan et al., 2004) that requires to solving the Schrödinger’s equation. As already 
reported in (Li et al., 2002; Palestri et al., 2005; Jaud et al., 2006), the GEP correction can 
accurately reproduce Schrödinger-Poisson (SP) integral quantities such as the total inversion 
charge but fails to correctly model the electron density profiles. The discrepancy between 
GEP and SP density profiles is particularly important close to the SiO2/Si interfaces. It is 
thus especially critical in ultra-thin double-gate structures where electron wave functions 
are affected by two such interfaces.  
In this chapter, we demonstrate the ability of an original Effective Potential formalism to 

properly introduce the quantum confinement effects in a Monte-Carlo simulator, i.e. not 

only the electrostatics in long nMOS capacitors but also the electron transport in nanoscale 

nMOSFET devices. In section 2, we briefly outline the quantum corrected potential approach 

for Monte-Carlo simulation. Section 3 highlights and investigates the limitations of the usual 

Gaussian Effective Potential (GEP). This leads us to develop a novel Pearson Effective 

Potential (PEP) correction, whose detailed description, electrostatic validation on various 

MOS architectures and extension to source and drain areas are described in sections 4, 5 and 

6, respectively. Section 7 compares the results obtained from semi-classical, GEP corrected, 

PEP corrected and multi-subband Monte-Carlo methods for an ultra-short double-gate 

nMOSFET at low and high drain voltage. Finally, the influence of quantum confinement 

effects on the drive current as a function of both the channel length and the silicon film 

thickness is discussed in section 8. 

2. Quantum corrected potential approach 

The quantum corrected potential concept has been first introduced by Madelung and Bohm 

(Madelung, 1926; Bohm, 1952). Its aim is to reproduce physical effects due to quantization 

by modifying the electrostatic potential responsible for the carrier movement. The flowchart 

of the quantum corrected Monte-Carlo algorithm together with an illustration of the 

potential and of the electron density as a function of the distance from an oxide/silicon 

interface along the confinement direction (referred to as x-axis) are presented in Fig. 1. 
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Fig. 1. Principle of the quantum corrected Monte Carlo simulation. 
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At first, the potential obtained from Poisson's equation solution is used to calculate the 
quantum corrected potential to be introduced in the Monte-Carlo algorithm for the 
calculation of carrier trajectories. The resulting quantum corrected potential generates an 
electric field that tends to repel carriers from the oxide/silicon interfaces in accordance with 
quantization effects. The carrier repulsion at interface is thus naturally included in the 
standard Monte-Carlo algorithm. As expected, the Poisson equation solution leads to a 
“quantum” potential which has a higher curvature than the “classical” potential. Finally, the 
self-consistency between quantum corrected potential and carrier movement is obtained 
from an iterative procedure. Within this approach, only the free-flight carrier trajectories are 
modified by the quantum correction. Scattering mechanisms are assumed to be identical to 
those of a conventional semi-classical Monte-Carlo approach. 

3. Gaussian effective potential model 

3.1 Theoretical model 

The effective potential formalism has been originally developed by Feynman (Feynman & 
Hibbs, 1965). It accounts for carrier non-locality by considering the finite size of the carrier 
wave-packet. As a result, a carrier is not only influenced by the local potential at its position 
but also by the neighboring potential distribution. The usual Gaussian Effective Potential 
(GEP) is defined along the confinement direction by the convolution of the Poisson potential 
with a Gaussian function representing the electron wave-packet (Feynman & Hibbs, 1965; 
Ferry et al., 2000): 
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where σx is the standard deviation of the Gaussian function, TSi the silicon film thickness, Tox 
the oxide thickness and VP(x’) the Poisson potential. As explained in (Jaud et al., 2006), the 
GEP is calculated using a Fourier transform method. Accordingly, to apply appropriate 
boundary conditions to the Poisson potential on the oxide areas and to avoid data 
corruption by convolution in equation (1), “Padding regions” (by reference to signal 
processing techniques) are used on the edge of the device. The parameter EB = 3.1 eV is 
defined at the SiO2/Si interfaces to represent the oxide barrier height for electrons and 
satisfies Voxide = VP - EB. 

3.2 Results and discussion 

As described in (Jaud et al., 2006), we have implemented the GEP correction in the 
framework of a Monte-Carlo code (MONACO) (Saint-Martin et al., 2004) that uses an 

analytical conduction-band structure of silicon considering six ellipsoidal nonparabolic Δ 
valleys. Double-gate nMOS capacitors with a channel doping NA = 1016 cm-3 and an oxide 
thickness Tox = 1 nm have been simulated. Self-consistent Monte-Carlo simulations corrected 
by the GEP have been performed for a large range of silicon thicknesses (5 nm ≤ TSi ≤ 20 nm) 
together with a perpendicular effective field Eeff varying from 105 V.cm-1 to 106 V.cm-1. In 
accordance with (Akis et al., 2001; Palestri et al., 2005), the standard deviation of the 

Gaussian function is chosen to be equal to σx = 0.5 nm. Considering the results from SP 
simulations including the 2-fold and 4-fold valleys with 10 energy levels for each valley as 
reference, Fig. 2a shows the error on the inversion charge induced by the GEP correction. 
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Fig. 2b compares the electron density resulting from the GEP correction with the one 
resulting from SP simulation for TSi = 10 nm. The GEP formalism is well-known and has 
been proved to be useful to describe “electrostatic quantum effects” (Ferry et al., 2000 ; Akis 
et al., 2001 ; Li et al., 2002 ; Palestri et al., 2005). However, errors higher than 10% on the 
inversion charge are observed at Eeff = 105 V.cm-1. At this low effective field, a decrease of 
the silicon thickness yields a noticeable increase of the inversion charge error (cf. Fig. 2a). 
Moreover, in agreement with (Li et al., 2002 ; Palestri et al., 2005), one can observe in Fig. 2b 
that the results obtained from Monte-Carlo simulation corrected by the GEP show an 
overestimated carrier repulsion at the SiO2/Si interfaces. This is due to the fact that the 
electron wave-packet is systematically represented by an unique Gaussian function, defined 

by a standard deviation σx and an average position Rp, all along the silicon film thickness. 
Close to the SiO2/Si interfaces, this description is not realistic with regard to SP results. The 
inability of the Gaussian function to represent the electron wave-packet has been clearly 
highlighted in (Jaud et al., 2006) using a methodology based on a design-of-experiments. It 

has been proved impossible to find out any values of EB and σx likely to properly reproduce 
the SP carrier density profile. 
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Fig. 2. (a) Inversion charge error in GEP correction (with standard parameters EB = 3.1 eV 

and σx = 0.5 nm) as a function of the silicon film thickness of double-gate nMOS capacitors 
for 105 V.cm-1 (solid line) and 106 V.cm-1 (dotted line) perpendicular effective fields.  
(b) Electron density as a function of the distance in the confinement direction in a double-
gate nMOS capacitor with TSi = 10 nm using Schrödinger-Poisson (SP - solid lines) and 
Monte-Carlo corrected by the GEP (GEP – cross dotted lines) models. 

4. Pearson effective potential model 

4.1 General principle 

The previous study based on the GEP correction leads us to propose a new Effective 
Potential formalism where the electron wave-packet description is improved. The Gaussian 
function is replaced by a more realistic function based on the shape of the squared modulus 

of the first level Schrödinger’s wave function |ψ0|2 and carefully calibrated so as to 
reproduce the electron density profiles resulting from SP simulations considering 10 energy 
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levels. Before calibrating our new function, we first have (i) to choose a well-suited function 
to reproduce the different possible shapes of |ψ0|2; (ii) to identify the parameters 
responsible for the main characteristics of the shape of |ψ0|2 , i.e., to determine the 
dependences to be given to the new electron wave-packet description. This will lead us to 
define our novel effective potential formulation. 

Electron wave-packet’s description 

To well describe the various shapes of |ψ0|2, the new function has to verify the two 
following conditions: (i) to be a generalization of the Gaussian distribution and (ii) to be 
possibly asymmetrical. The Pearson type IV distribution, often used for the description of 
doping implantation profiles, fully satisfies these conditions. It is defined by its first four 

moments which are related to the average position (Rp), the standard deviation (σp), the 

skewness (γ) and the kurtosis (β) of the distribution, respectively (Selberherr, 1984; Sze, 
1988) (see 11. Appendix). Fig. 3 illustrates the influence of each Pearson IV parameter. The 
skewness and the kurtosis are a measure of the asymmetry and peakedness of the distribution 
function, respectively. A positive, respectively negative, value of the skewness results in a 
maximum of the distribution on the left, respectively on the right, of its average position (cf. 
Fig. 3b). We can note that a Gaussian function is a particular Pearson IV distribution defined 

by γ = 0 and β = 3. 
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Fig. 3. Pearson IV distributions. (a) Rp = 0 nm, σp = 1 nm, γ = 0, β = 3.1 (solid heavy line) / 

Rp = 1 nm, σp = 1 nm, γ = 0, β = 3.1 (solid line) / Rp = 0 nm, σp = 1.5 nm, γ = 0, β = 3.1 (open 

triangles) / Rp = 0 nm, σp = 1 nm, γ = 0, β = 10 (open circles). (b) Rp = 0 nm, σp = 1 nm, β = 30. 

Electron wave-packet’s dependences 

It is well-known that the shape of |ψ0|2 is primarily influenced (i) by the potential profile in 
the confinement direction and (ii) by the silicon film thickness. Therefore, so as to 
realistically describe the particle wave-packet, Pearson IV parameters should depend (i) on 
the local electric field Ex in the confinement direction, calculated as the derivative of the 
potential obtained from Poisson’s equation in the confinement direction and (ii) on the 
silicon film thickness TSi. This way, the influence of parameters such as Tox, NA or gate 
voltage is implicitly taken into account through the Ex-dependence. 
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Pearson Effective Potential formulation 

As in the GEP approach, our PEP formulation is based on the convolution of the Poisson 
potential by a Pearson IV function representing the non zero-size of the electron wave-
packet (Feynman & Hibbs, 1965; Ferry et al., 2000). For a double-gate structure it is defined 
(1D) as: 

 [ ]∫
+

−

−=
oxSi

ox

TT

T

SixpP 'dx)'x)T,E(R(IVPearson*)'x(V)x(PEP  (2) 

where VP(x’) is the potential energy, TSi and Tox are the silicon film and oxide thicknesses, 
and Ex is the local electric field in the confinement direction. 

4.2 Calibration 

To calibrate the four moments of the Pearson IV distribution, the Schrödinger-Poisson 
equations considering 10 energy levels have been solved self-consistently for double-gate 

nMOS capacitors with silicon film thickness varying from 5 nm ≤ TSi ≤ 20 nm and for a large 

range of effective fields (105 V.cm-1 ≤ Eeff ≤ 106 V.cm-1). Indeed, double-gate capacitors with 
TSi less than 5 nm are not very realistic for actual technological purposes and the chosen 
range of effective fields is similar to the values used for the effective mobility extraction in 
the inversion layer of long-channel devices. 
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Fig. 4. Rp, σp and γ as a function of the electric field Ex in the confinement direction extracted 
from the squared modulus of the first level Schrödinger’s wave function (dotted lines) and 
defining the Pearson IV distribution of the PEP model (solid lines) for TSi = 10 nm. 

For each device and effective field, the interfacial electric field, the squared modulus of the 

first level Schrödinger’s wave function |ψ0|2 and the electron density profile have been 

extracted. Then, each of the first four theoretical moments of |ψ0|2 has been calculated as a 
function of the interfacial electric field and of the silicon film thickness. Thereafter, the 

terminology "theoretical values" refers to these moment values deduced from SP |ψ0|2 
functions. In the case of a 10 nm film thickness double-gate capacitor, the theoretical values 
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of the average position with respect to the oxide-silicon interface, the standard deviation 
and the skewness are plotted in dotted lines as a function of the interfacial electric field on 
Fig. 4. When decreasing the electric field, the average position is farther away from 
oxide/silicon interface, the standard deviation is greater and the skewness is smaller, which 
is in accordance with less pronounced quantum confinement effects. The first four moments 
defining the Pearson IV distributions were calibrated using appropriate functions both to fit 

theoretical values of |ψ0|2 as closely as possible and to reproduce SP electron density 
profiles. The solid lines of Fig. 4 shows the calibration results of average position, standard 
deviation and skewness obtained for a double-gate capacitor of 10 nm film thickness. 
Moreover, for this structure in inversion regime, some Pearson IV distributions associated 
with various carrier positions in the silicon film as well as the first four moments of the 
Pearson IV are plotted on Fig. 5 along the confinement direction. 
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Fig. 5. Poisson potential and local electric field (a), Pearson IV distributions representing the 
electron wave-packets associated to various electron positions (symbolized by dotted lines) 

(b), Rp (c), σp (d), γ (e) and β (f) as a function of the distance along the confinement direction 
for a TSi = 10 nm double-gate nMOS capacitor in inversion regime. 

Now we describe in more details the fitting procedure. The expressions of Pearson IV 

moments as a function of Ex and TSi together with the resulting fitting parameters are given 

in (11. Appendix). 

• For the definition of the average position (Rp), the position of the oxide/silicon top 

interface is taken as reference. As a function of Ex and TSi, Rp is chosen to fit the 

theoretical values (cf. Fig. 4) while ensuring that (i) in the case of a zero electric field the 

average position Rp is equal to the particle position and (ii) the Rp evolution along the 
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confinement direction x is continuous and regular, a necessary condition for the 

numerical stability of the algorithm. We can note in Fig. 5c that the average position of 

the wave-packet of a particle located at the oxide/silicon interface is at about 1 nm 

apart from this interface, which prevents from unrealistic wave-packet penetration in 

the oxide layer. 

• The standard deviation (σp) has been considered as the unique adjustable parameter; 
i.e. it is not chosen to accurately fit the "theoretical value" but to reproduce the SP 
electron density profiles. It is explained by the fact that, from SP solution, a weak 
penetration of the wave-functions in the oxide layer leads to a strong carrier repulsion. 
In contrast, in Monte-Carlo simulation corrected by an effective potential, a weak 
penetration of the distribution function assimilated to the particle wave-packet in the 
oxide layer originates a weak repulsive electric field close to the oxide/silicon 
interfaces, which therefore results in a weak carrier repulsion. That is why the standard 
deviation of the Pearson IV is not taken identical to the theoretical one but is generally 

taken slightly higher (cf. Fig. 4). More precisely, σp is chosen so that the Pearson 
penetration into the oxide layer induces a repulsive electric field which correctly 
reproduces electron density profile from SP simulation including several subbands. 

• The skewness (γ) of the Pearson IV distribution has been chosen by fitting the 
theoretical one (cf. Fig. 4). The sign of the electric field determines the sign of the 
skewness (cf. Fig. 5e). 

• The kurtosis (β) is arbitrarily calculated as a function of the skewness γ so as to be 
minimal and as close as possible to the Gaussian value (Selberherr, 1984; Sze, 1988).  

Finally, this calibration procedure has allowed us to determine equations defining Rp, σp 

and γ as a function of Ex and TSi as well as β as a function of γ (see 11. Appendix). This way, 
for each carrier position in the confinement direction, the associated Pearson IV distribution 
is fully defined (cf. Fig. 5b). It can be noted that the Pearson IV representing the wave-packet 

of a particle located at SiO2/Si interfaces (x=0=x1 and x=TSi=x5) is centred on Rp≠x and 

presents a noticeable asymmetry γ≠0. On the other hand, for a particle located at x=TSi/2=x3, 

the Pearson IV looks like a Gaussian function (γ=0) and is centred on Rp=x=TSi/2. With our 
new approach, all along the silicon film thickness and particularly close to the SiO2/Si 
interfaces, the particle wave-packet representation is clearly more realistic than a Gaussian 
distribution. Moreover, since we have calibrated our PEP correction so as to reproduce 
electron density profiles resulting from SP calculation including 10 energy levels, one can 
say that our PEP correction integrates the description of valleys and of their associated 
subbands. However, this technique cannot include the confinement-induced redistribution 
of electrons among the different valleys as can be done in the Schrödinger-based correction 
method (Fan et al., 2004). 

4.3 PEP calculation flowchart 

The generic flowchart of the PEP calculation is presented in Fig. 6. As for the GEP 
correction, (i) the PEP correction has been implemented in the framework of a Monte-Carlo 
code (MONACO) (Saint-Martin et al., 2004), (ii) the parameter EB = 3.1 eV is defined at the 
SiO2/Si interfaces and satisfies Voxide = VP - EB. Ex and TSi being known, a set of four 

parameters (Rp, σp, γ, β) defining a Pearson IV distribution is calculated at each grid node of 
the structure as described in the previous section. Let us recall that the solution of 
Schrödinger’s equation is not required for the PEP calculation. The Pearson IV determination 
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only needs the knowledge of calibrated parameters. The Pearson Effective Potential is then 
calculated at each position “x” as the integral (see eq. 2) of the product of the Poisson 
Potential with the associated Pearson IV distribution. Due to the different shapes of the 
Pearson IV distributions to be considered all along the silicon film thickness, the PEP 
correction can no longer be performed by a Fourier transform method as in the case of the 
GEP correction. It is now calculated using a Gaussian quadrature numerical integration 
method (Dhatt et al., 2005). 
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Fig. 6. Flowchart of the Pearson Effective Potential calculation illustrated by results on a 
double-gate device with TSi =10 nm. 

5. Pearson Effective Potential electrostatics validation 

To validate the original PEP formulation, self-consistent simulations have been performed 
for several device architectures (double-gate, Silicon On Insulator (SOI) and bulk). Results of 
Monte-Carlo simulation corrected by the PEP model are compared with that obtained from 

SP calculation and GEP-corrected Monte Carlo simulation (with the value σx = 0.5 nm, as in 
(Akis et al., 2001 ; Palestri et al., 2005)). Because of confinement effects close to both SiO2/Si 
interfaces, the double-gate nMOS architecture is one of the most critical devices to be tested 
to assess and demonstrate the ability of our PEP correction to reproduce the SP simulation 
results. The electron density profiles extracted from double-gate nMOS capacitors with 
10 nm silicon film thickness and for a large range of effective fields (105 V.cm-

1 ≤ Eeff ≤ 106 V.cm-1) are shown in Figure 7a. While the electron density profiles calculated 
with the GEP correction are clearly unrealistic close to the Si/SiO2 interfaces due to an 
unsuitable description of the particle wave-packet, those obtained by the PEP correction 
agree very well with SP results. Fig. 7b compares the Poisson potential resulting from the 
PEP correction (open circles) with that resulting from SP simulation (solid line). An excellent 
agreement is obtained between both approaches. The Poisson potential resulting from semi-
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classical Monte-Carlo simulation (dotted line) and the Pearson Effective Potential which is 
actually responsible for the carrier movement (open squares) are also plotted in Fig. 7b. As 
expected the “quantum” Poisson potential exhibits a higher curvature than the “classical” 
one. Same results have been shown for double-gate nMOS capacitors with an oxide 
thickness Tox varying from 0.5 nm up to 2 nm and a silicon film thickness TSi ranging from 
20 nm down to 5 nm without any changes in the Pearson IV parameters (Jaud et al., 2007a). 
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Fig. 7. (a) Electron density as a function of the distance in the confinement direction in a 

double-gate nMOS capacitor with TSi = 10 nm, Tox = 1 nm, NA = 1016 cm-3 and using SP (solid 

lines), GEP (cross dotted lines) and PEP (open circles) models. (b) Self-consistent Poisson 

Potential resulting from semi-classical (dotted line), SP (solid heavy line),  Monte-Carlo with 

PEP correction (open circles) simulations and effective potential (PEP – open squares) as a 
function of the distance along the confinement direction extracted from the same capacitor. 

Results obtained for a 5 nm silicon oxide thickness SOI capacitor and bulk nMOS capacitor 

with a channel doping NA = 1018 cm-3 and an oxide thickness Tox = 1 nm are presented in 

Fig. 8. The simulations have been performed using the same calibrated parameters as for the 

double-gate structure. The electron density resulting from the PEP correction still properly 

reproduces SP results. Finally, the ability of the GEP and PEP quantum corrections to 

conserve the total inversion charge Ninv for double-gate, SOI and bulk devices is gathered in 

Table 1. The results of SP simulations are taken as reference. At high effective field, the total 

inversion charge Ninv is accurately reproduced with both approaches. In contrast, at low 

effective field, the PEP correction generates an error of more than 10% lower than that 

induced by the GEP. Thus, besides reproducing accurately the SP electron density profiles, 

the PEP correction also leads to inversion charge errors at the worst equal to the GEP ones 

or even considerably reduced. 

All these results highlight that the PEP correction is well-suited to predict electrostatic 

quantum confinement effects in ultimate bulk, SOI or double-gate nMOS devices with 

various TSi, Tox, NA and gate bias without any additional calibration. This “universality” 

mainly results from a judicious calibration of Pearson IV parameters as a function of the 

local electric field in the confinement direction and of the silicon film thickness. 
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Fig. 8. Electron density as a function of the distance in the confinement direction in (a) a SOI 
nMOS capacitor with TSi = 5 nm, Tox = 1 nm, NA = 1016 cm-3 (b) a bulk nMOS capacitor with 
Tox = 1 nm, NA = 1018 cm-3 and using SP (solid lines), GEP (cross dotted lines) and PEP (open 
circles) models. 
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Table 1. Inversion charge error (in percentage) for various nMOS capacitors. Low Eeff 

corresponds to 105 V.cm-1 for double-gate (DG) and SOI devices and to 5.8×105 V.cm-1 for 
bulk devices. High Eeff corresponds to 106 V.cm-1. 

6. Quantum correction for Monte-Carlo device simulation 

6.1 Simulated device 

The simulated device is a double-gate nMOSFET with a channel length LC = 10 nm, a SiO2 
oxide thickness Tox = 1.1 nm and a silicon thickness TSi = 5 nm. Not only the channel but also 
the source and drain regions are covered with SiO2 oxide material. The source and drain 
regions are uniformly doped to 1020 cm-3 and the P-type residual doping level in the channel 
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is 1015 cm-3. The metallic gate work function (φM = 4.56 eV) corresponds to midgap material. 
The scattering mechanisms included in the model are the acoustic intravalley phonon 
scattering, three f and three g intervalley phonons scattering, and the electron-impurity 
scattering. In all simulations, the phonon scattering is computed via bulk-phonons using the 
same coupling constants that for 2D and 3D electron gas (Saint-Martin et al., 2006). To make 
easier the comparison between semi-classical, quantum corrected and multi-subband 
Monte-Carlo simulations with strictly similar scattering models, surface roughness 
scattering is not included here. Finally, degeneracy effects are not included in this work. 

6.2 Treatment of quantization effects in source and drain 
The simulation of the device presented above requires to considering quantum correction 
not only in the channel area but also in the source and drain areas where quantum 
confinement between oxide barriers also occurs. In these source and drain areas, and more 
generally in the case of a quasi-flat band potential profile in the confinement direction, the 
PEP correction consists in preserving the Gaussian distribution characteristic of the flat-
band regime, but with an average position evolving at a small distance around the middle of 
the silicon film. This distance and the standard deviation of the Gaussian distribution are 
calibrated only as a function of the silicon film thickness.  
To study the transition between the flat-band and the usual PEP corrections, the electron 
density profiles in the source-to-drain direction (referred to as y-axis) of an nMOS capacitor 
resulting from SP and PEP simulations are shown in Fig. 9. No discontinuity is observed at 
the source/channel junction. Moreover, a very good agreement is conserved between SP 
and PEP electron density profiles. 
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Fig. 9. Electron density profiles extracted in different slices along the transport direction 
close to the source/channel junction of a double-gate nMOS capacitor in inversion regime 
for SP (lines) and PEP model (symbols). TSi = 10 nm. 

6.3 Boundary conditions at source and drain contacts 

In a usual semi-classical Monte-Carlo approach, the charge neutrality conditions on plane 
ohmic contact are applied, that is not well-suited with quantum confinement effects in 
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source and drain areas. Thus, the following procedure has been adopted. The potential 
profile along x axis in the middle of the drain area (where boundary conditions do not affect 
the potential) is applied to the drain contact for Poisson’s equation solution. The 
corresponding boundary condition, i.e. the potential profile applied at the source contact, is 
the same as at the drain contact but shifted by the drain to source voltage. 
To conclude this section, thanks to the 1D PEP correction extended to the flat-band regime 
with the well-suited boundary conditions, the carrier quantum confinement is correctly 
described in the full nMOSFET structure. 

7. PEP corrected vs. multi-subband Monte-Carlo 

In this section the results obtained from semi-classical, GEP corrected, PEP corrected and 

multi-subband Monte-Carlo are compared. As for GEP and PEP, Multi-Subband Monte-

Carlo (MSMC) approach (Saint-Martin et al., 2006) has been implemented in the framework 

of the MONACO code. Contrary to the GEP and PEP corrections, the MSMC solves the 

Schrödinger equation in the confinement direction and considers that all carriers are 

confined in a 2D gas. As a consequence, multi-subband (respectively GEP and PEP 

corrected) Monte-Carlo assumes 2D (respectively 3D) scattering rates and carrier movement. 

The MSMC approach is based on the mode-space approximation of decoupled 2D subbands 

only coupled by inter-subband scattering. This approximation is proved correct for ultra-

thin double-gate structures (TSi < 10 nm) (Sverdlov et al., 2005). It may become questionable 

for structures where the subband coupling should be considered in the Schrödinger 

equation as in (Bulk or SOI) single-gate devices, and it cannot be easily applied in thicker 

devices since a dramatically large number of subbands and/or a tricky coupling with a 3D 

continuum of states should be required. In the present work, the MSMC approach has been 

performed for the 5 nm silicon film thickness double-gate nMOSFET previously described. 

In the following, electrical characteristics and then microscopic quantities are carefully 

compared at low and high drain voltages.  

It should be noted that the GEP corrected, PEP corrected and multi-subband Monte-Carlo 

methods induce a computation-time multiplied by 2, 10 and 30 compared to that of semi-

classical Monte-Carlo, respectively. 

7.1 Current-voltage characteristics 

The electrical output characteristics IDS(VGS) calculated at VDS = 0.05 V and IDS(VDS) 

calculated at VGS = 1.2 V resulting from semi-classical, GEP corrected, PEP corrected and 

multi-subband Monte-Carlo simulations are shown in Fig. 10. This figure demonstrates the 

limitations of the GEP correction to properly include quantization effects: it is not only 

unable to accurately reproduce electrostatic quantum confinement effects but it also over 

corrects the current, which yields an underestimation of the drain current by more than 10% 

with respect to the MSMC results used as reference. Accordingly, the GEP correction is no 

longer considered in this work. In contrast, the PEP correction provides excellent results. 

The total electron charge extracted at VDS = 0.05 V and VDS = 0.7 V as a function of the gate 

voltage and resulting from semi-classical, PEP corrected and multi-subband Monte-Carlo 

simulations is plotted in Fig. 11a. At the same drain voltages and at VGS = 1.2 V, Fig. 11b 

represents the electron charge all along the device in the transport direction. It is remarkable 

that for all quantities plotted in Figs. 10-11 the PEP results fit in very well with multi-
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subband ones. In Fig. 10, we observe a reduction of drive current when quantum 

confinement effects are included (by 6.2% with PEP at VGS = 1.2 V and VDS = 0.7 V). It is 

mainly explained by a smaller effective gate capacitance due to carrier repulsion at the 

SiO2/Si interfaces (cf. Fig. 11)  inducing a reduction of inversion charge at given bias. 
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Fig. 10. Output IDS-VGS characteristics at VDS = 0.05 V (a) and output IDS-VDS characteristics at 
VGS = 1.2 V (b) resulting from semi-classical (squares), PEP corrected (circles), multi-subband 
(triangles) and GEP corrected (crosses) Monte-Carlo simulations. 
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Fig. 11. (a) Total electron charge as a function of the gate voltage VGS for VDS = 0.05 V and 
VDS = 0.7 V resulting from semi-classical (squares), PEP corrected (circles) and multi-
subband (triangles) Monte-Carlo. (b) Electron charge (electron density integrated over the 
silicon film thickness) along the transport direction for VDS = 0.05 V and VDS = 0.7 V resulting 
from semi-classical (thin lines), PEP corrected (symbols) and multi-subband (thick lines) 
Monte-Carlo. VGS = 1.2 V.  
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7.2 Microscopic quantities 

Cartographies of electron density obtained by PEP corrected Monte-Carlo simulations at 
VDS = 0.05 V and VGS = 1.2 V and at VDS = 0.7 V and VGS = 0.8 V are shown in Figs. 12a and 
13a, respectively. 
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Fig. 12. Cartography of the electron density resulting from the PEP correction at VGS = 1.2 V 
and VDS = 0.05 V (a). Electron density profiles extracted in different slices of the device along 
either gate-to-gate (b-c) or source-drain (d) directions for semi-classical (thin lines), PEP 
corrected (symbols) and multi-subband Monte-Carlo (thick lines) simulations. 
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Fig. 13. As in Fig. 12 at VGS = 0.8 V and VDS = 0.7 V for semi-classical (thin dotted lines), PEP 
corrected (open circles) and multi-subband Monte-Carlo (thick solid lines) simulations. 

At these same applied voltages, we also compare electron density and potential profiles 

resulting from semi-classical, PEP correction and multi-subband Monte-Carlo simulation 

along the confinement and the transport directions (cf. Figs. 12b-12d ; 13b-13d). First of all, 

comparisons with semi-classical results highlight the impact of quantum confinement 

effects. At low drain voltage, two maxima of density at about 1 nm from the Si/SiO2 

interfaces are observed (cf. Figs. 12a-12c). Figs. 13a-13c show a gradual reduction of the 
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confinement effects along the channel under high drain voltage. It is mainly explained by 

the curvature of the conduction band that is less sensitive to the drain voltage at the source-

end of the channel than at the drain-end. In most cases, excellent agreement is found 

between PEP and multi-subband electron density profiles all along the device. However, at 

the drain end of the channel and under high drain voltage (cf. Fig.  13c), the electron 

repulsion at the Si/SiO2 interfaces induced by the PEP correction is less pronounced than 

that induced by MSMC. Such behavior may be related to carrier heating in this channel 

region, which is observable in Fig. 14a where the electron kinetic energy averaged in the 

confinement direction is plotted as a function of the source-to-drain distance. Indeed, in 

MSMC simulation, high electric field induces electron heating which redistributes carriers 

by phonon scattering within higher subbands with envelope functions different from that of 

the low-field case. In contrast, using the PEP correction even if the same “quantum” 

potential barrier is seen by both thermal and hot electrons, hot electrons are allowed to get 

closer to the oxide interfaces than thermal ones. To still improve the PEP model, an 

additional correction is probably needed to better describe the repulsive effect for high 

energy carriers. Besides, kinetic energy resulting from semi-classical and PEP corrected 

Monte-Carlo are quite similar and higher than that resulting from MSMC. This is consistent 

with the fact that energy of carriers at thermal equilibrium in a 2D electron gas is kBTe 

instead of 3/2 kBTe in a 3D electron gas (with kB the Boltzmann constant and Te the electron 

temperature). However, it should be nicely observed that this error does not really affect the 

inversion charge. This conservation combined with the additional excellent agreement 

obtained on the average velocity profile plotted in Fig. 14b consistently explains the good 

concordance on drain currents calculated with both approaches (cf. Fig. 10).  
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Fig. 14. Kinetic energy (a) and velocity (b) averaged over the confinement direction (semi-
classical and PEP correction) or over the different subbands (multi-subband) according to 
carrier density at VGS = 0.8 V and VDS = 0.7 V resulting from semi-classical (dotted lines), PEP 
corrected (open circles) and multi-subband (solid lines) Monte-Carlo simulations. 
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Moreover, velocity obtained from PEP and multi-subband Monte-Carlo models are similar 

to the semi-classical one. Contrary to the electrostatics in the confinement direction, the 

transport properties in the source-to-drain direction are not significantly affected by 

quantum confinement effects in the case of very thin silicon film. 

Finally, the very good overall agreement on both electrical characteristics and microscopic 

quantities between PEP corrected and multi-subband Monte-Carlo approaches for a very 

aggressive double-gate MOSFET largely validates the PEP correction. Similar results have 

been obtained on a double-gate nMOSFET with a channel length LC = 20 nm and a silicon 

thickness TSi = 8 nm (Jaud et al, 2007b). By means of comparisons with semi-classical Monte-

Carlo results, the PEP correction can now be used to further study the impact of quantum 

confinement effect on electron transport and device performances depending on design 

parameters. 

8. Impact of the quantum confinement effects 

In this section, the simulated devices are double-gate nMOSFETs with a silicon film 

thickness TSi = 5 nm and a channel length LC varying from 10 up to 40 nm and double-gate 

nMOSFETs with LC = 20 nm and TSi varying from 5 up to 10 nm. The drive current IDS 

resulting from semi-classical and PEP corrected Monte-Carlo simulations and extracted at 

VGS-Vth = VDS = VDD = 0.7 V is plotted in Fig. 15 as a function of LC and TSi where Vth is the 

threshold voltage obtained at low VDS for each device. 

 

5 6 7 8 9 10

Silicon thickness 

T
Si

 (nm)

L
C
 = 20 nm

3000

3500

4000

4500

10 20 30 40

semi-classical

PEP corrected

Channel length 

L
C
 (nm)

T
Si

 = 5 nm

D
ra

in
 c

u
rr

e
n

t 
I D

S
 (

μA
.μ

m
-1

)

(a) (b)

5 6 7 8 9 10

Silicon thickness 

T
Si

 (nm)

L
C
 = 20 nm

3000

3500

4000

4500

10 20 30 40

semi-classical

PEP corrected

Channel length 

L
C
 (nm)

T
Si

 = 5 nm

D
ra

in
 c

u
rr

e
n

t 
I D

S
 (

μA
.μ

m
-1

)

(a) (b)

 

Fig. 15. Drain current IDS resulting from semi-classical (dotted lines) and PEP corrected (full 

lines) Monte-Carlo simulations and obtained at VGS-Vth = VDS = VDD = 0.7 V on double-gate 

nMOSFET as a function of the channel length LC (TSi = 5 nm) (a) and the silicon film 

thickness TSi (LC = 20 nm) (b). 
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At these same bias, we plot the inversion charge Ninv and the velocity vinj extracted at the 

maximum of the potential energy (averaged in the confinement direction according to 

carrier density) obtained on the previous devices with TSi = 5 nm (cf. Fig. 16) and LC = 20 nm 

(cf. Fig. 17) for semi-classical and PEP corrected Monte-Carlo as a function of the drive 

current IDS. For all simulated devices, quantum confinement effects induce a decrease of 

drive current lower than 13% compared to semi-classical results (cf. Fig. 15), which is mainly 

attributed to the decrease of the inversion charge. When the channel length is decreased we 

observe a raise of the drive current IDS (cf. Fig. 15a) that presents a linear correlation with the 

increase of the average velocity at the top of the barrier while the inversion charge Ninv is 

nearly independent on LC (cf. Fig. 16). This increase of injection velocity is directly related to 

the reduced backscattering in the channel. 

 

1.8

2

2.2

2.4

2.6

2.8

3

0.9

1

1.1

1.2

1.3

1.4

1.5

3000 3500 4000 4500

In
v
e

rs
io

n
 c

h
a

rg
e

 N
in

j  
(1

0
1

7
 c

m
-2

) A
v

e
ra

g
e
 v

e
lo

c
ity

 v
in

j   (1
0

7 m
.s

-1)

Drain current  I
DS

 (μA.μm
-1

)

T
Si

 = 5 nm

semi-classical
PEP correction

1.8

2

2.2

2.4

2.6

2.8

3

0.9

1

1.1

1.2

1.3

1.4

1.5

3000 3500 4000 4500

In
v
e

rs
io

n
 c

h
a

rg
e

 N
in

j  
(1

0
1

7
 c

m
-2

) A
v

e
ra

g
e
 v

e
lo

c
ity

 v
in

j   (1
0

7 m
.s

-1)

Drain current  I
DS

 (μA.μm
-1

)

T
Si

 = 5 nm

semi-classical
PEP correction

N
in

v

1.8

2

2.2

2.4

2.6

2.8

3

0.9

1

1.1

1.2

1.3

1.4

1.5

3000 3500 4000 4500

In
v
e

rs
io

n
 c

h
a

rg
e

 N
in

j  
(1

0
1

7
 c

m
-2

) A
v

e
ra

g
e
 v

e
lo

c
ity

 v
in

j   (1
0

7 m
.s

-1)

Drain current  I
DS

 (μA.μm
-1

)

T
Si

 = 5 nm

semi-classical
PEP correction

1.8

2

2.2

2.4

2.6

2.8

3

0.9

1

1.1

1.2

1.3

1.4

1.5

3000 3500 4000 4500

In
v
e

rs
io

n
 c

h
a

rg
e

 N
in

j  
(1

0
1

7
 c

m
-2

) A
v

e
ra

g
e
 v

e
lo

c
ity

 v
in

j   (1
0

7 m
.s

-1)

Drain current  I
DS

 (μA.μm
-1

)

T
Si

 = 5 nm

semi-classical
PEP correction

N
in

v

 
 

Fig. 16. Inversion charge (triangles) and average velocity (squares) as a function of the drain 

current IDS resulting from semi-classical (dotted lines) and PEP corrected (full lines) Monte-

Carlo simulations and obtained at VGS-Vth = VDS = VDD = 0.7 V on double-gate nMOSFET 

with different channel lengths LC at given TSi = 5 nm. The inversion charge and the average 

velocity have been extracted at the maximum of the potential energy (averaged over the 

confinement direction according to carrier density). 

When the silicon film thickness is increased we observe an increase of the drive current IDS 

(cf. Fig. 15b), that presents a linear correlation with the increase of the inversion charge at 

the top of the barrier (cf. Fig. 17). This behavior of the inversion charge is a direct 

consequence of the thinning-induced enhancement of source-access resistance which 

weakens the gate control of the channel. Surprisingly enough, when the silicon film 

thickness is reduced (cf. Fig. 15b), the impact of quantum confinement effects becomes less 

important and the drop of drive current is about 7% for TSi = 5 nm. The increase of the 

inversion charge distribution in the middle of the film partly compensates the carrier 
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depletion near the Si/SiO2 interfaces, which explains this trend. For 5 nm silicon film 

thickness, the reduction of drive current due to quantum confinement effects is not very 

sensitive to the channel length LC (cf. Fig. 15a); this drive current reduction only slightly 

increases when LC increases. 
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Fig. 17. As in Fig. 16 but obtained on double-gate nMOSFET with different silicon film 
thicknesses TSi at given LC = 20 nm. 

9. Conclusion 

The new Pearson Effective Potential scheme has been developed to account for quantum 

confinement effects in nano-scaled devices and has been implemented into a semi-classical 

Monte-Carlo simulator. It mainly consists of an improvement of the particle wave-packet 

description: the Gaussian distribution used in the usual GEP correction is replaced by a 

Pearson IV distribution that can much better fit the square modulus of the ground subband 

Schrödinger wave function. Thanks to a judicious calibration of Pearson IV parameters 

dependent on the silicon film thickness and local electric field in the confinement direction, 

the PEP correction accurately predicts electrostatic quantum confinement effects in ultimate 

bulk, SOI or double-gate nMOS and properly describes the impact of quantum confinement 

on electron transport in terms of both electrical characteristics and microscopic quantities. 

Indeed, excellent agreement between quantum corrected and multi-subband Monte-Carlo 

simulations are shown on a nano-scaled double-gate nMOSFET. Comparisons between 

semi-classical and PEP corrected Monte-Carlo simulations on nano-scaled double-gate 

nMOSFETs show that the reduction of the inversion charge induced by quantum 

confinement effects are mainly responsible for a decrease of about 10% on the drive 

current. 
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Finally, the PEP correction can be easily extended to several confinement directions and is 

well suited for the simulation of various nMOSFET architectures such as double-gate, silicon 

on insulator or bulk. 
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11. Appendix: Pearson IV definition and PEP calibration 

The Pearson IV distribution is defined as (Selberherr, 1984 ; Sze, 1988): 
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with b0, b1 and b2 given by: 

 

( )

( )

2 2

0 2

1 2

2

2 2

4 3

10  - 12  - 18

3

10  - 12  - 18 

2 3 6

10  - 12  - 18

P

P

σ   ┚  ┛
b

┚ ┛

┛  σ  ┚
b

┚ ┛

┚ ┛
b

┚ ┛

−
= −

+
= −

− −
= −

 (4) 

and K is a constant to ensure that the Pearson IV is normalized.  

The skewness γ and the kurtosis β obey the following conditions: 

 20 32┛< <  (5) 
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We recall that the average position Rp, the standard deviation σp, the skewness γ and the 

kurtosis β are defined as a function of the first four moments of the distribution function as 

following: 
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 1PR µ=      2Pσ µ=     3
3 2

2

µ┛
μ

=     4
2

2

µ┚
μ

=  (7) 

In our PEP correction, the wave-packet of a particle located in “x” in the confinement 

direction and under an electric field Ex is represented by a Pearson IV distribution whose 

moments have been calibrated as a function of Ex and TSi. We present here the expressions of 

each of the four calibrated Pearson IV moments. Table 2 gathers all the notations specifying 

their unit and significance. The parameters’ values necessary for Pearson moments 

calculation are listed in Table 3. 

 
 

Average position of a carrier under a zero electric field 

Ex

mRP0

Parameter for RP calculation (cf. Table 3)ad.RPmax

Parameter for RP calculation (cf. Table 3)ad.RPa

Parameter for RP calculation (cf. Table 3)mRPdiv

Standard deviation (cf. eq. 10)mσP

Skewness (cf. eq. 11)ad.γ

Parameter for γ calculation (cf. Table 3)ad.γmax

Kurtosis (cf. eq. 12)β

Local electric field in the confinement directionV.m-1|EX|

Constant parameter   |EX|max= 3.5 108 V.m-1V.m-1|EX|max

Constant parameter for σP calculation   1=109 m-1m-1
1

Constant parameter for σP calculation   2=17.1011 m-1m-1
2

Parameter for σP calculation (cf. Table 3)ad.TSis

Silicon film thicknessmTSi

Location of the 1st interfacemx1

Location of the 2nd interfacemx2

RP2

RP1

RP

Name

m

m

m

Unit

Average position (cf. eq. 9)

Average position of a carrier located at the 1st interface 

(cf. eq. 8)

Average position of a carrier located at the 2nd interface 

(cf. eq. 8)

Definition

m

α α

αα

 
 

Table 2. Unit and significance of all the notations used for the calculation of the Pearson IV 
calibrated parameters (ad. is for adimensional). 
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Average position 

The average position is calculated in two different steps. Firstly, the average position of a 

particle located at the first interface (RP1) and at the second interface (RP2) are calculated as a 

function of Ex and TSi so as to fit the theoretical values: 

 max
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101
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2 2log(10 )
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P PR
x

ET T
R R

E
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 (8) 

Moreover, for a particle under a zero electric field, the average position of its wave-packet 

(RP0) is equal to its location. Secondly, for each particle location, the average position of its 

wave-packet RP is calculated from RP0, RP1 and RP2 while ensuring that RP(x) is continuous 

and regular: 
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(9)

 

Standard deviation 

For a particle under a local electric field in the confinement direction Ex, the standard 
deviation of the Pearson IV representing its wave-packet is calculated as follows: 
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 (10) 

Skewness 

The skewness is calculated as a function of Ex and TSi so as to fit the theoretical values: 

 max 9
max

tanh
10

xSi

x

ET┛ ┛
E−

⎡ ⎤
= × ×⎢ ⎥

⎢ ⎥⎣ ⎦
 (11) 

Moreover, the sign of the skewness is then adjust to be in adequacy with the sign of the local 

electric field in the confinement direction Ex. 

Kurtosis 

In accordance with Pearson IV definition (Selberherr, 1984 ; Sze, 1988), the kurtosis is only 

calculated as a function of the skewness γ so as to be minimal and closest to the Gaussian 

value: 
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with ε>0 to prevent from numerical difficulties. 

 

0.4xTSi + 2 10-96 10-9RPdiv

0.83 10-9-0.034xTSi + 1.17 10-9RPmax

10TSi/10-9TSis

0.90.03xTSi/10-9 + 0.6γmax

Integer part [0.7xTSi/10-9 - 2]5RPa

Name TSi < 10 nm TSi ≥ 10 nm

0.4xTSi + 2 10-96 10-9RPdiv

0.83 10-9-0.034xTSi + 1.17 10-9RPmax

10TSi/10-9TSis

0.90.03xTSi/10-9 + 0.6γmax

Integer part [0.7xTSi/10-9 - 2]5RPa

Name TSi < 10 nm TSi ≥ 10 nm

 

Table 3. Values of the parameters as a function of TSi used for Pearson IV calibrated 
parameters calculation according to the units defined in Table 2. 
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