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1. Introduction

Recent technological advances have made possible to fabricate structures at the nanoscale.
Such structures have already a large range of applications in very disparate fields of science
and technology, and day by day new proposals are being suggested. A particular example of
is nanoelectronics, where nanostructures constitute the platforms where smaller and smaller
electron devices are being designed with the aim of letting the semiconductor industry to go
forward in manufacturing faster and less consuming devices.
Today, due to the increase of the complexity and cost of the technological processes necessary
to fabricate electron device prototypes, precise predictions on their functionality allowing to
rule out specific designs are strictly necessary. In this regard, the success of nanoelectronics
partially relies on physical theories on electron transport usually implemented on computer
design tools that constitute at this moment a research and development cost reduction
amount of the 35%, and is expected to increase up to 40% in the next future (Sverdlov
et al., 2008). But more importantly, beyond the supporting role in the progress of electronics,
theoretical approaches to electron transport constitute a necessary tool to guide the continuous
breakthroughs of the electronics industry.
Analytical approaches to model electron transport have been developed since the invention of
the first vacuum valve (Conwell, 1967), however, it has been the improvement of electronics
itself which has make it possible to intensify the research on the simulation of electron
transport by means of computer-aided tools. With the aid of faster computers, it became
possible to obtain exact numerical solutions of complex microscopic physical models. The
first fully numerical description of electron transport was already suggested in 1964 by
Gummel (Gummel, 1964) for the one-dimensional bipolar transistor. The approach was
further developed and applied to pn-junctions (De Mari, 1968) and to avalanche transit-time
diodes by Scharfetter and Gummel (Scharfetter & Gummel, 1969). It was in 1966 that the
first application of the Monte Carlo (MC) method was proposed by T. Kurosawa to solve the
semi-classical Boltzmann Transport Equation (BTE) (Kurosawa, 1966). Since this pioneering
work, the MC technique applied to device simulation has suffered a great evolution, and over
more than 30 years it has been applied to understand several physical processes related with
transport phenomena in many scenarios of interest (an extend review can be found in Refs.
Jacoboni & Lugli, 1989; Jacoboni & Reggiani, 1983).
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The use of the MC technique in the field of nanoelectronics is justified by the enormous
complexity associated to the microscopical description of electron transport in solid-state
structures. Current computational limitations forces any electron transport model to restrict
the entire simulated degrees of freedom to a very few number. Such a simplification of the real
scenario implies the use of probabilistic distributions that provide statistical information on
those parts of the system that have been neglected/approximated1. Here is precisely where
the MC technique comes into play by providing a sequence of random numbers with such
particular distribution probabilities.
The study of electron transport through the BTE constitutes, however, just a single-particle
approach to the electron transport problem (Albareda, Suñé & Oriols, 2009; Di Ventra, 2008),
only accurate enough to describe electron dynamics in large structures containing a large
number of carriers. As electron device sizes shrink into the nanometer scale, device structures
are characterized by simultaneously holding a small number of electrons in a few nanometers.
In this regime, carriers experience very little or no scattering at all (ballistic limit). The
Coulomb interaction among carriers becomes then particularly important because the motion
of one electron strongly depends on the motion of all the others and viceversa, i.e. their
dynamics get strongly correlated. Hence, a many-particle formulation of electron transport
becomes mandatory.
The main thrust of this chapter is to present a generalization of the standard MC solution
of the BTE by introducing a rigorous many-particle description of electron dynamics and its
classical correlations.

Overview on the treatment of Coulomb correlations:

In the last decade, several works have remarked the necessity of paying maximum attention
not only to electron-electron (e-e) but also to electron-impurity (e-i) Coulomb interactions
when developing new approaches to electron transport (Barraud et al., 2002; Gross et al., 1999;
2000b; Wordelman & Ravaioli, 2000). In the MC solution of the BTE, historically the e-i (and
also a part of the e-e) interactions have been introduced perturbatively as “instantaneous”
and “local” transitions of electrons between different regions of the k-space. Such approach
is clearly inappropriate at deep nanoscale because it assumes homogenous distributions of
charges, so that the effects of “scattering” of electrons become position independent. The
expressions for the e-e and e-i scattering rates in k-space are, in addition, based on a two-body
model which accounts for many-particle contributions only through the screening function of
simplified effective potentials, and which does not take into account the electrostatic effects of
the gate, drain and source terminals on the potential distribution.
The standard solution to avoid such important limitations of the MC without significantly
increasing the computational cost of the simulations, consists on defining an ad-hoc spatial
division of the e-e and e-i interactions. For sufficiently large structures (several tens of
nanometers), two distinguishable behaviors of the electrostatic potential can be identified
depending on the proximity to the charges. On one hand, in a position very near (∼ few
nanometers) to the carriers and ions, the shape of the scalar potential behaves just like 1/r.
On the other hand, far enough from them (∼ tens of nanometers), the shape of the scalar

1 An example of these distributions is the Fermi Dirac distribution, which describes the way (i.e. position,
time and momentum) electrons enter the active region once the simulation of the battery, leads and
contacts has been avoided. Another example are, for instance, the scattering rates describing the
interaction between electrons and the atoms conforming the underlying crystallographic mesh within
the effective mass approximation.
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potential depends on the particular spatial charge distribution. In this regard, a common
strategy consists on introducing a long-range part of the Coulomb interaction numerically
through the solution of the mesh-dependent mean-field Poisson equation, and a short-range
part analytically (the so-called Monte Carlo/Molecular dynamics approach, MCMD, (Gross
et al., 1999; Wordelman & Ravaioli, 2000)), or perturbativelly (Barraud et al., 2002). The
MCMD approach, however, shows some inconvenients. The first reported limitation was the
so-called “double counting” of the electrostatic force in the short-range interaction term (Gross
et al., 1999; 2000a). Since the e-e and e-i interactions are already included, in a smoothed way,
in the self-consistent solution of the Poisson equation, the addition of a separate analytical
force (the Molecular dynamics term) leads to the overestimation of both the e-e and the e-i
interactions (Gross et al., 1999). Such a problem can be avoided by properly identifying the
spatial region where short-range Coulomb interactions have to be included. In particular, the
Molecular dynamics routine uses a “corrected” short-range Coulomb interaction that excludes
the long-range contribution from the Poisson equation (Gross et al., 1999; 2000a;b). The
problem comes then from the analytical nature of the short-range corrections, which can lead
to unphysically large forces that cause artificial heating and cooling (for acceptors and donors
respectively) of the carriers (Gross et al., 2000b; Ramey & Ferry, 2003). Again, this problem
can be amended by introducing modifications of the analytical expressions of the Coulomb
interaction in the short-range region (Alexander et al., 2005; 2008) or by implementing density
gradient (quantum) corrections that accounts for the formation of bound states in the donor
induced wells (Asenov et al., 2009; Vasileska & Ahmed, 2005).
Unfortunately, even all the above improvements of the MC solution of the BTE can fail when
device dimensions are aggressively reduced to a very few nanometers either in lateral or
longitudinal directions. Then, separations between long- (screened) and short- (unscreened)
range contributions of the Coulomb interaction become quite misleading, and moreover,
under such particular conditions, an important intrinsic limitation of the MC solution of
the BTE come to light: it constitutes a single-particle description of electron transport, i.e.
it describes the time-evolution of the electron distribution function (i.e. the Boltzmann
distribution) in a single-electron phase-space (Albareda, López, Cartoixà, Suñé & Oriols, 2010;
Albareda, Saura, Oriols & Suñé, 2010; Albareda, Suñé & Oriols, 2009; Boltzmann, 1872).
Moreover, in addition to the above problems, due to the computational burden associated to
the microscopic description of electron transport, the simulation of the Coulomb correlations
between the electrons in the leads and those in the active region of an electron device is not
always possible and the use of small simulation boxes is a mandatory requirement in modern
nanoscale simulators (see Fig. 1). However, in order to correctly model the DC and/or
AC conductance of nanoscale systems, one has to assure the accomplishment of “overall
charge neutrality” and “current conservation” (Blanter & Büttiker, 2000; Landauer, 1992).
The implementation of such requirements into nanoscale electron simulators demands some
kind of reasonable description of the Coulomb interaction among the electrons inside and
outside the simulation boxes. The boundary conditions on the borders of simulation boxes in
electron transport approaches constitute also a complicate and active field of research. In fact,
educated guesses for the boundary conditions are present in the literature when describing
nanoscale electron devices with simulation boxes large enough to include the leads. However,
such boundary conditions are not applicable for small simulation boxes that exclude the
leads. Elaborated semi-classical electron transport simulators solving the time-dependent BTE
within the MC technique commonly fix the potential at the borders of the simulation box equal
to the external bias (i.e. Dirichlet boundary conditions) and assume ad-hoc modifications of
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Fig. 1. Schematic representation of the Coulomb correlations among electrons in the leads
and those in the active region of an electron device. e− and i represent the conduction
electrons and the ionized atoms respectively.

the injection rate to achieve “local” charge neutrality (Bulashenko et al., 1998; Fischetti & Laux,
2001; Gomila et al., 2002; Gonzalez et al., 1997; Gonzalez & Pardo, 1993; 1996; Jacoboni & Lugli,
1989; Reklaitis & Reggiani, 1999; Wordelman & Ravaioli, 2000). Some works do also include
analytically the series resistances of a large reservoir which can be considered an improvement
over the previous boundary conditions (Babiker et al., 1996). Other MC simulators do also
consider Neumann boundary conditions (i.e. a fixed zero electric-field) (Riddet et al., 2008).
The latter conditions fix also the scalar potential (up to an arbitrary constant) so that the
injected charge can also be indirectly determined when a known electrochemical potential
is assumed. Although all these boundary conditions are successful for large simulation boxes,
they are quite inaccurate for small simulation boxes that exclude the leads (Riddet et al., 2008).
In principle, there are no much computational difficulties in applying a semi-classical MC
technique in large simulation boxes when dealing with mean-field approaches. However, the
possibility of using smaller boxes will be very welcomed for some intensive time-consuming
simulations beyond the mean-field approximation (also for statistical ensemble simulations,
see Ref. Reid et al., 2009, or to compute current or voltage fluctuations that need very large
simulation times to obtain reasonable estimators, see Refs. Albareda, Jiménez & Oriols, 2009;
Gonzalez et al., 1997; Gonzalez & Pardo, 1993; Reklaitis & Reggiani, 1999; Wordelman &
Ravaioli, 2000, etc.).
In this chapter, we are interested in revisiting the MC computation of an ensemble of Coulomb
interacting particles in an open system (an electron device) without any of the approximations
mentioned in the previous paragraphs. With this goal, in section 2 , we will develop an
exact many-particle Hamiltonian for Coulomb interacting electrons in open systems in terms
of the solutions of multiple Poisson equations (Albareda, Suñé & Oriols, 2009). To our
knowledge, the type of development of the many-particle Hamiltonian proposed here has not
been previously considered in the literature because, up to now, it was impossible to handle
the computational burden associated with a direct solution of a many-particle Hamiltonian.
Furthermore, in section 3 , we will present an original (time-dependent) boundary condition
algorithm for open systems capable of accurately capturing Coulomb correlations among the
electrons inside and outside the simulation box (Albareda, López, Cartoixà, Suñé & Oriols,

170 Applications of Monte Carlo Method in Science and Engineering

www.intechopen.com



2010). Such boundary conditions constitute a notable improvement of standard boundary
conditions used in MC approaches and, requiring a minimum computational effort, they can
be implemented into time-dependent simulators with large or small simulation boxes, and
for DC, AC conditions and even for the study of current (or voltage) fluctuations. Section
4 , will be devoted to present a semi-classical solution of the time-dependent many-particle
Hamiltonian provided with the previous boundary conditions. This solution constitutes a
generalization of the semi-classical single-particle Boltzmann distribution to many-particle
systems (Albareda, López, Cartoixà, Suñé & Oriols, 2010; Albareda, Suñé & Oriols, 2009). In
section 5, our many-particle MC will be used to evaluate the importance of accounting for
strongly-correlate phenomena when predicting discrete doping induced effects in the channel
of a quantum wire double-gate field-effect transistor (Albareda, Saura, Oriols & Suñé, 2010).

2. A Many-particle Approach to Semi-Classical Electron Transport

Although interacting many-electron systems are well assessed through the exact expression
of the system’s Hamiltonian, its exact solution is a very hard problem when the number of
interacting electrons increase farther than a few tens. Therefore, the main difficulty that one
encounters when describing electron transport at the nanoscale arises from the necessity of
making reasonable approximations to an essentially untractable problem, i.e. the many-body
description of electron transport.
Consider, for instance, the Hamiltonian describing a whole closed circuit, i.e. including the
battery, the contacts, the leads, the active region and all the constituting elements therein (see
Fig. 1). If we assume that it contains MT electrons and W − MT atomic cores, the Hamiltonian
of the system can be written as

Hcircuit (�r1, ...,�rG,�p1, ...,�pG) =
MT

∑
k=1

{

K (�pk) +
1
2

MT

∑
j=1
j �=k

eV0(�rk,�rj)
}

+
W

∑
k=MT+1

{

K (�pk) +
1
2

W

∑
j=MT+1

j �=k

eZkZjV0(�rk,�rj)
}

−
MT

∑
k=1

W

∑
j=MT+1

eZjV0(�rk,�rj), (1)

where K (�pk) is the kinetic energy of the k − th particle with a momentum �pk, e is the electron
charge,�rk is the vector position of the k-th particle, and Zk is the atomic number of the k-th
atom. The term V0(�rk,�rj) = e/

(

4 π ε0 |�rk −�rj|
)

is the Coulomb potential (with ε0 the vacuum
permittivity)2.

2 Along the whole chapter we will assume that all involved electrons are traveling at velocities much
lower than light’s, c (nonrelativistic approximation). Moreover, we will consider that we can neglect
the electron spin-orbit coupling and that a quasi-static electromagnetic regime can be assumed. Such
an assumption, however, does not means that we are considering spinless electrons. Indeed, when
computing some relevant magnitudes we will account for the electron spin just by an additional factor
2. (see Ref. Albareda, López, Cartoixà, Suñé & Oriols, 2010)
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2.1 The many-electron open system Hamiltonian

Notice that the solution of the Hamiltonian (1) constitute an insurmountable challenge. The
reason, however, does not only reside on the huge number of variables conforming the system
(W → ∞), but mainly on their correlation, which does not allow to separate the dynamics of
electrons. The interaction terms in (1) are the responsible of coupling each particle dynamics
to the rest of particle dynamics in the system, and hence the responsible of making their
solution so difficult. A common strategy to simplify the solution of equation (1) consists on
reducing the involved degrees of freedom. Instead of trying to describe a whole closed circuit,
all approaches to electron transport reduce the number of variables to be explicitly described
by opening the system. As a first approach, we delimit the particles dynamics to be explicitly
described to those that are free to carry electrical current.

Internally opening the system: In order to reduce the degrees of freedom in (1), we first
remove their explicit dependence on the valence and core electrons by modifying the vacuum
permittivity (ε0 → ε = εr · ε0, where εr is the relative permittivity) and accounting for an
average induced polarization between the bounded electrons and the nuclei (Reitz et al.,
1992)). We also assume the adiabatic approximation (Datta, 1995; 2005; Lundstrom & Guo,
2006) (also called Born-Oppenheimer approximation) under which conducting electrons move
in a quasi-static atomic potential defined by the fixed positions of the atoms. The original
Hamiltonian (1), has been then reduced to the Hamiltonian of the carriers alone:

Hcarriers (�r1, ...,�rM,�p1, ...,�pM) =
M

∑
i=1

{

K (�pi) +
1
2

M

∑
j=1
j �=i

eV(�ri,�rj)−
W

∑
j=MT+1

eZjV(�ri, �Rj)
}

(2)

where M is now the total number of unbounded electrons, and Rj are now the fixed positions
of the atoms. The Coulomb potential,

V(�ri,�rj) =
e

4 π ε
∣

∣

∣
�ri −�rj

∣

∣

∣

(3)

has been properly redefined according to the effective value of the dielectric permittivity.
From now on, the dynamics of the nucleus and the bounded electrons are not anymore
explicitly accounted for. Therefore, we do not deal with the circuit Hamiltonian, Hcircuit,
but with that of the M unbounded electrons (i.e. carriers), Hcarriers. Although the spatial
region described by Hcarriers is the same as the one described by Hcircuit, we have substantially
reduced its complexity by disregarding many internal degrees of freedom. Hence the title
“internally opening the system”.
We are however still dealing with a computationally insolvable problem. In order to continue
reducing the degrees of freedom, an important decision to be made is that of the energy band
model that will be used. Assuming the electron-atom interaction potential to be an average
over a unit cell of the atomic lattice of the semiconductor, carrier kinetics can be treated almost
in the same way as for free carriers, but with a modified mass called the effective mass. Such
a model is thus often called the effective mass model. We define then H0 as that part of
the whole Hamiltonian containing the kinetic terms and the interaction among electrons and
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atoms. We can rewrite (2) as

Ĥcarriers = Ĥ0 +
1
2

M

∑
i=1

M

∑
j=1
j �=i

eV
(

�ri,�rj

)

, (4)

where

Ĥ0 =
M

∑
i=1

H0i =
M

∑
i=1

{

K (�pi)−
G

∑
j=MT+1

eZjV
(

�ri, �Rj

)}

. (5)

H0 is separable and we can find monoelectronic eigenstates for every one of the M
Hamiltonians H0i. Moreover, if we assume an ideal periodic atomic structure, the Bloch states
are solutions of these monoelectronic Hamiltonians. Considering that only one single-band is
attainable by the carriers, it can be shown that the Hamiltonian (2) can be reduced to that of a
many-particle envelope function (Albareda, 2010)

Ĥenv =
M

∑
j=1

[

K (�pk) +
1
2

M

∑
i=1

eV
(

�ri,�rj

)

]

, (6)

where K(�pk) is redefined as

K (�pk) = −
h̄2

2

(

∂2

m∗
x∂x2

j

+
∂2

m∗
y∂y2

j

+
∂2

m∗
z ∂z2

j

)

, (7)

and mx, my and mz are the trace terms of the diagonalized effective mass tensor (Albareda,
2010).
The Hamiltonian in (6) is still computationally unaffordable because it involves a huge
number of degrees of freedom (those of the battery, contacts, leads, etc...). In this regard,
we must carry out a step forward in simplifying the described electronic system. In what
follows, we spatially delimit the system to be described, i.e. we externally open the electronic
system.

Externally opening the system: We divide the previous ensemble of M particles into a
sub-ensemble of N(t) particles whose positions are inside the volume Ω and a second
sub-ensemble, {N(t) + 1, ..., M} which are outside (see figure 2). We assume that the
number of particles inside, N(t), is a time-dependent function that provides an explicit
time-dependence to the many-particle (open-system) Hamiltonian. As drawn in figure 2,
we define a parallelepiped where the six rectangular surfaces S =

{

S1, S2, ..., S6} are the
boundaries of Ω. We use�rl as the “boundary” vector representing an arbitrary position on
the surfaces Sl. Now, the number of carriers in the system N (t) will vary with time, i.e.

Ĥ
open
env (�r1, ..,�rM,�p1, ..,�pN(t), t) =

N(t)

∑
k

{

K (�pk) +
1
2

N(t)

∑
k=1
k �=j

eV(�rk,�rj) +
M

∑
j=N(t)+1

eV(�rk,�rj)

}

(8)

As we will be discussed below, the third term in (8) can be included in the Hamiltonian of the
open system through the boundary conditions of the Poisson equation. The roughness of the
approximation bringing together the effects of all the external particles over the N (t) carriers
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Fig. 2. Schematic representation of the open volume Ω = Lx · Ly · Lz and its limiting surface
S =

{

S1, S2, ..., S6}. There are N(t) particles inside and M − N(t) outside this volume. The
vector�rl points to an arbitrary position at the boundary surface Sl . We consider S4 and S1 as
“opened” surfaces because there is a flux of particles through them. The rest of the surfaces
are “closed” borders.

will depend on our ability of formulating the boundary conditions at the borders of the active
region of the electron device (see Section 3 for an extent discussion on this point). Since we
will only work with the many-particle open system Hamiltonian (8), in order to simplify the
notation let us simply refer to it as Ĥ.
In the previous paragraphs, the assumption of a series of approximations have make it
possible to go from the complex circuit Hamiltonian described in equation (1), to the much
more simple one describing the “interesting” region of the circuit (8). However, although we
have discussed the many-particle Hamiltonian in terms of the Coulomb force, this approach
is inconvenient to deal with solid-state scenarios with a spatial-dependent permittivity (Javid
& Brown, 1963). For this reason, in what follows we rewrite the many-particle Hamiltonian
(8) in terms of the more generic Poisson equation, which can be applied to systems with a
spatial-dependent permittivity (by simply substituting ε → ε(�r)). We start by rewriting the
previous many-particle open system Hamiltonian (8) as:

H(�r1, ..,�rM,�p1, ..,�pN(t), t) =

N(t)

∑
k=1

{

K(�pk) +
N(t)

∑
j=1
j �=k

e · V(�rk,�rj) +
M

∑
j=N(t)+1

e · V(�rk,�rj)−
1
2

N(t)

∑
j=1
j �=k

e · V(�rk,�rj)

}

. (9)

Each term V(�rk ,�rj) that appears in (9) can be explicitly obtained from a Poisson (or Laplace)
equation inside the volume Ω. Using the superposition property of the Poisson equation, we
can rewrite (9) as:

H(�r1, ..,�rN(t),�p1, ..,�pN(t), t) =

N(t)

∑
k=1

{

K(�pk) + e · Wk(�r1, ..,�rN(t), t)−
1
2

N(t)

∑
j=1
j �=k

e · V(�rk,�rj)

}

, (10)
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where the term Wk(�r1, .,�rk, .,�rN(t)) is a particular solution of the following Poisson equation:

∇2
�rk

(

ε · Wk

(

�r1, ..,�rN(t)

))

= ρk

(

�r1, ..,�rN(t)

)

. (11)

The term ρk

(

�r1, ..,�rN(t)

)

in (11) depends on the position of the first N(t) electrons, i.e.

ρk

(

�r1, .,�rk, .,�rN(t)

)

=
N(t)

∑
j=1
j �=k

e · δ
(

�rk −�rj

)

, (12)

however (12) is independent of the position of the external particles because they only affect
the boundary conditions of (11). Let us notice that there are still terms, V(�rk,�rj), in (10) that
are not computed from the Poisson equations in (11), but from (3). If we compare expressions
(9) and (10), the term Wk(�r1, ..,�rN(t), t) can be rewritten as:

Wk(�r1, ..,�rN(t), t) =
N(t)

∑
j=1
j �=k

V(�rk,�rj) +
M

∑
i=N(t)+1

V(�rk,�ri) (13)

The dependence of Wk(�r1, ..,�rN(t), t) on the positions of the external particles is explicitly
written in the last sum in (13), while in (11) this dependence is hidden in the boundary
conditions of Wk(�r1, .,�rk, .,�rN(t)) on the surface S =

{

S1, S2, ..., S6}. In fact, the boundary
conditions are a delicate issue that we will discuss in the next section 3.

2.2 Comparison between the many-particle and the standard single-particle Monte Carlo

In this sub-section we emphasize the important differences appearing between the standard
MC solution of the BTE, i.e. a time-dependent mean-field algorithm, and our time-dependent
many-particle algorithm, i.e. a generalization of the previous single-particle formulation.
With this aim in mind, let us first introduce the mean-field version of expression (10).
As described in the introduction of this chapter, the mean-field approximation provides a
single average potential for computing the dynamics of all electrons. This average potential,
that we label here with the suffix “mean”, W̄mean(�r, t), is still capable of preserving most of the
collective effects of the Coulomb interaction. The term W̄mean(�r, t) is computed by taking into
account all charges inside the volume Ω. However, since one particle can not “feel” its own
charge, W̄mean(�r, t) can be interpreted as the electrostatic potential “seen” by an additional
probe charge whose position is�r, i.e.

W̄mean(�r, t) = W̄M+1(�r1[t], ..,�rN(t)[t],�r), (14)

where W̄mean(�r, t) is a solution of a unique 3D-Poisson equation:

∇2
�r W̄mean(�r, t) = ρ̄mean (�r, t) , (15)
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and the charge density is defined as:

ρ̄mean (�r, t) =
N(t)

∑
j=1

qjδ
(

�r −�rj[t]
)

, (16)

Now, it can be shown that the error of the time-dependent mean-field approximation,
Errork (�r, t) = W̄mean (�r, t)− Wk (�r, t), is (Albareda, Suñé & Oriols, 2009):

Errork (�r, t) =
1

N(t)

N(t)

∑
j=1

{(

W̄j (�r, t) − W̄k (�r, t)
)

+ V(�r,�rj[t])
}

= V(�r,�rk[t]), (17)

Expression (17) shows that Errork (�r, t) → ∞, when �r → �rk[t]. The above mean-field
approximation implies that the potential “felt” by the k-particle at�r →�rk[t] is its own potential
profile. In fact, from a numerical point of view, the use of the mean-field approximation is not
so bad. For example, classical simulators uses 3D meshes with cell sizes of a few nanometers,
DX ≈ DY ≈ DZ ≫ 10 nm. Then, the error of the mean-field approximation is smaller than
the technical error (i.e. mesh error) due to the finite size of the cells. The long range Coulomb
interaction is well captured with the mean-field approximation, while this approximation
is a really bad strategy to capture the short range Coulomb interaction. Finally, let us
remark another important point about the mean-field approximation. Looking to the final
expression (17), rewritten here as Wk (�r, t) = W̄mean (�r, t) − V(�r,�rk[t]), it seems that Wk (�r, t)
can be computed from a unique mean-field solution of the Poisson equation W̄mean (�r, t) when
subtracting the appropriate two-particle potential V(�r,�rk[t]). However, such an strategy is not
as general as our procedure because it requires an analytical expression for the two-particle
Coulomb interaction V(�r,�rk[t]). The analytical expression of V(�r,�rk[t]) written in expression
(3) is only valid for scenarios with homogenous permittivity. On the contrary, our procedure
with N(t) electrostatic potentials computed from N(t) different Poisson equations in a limited
3D volume Ω can be applied inside general scenarios with spatial dependent permittivity.

2.2.1 Simulation of a two-electron system

In order to clarify the above discussion, let us consider one electron (labeled as 1-electron)
injected from the source surface, S4, at an arbitrary position (see Fig. 2). A second electron is
injected from the drain surface, S1 (see Fig. 2). A battery provides an external voltage equal
to zero at the drain and source surface. A 3D cubic system with a volume of Ω = (20 nm)3

is considered as the active device region. We consider Silicon parameters for the numerical
simulation. Within the mean-field approximation only the potential profile W̄mean(�r, t) is
calculated for the two-electron system using expressions (14)-(16). Then, we realize from
figure 3 that each electron can be reflected by an artificial alteration of the potential profile
related to its own charge. In figures 4 and 5 we have plotted the energy potential profile
“seen” by the 1-electron, W̄1(�r1, t), and by the 2-electron, W̄2(�r2, t), using the many-particle
algorithm described in expressions (25)-(28). Electrons are not longer affected by their own
charge. We clearly see that, within the mean-field approximation, electrons could even be
unable to overcome the large potential barrier that appears at their own position (due to their
own charge). In addition, these simple results confirm that the mean-field error is equal to
expression (17), i.e. the error of the mean-field potential profile at each position of the active
region is Errork (�r, t) = V(�r,�rk [t]).
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Fig. 3. Potential energy profile W̄mean(�r, t) computed with a 3D Poison solver using the
classical “mean-field” approximation on the plane X-Y of the active region Ω = (20 nm)3 at
z=6nm at 0.4 fs. The solid points are electron positions. Reprinted with permission from G.
Albareda et al., Phys. Rev. B. 79, 075315 (2009). ©Copyright 2009, American Physical Society.

Fig. 4. Potential energy profile of the 1-electron, W̄1(�r1, t), with the “many-electron”
algorithm in the plane X-Y of the active region Ω = (20 nm)3 at z=6nm at 0.4 fs. The solid
point is the 1-electron position. Reprinted with permission from G. Albareda et al., Phys.
Rev. B. 79, 075315 (2009). ©Copyright 2009, American Physical Society.

Finally, a discussion about the role of the spatial mesh used for the numerical solution of the
Poisson equation is relevant. For an electron device with a length of hundreds of nanometers,
we need a mesh of the 3D active region with spatial step DX ∼ DY ∼ DZ > 10 nm to deal
with no more than one thousand nodes in the numerical solution of the Poisson equation.
This computational limitation in the resolution of the potential is present either when solving
the mean-field or the many-electron algorithm. With such spatial resolution, the short-range
interaction is missing in both procedures because two electrons inside the same spatial cell will
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Fig. 5. Potential energy profile of the 2-electron, W̄2(�r2, t), with the “many-electron”
algorithm in the plane X-Y of the active region Ω = (20 nm)3 at z=6nm at 0.4 fs. The solid
point is the 1-electron position. Reprinted with permission from G. Albareda et al., Phys.
Rev. B. 79, 075315 (2009). ©Copyright 2009, American Physical Society.

not repel each other. In addition, the error between both procedures, Errork (�r, t) = V(�r,�r [t]k),
is reduced because the numerical Coulomb potential profile is smoothed due to the low
resolution (i.e. the diameter of the region where V(�r,�r [t]k) has a strong influence is shorter
than the cell dimensions). Therefore, we obtain roughly identical results with both schemes.
On the other hand, for better mesh resolutions (DX = DY = DZ = 2 nm) associated to smaller
devices, the differences between both treatments increase due to the important spurious
auto-reflection effect found in the mean-field trajectory. In summary, when the spatial cells are
large, the mean-field and the many-electron schemes correctly model the long-range Coulomb
interaction, but both neglect the short-range component. On the contrary, with smaller spatial
steps DX ∼ DY ∼ DZ < 5 nm, the many-electron resolution takes into account long-
and short- range Coulomb interaction correctly, whereas the description of the short-range
component within the mean-field approximation is completely incorrect (i.e. electrons are
repelled by themselves). In other words, when DX, DY, DZ → 0 the mesh error in our
many-electron algorithm reduces to zero, while the error in the mean-field approach tends to
infinite, Errork (�r, t) → ∞.

3. Boundary conditions for the many-particle open system Hamiltonian

Let us now move back to the expressions defining our transport problem, i.e. (10), (11) and
(12). In order to self-consistently solve electron dynamics in our open system, we need the
solutions of the Poisson equations (11). In this regard, the boundary conditions of the N(t)
terms Wk(�r1, .,�rk, .,�rN(t)) in (13) must be specified on the border surfaces S =

{

S1, S2, ..., S6}

of figure 2. Such boundary conditions will provide valuable information on the electrostatic
effect that the electrons plus the impurities outside have on the electrons inside Ω.
In practical situations, the volume Ω describes the active region of some kind of electron
device (a MOSFET for instance). In order to discuss our boundary conditions algorithm, we
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assume here a two-terminal device (source and drain)3. This means that only two, S1 and S4

, of the six border surfaces S =
{

S1, S2, ..., S6} are really opened to the flow of carriers (see
figure 6). These opened surfaces represent a complicate problem of boundary conditions that
will be discussed in detail in this section (see also Ref. Albareda, López, Cartoixà, Suñé &
Oriols, 2010)4 .

Fig. 6. Schematic representation of the volume Ω = Lx · Ly · Lz representing a two terminal
device. Only S1 and S4, corresponding to the drain and source surfaces respectively, are
opened to electron flow. On the rest of surfaces standard Neumann boundary conditions are
assumed.

3.1 On the importance of boundary conditions

In order to correctly model the DC and/or AC conductance of nanoscale systems, one has to
assure the accomplishment of “overall charge neutrality” and “current conservation” (Blanter
& Büttiker, 2000; Landauer, 1992). As we have mentioned, the implementation of such
requirements into modern nanoscale electron simulators demands some kind of reasonable
approximation for the Coulomb interaction.
In general, modern electron transport simulators do include reasonable approximations
for the coulomb interactions that can guarantee the accomplishment of the “overall
charge neutrality” requirement. In addition, those simulators that are developed
within a time-dependent or frequency-dependent framework can also assure the “current
conservation” requirement. However, the treatment of many-particle electron transport can
only be applied to a very limited number of degrees of freedom. In fact, due to computational
restrictions, a small simulation box is a mandatory requirement in modern MC simulators.
This restriction implies that either very short leads (with screening length of few Armstrongs)
are included into the small simulation box, or the leads are directly excluded from the
simulation box. The first solution is only acceptable for metallic leads (Brandbyge et al., 2002;

3 In any case, the boundary conditions can be straightforwardly adapted to multi-terminal systems with
an arbitrary number of “opened” borders.

4 On the “closed” non-metallic surfaces 5, Neumann boundary conditions are used with the educated
guess that the component of the electric field normal to that surfaces is zero. The continuity of the
displacement vector normal to surfaces justifies this assumption on “closed” (i.e. no electrons traversing
the surfaces) boundaries when the relative permittivity inside is much higher than the corresponding
value outside. On “open” metallic surfaces, we use a many-particle version of the standard Dirichlet
boundary conditions (Albareda, Suñé & Oriols, 2009)
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Taylor et al., 2001) close to equilibrium, but it becomes inappropriate in general scenarios
ranging from highly doped poly-silicon leads (with screening length of few nanometres) till
modern juntionless devices (Collinge, 2010). In far-from equilibrium conditions (i.e. high
bias conditions), the standard screening lengths have to be complemented by an additional
depletion length in the leads. The second solution (neglecting the leads) implies serious
difficulties for the achievement of “overall charge neutrality”. In any case, a possible
inaccuracy in the computation of the “overall charge neutrality” affects our ability to treat
the time-dependent Coulomb correlation among electrons and, therefore, the requirement
of “current conservation”. In conclusion, due to computational difficulties, modern electron
transport simulators have to be implemented in small simulation boxes that imply important
difficulties for providing accurate simulations of the DC or AC conductances of nanoscale
devices.
In principle, the problem of excluding the leads from the simulation box, while retaining
the lead-sample Coulomb correlation, can be solvable by providing adequate boundary
conditions on each of the “opened” borders of the simulation box. However, such boundary
conditions are not easily predictable. The standard boundary conditions found in the
literature for nanoscale electron device simulators are based on specifying two conditions in
each of the borders of the simulation box:

(Border-potential-BC).- The value of the scalar potential (or electric field) at the borders
of the simulation box has to be specified. This condition is a direct consequence of
the uniqueness theorem for the Poisson equation (Javid & Brown, 1963) which tells that
such condition are enough to completely specify the solution of Poisson equation, when
the charge inside the simulation box is perfectly determined (the reason for discarding
the electromagnetic vector potential in nansocale systems is discussed in Ref. Albareda,
López, Cartoixà, Suñé & Oriols, 2010).

(Border-charge-BC).- Contrarily to what is needed for the uniqueness solution of the
Poisson equation, the charge density inside the simulation box is uncertain because it
depends on the electron injected from the borders of the simulation box. Therefore,
any boundary condition algorithm has to include the information on the charge in
the borders as an additional condition. In many cases, the electron injected on
the borders depends, somehow, on the scalar potential there determined by the
“Border-potential-BC” (and a fixed electrochemical potential). Therefore, a coupled
system of boundary conditions appears.

Educated guesses for both boundary conditions (“Border-potential-BC” and
“Border-charge-BC”) are present in the literature when describing nanoscale electron
devices with simulation boxes large enough to include the leads. However, such boundary
conditions are not applicable for small simulation boxes that exclude the leads. Here, we
present a novel self-consistent and time-dependent definition of the boundary conditions for
small simulation boxes (excluding most of the leads) that is able to capture the lead-sample
Coulomb correlations (Albareda, López, Cartoixà, Suñé & Oriols, 2010).

3.2 Time-dependent boundary-conditions at the borders of the sample for overall charge

neutrality

As explained in the previous paragraphs, all boundary condition of electrons transport
simulators are based on specifying the value of the scalar potential (or the electric field) in the
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borders and the charge density there. Therefore, according to the labels of figure 7, we have
to specify the values VS(t) and VD(t) for the “Border-potential-BC”, and ρS(t) and ρS(t) for
the “Border-charge-BC”. Unfortunately, it is very difficult to provide an educated guess of the

Fig. 7. Schematic description of the different parts of the electron device. In Ref. Albareda,
López, Cartoixà, Suñé & Oriols, 2010, an analytical parametric 1D solution is deduced for the
(blue) dashed region, while a numerical 3D solution is obtained in the (yellow) solid central
region defined as the simulation box. Subsets refer to schematic representation of the (a)
scalar potential, (b) electric field, (c) total charge density and (d) doping density. Reprinted
with permission from G. Albareda et al., Phys. Rev. B. 79, 075315 (2009). ©Copyright 2009,
American Physical Society.

scalar potential, the electric field or the charge density on the borders of a small simulation
box that excludes the leads. For large simulation boxes, one can assume a known value of
the electrochemical potential (deep inside the reservoir) that controls the electron injection.
However, close to the active region, where there exists a far from equilibrium momentum
distribution, the prediction of any value of the electrochemical potential is quiet inappropriate.
From the results in Ref. Albareda, López, Cartoixà, Suñé & Oriols, 2010, we are able to
translate the “Border-potential-BC” and “Border-charge-BC” discussed in section 3.1, for the
borders of a small simulation box into simpler conditions deep inside the reservoirs. This is
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the key point of our boundary conditions algorithm. In particular, the two new boundary
conditions that we will impose at the limits of the simulation box, x = ∓LC are (see Fig. 7):

“Deep-drift-BC”: We assume that the inelastic scattering mechanisms at, both, the
source x ≤ −LC and the drain x ≥ LC reservoirs provides a non-equilibrium
position-independent “thermal” distribution of electrons there (it is implicitly assumed
that the contact length LC is large enough and the temperature Θ high enough so that
inelastic scattering is relevant there). Such position-independent electron distribution
is consistent with the “local” charge neutrality that implies a uniform electric field
there. According to the Drude’s model, the electric fields there tend both to EC

S/D(t) →

E
dri f t
S/D (t) [see expressions (11) and (12) of Ref. Albareda, López, Cartoixà, Suñé & Oriols,

2010].

“Deep-potentail-BC”: We assume that electro-chemical potentials can be defined for
the “thermal” distribution deep inside both reservoirs. As a consequence of the
previous position-independent electron distribution deep inside the reservoirs, we can
assume that the energy separation between such electro-chemical potential level and
the bottom of the conduction band, in the drain and source reservoirs (at x = ∓LC)
are equal. Therefore, the energy separation between the bottoms of the conduction
bands at both reservoirs (which coincides with the separation of the electrochemical
potentials) is equal to the difference of the external voltages. Thus, VC

S (t) = 0 and
VC

D (t) = Vexternal(t).

These two conditions, “Deep-drift-BC” and “Deep-potential-BC” are quite reasonable deep
inside the reservoirs. In fact, it can be shown that the numerical MC solution of the
non-equilibrium BTE in a large simulation box provides exactly these results in the reservoirs
(see Ref. Albareda, López, Cartoixà, Suñé & Oriols, 2010).
In order to translate the above “deep” boundary conditions into practical considerations on
the simulation box borders, our algorithm couples the charge density, the electric field and
the scalar potential to the injection model by taking into account the electrostatic interaction
among the electrons within the active region and those in the leads (see Ref. Albareda, López,
Cartoixà, Suñé & Oriols, 2010). Following this strategy, the amount of charge on the whole
circuit can be set to zero, and thus “overall charge neutrality” and “current conservation”
requirements are accomplished. The main approximation used to obtain the previous results
is Drude’s law. Thus, our time-dependent boundary condition algorithm is only valid for
frequencies below the inverse of the average electron scattering time (see Ref. Albareda,
López, Cartoixà, Suñé & Oriols, 2010). In good reservoirs such frequencies are much higher
than the THz range, which is high enough for most practical electronic applications.
The formulation of the previous boundary conditions, however, corresponds to a
single-particle system. That is, we assume that all electrons are subjected to the same
boundary conditions. Again, this is a simplification of the real many-particle problem. As
we have shown in the previous section (see equations (10), (11) and (11)), every single electron
“sees” its own electrostatic potential, electric field and charge distribution. Consequently, each
electron should see its own boundary conditions. In the next section we extent these boundary
conditions to a many-particle ones.
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3.3 Extension of the boundary conditions to many-particle Hamiltonians

In the previous subsection we have presented a unique set of time-dependent boundary
conditions for all electrons to account for overall charge neutrality and current conservation.
Here we extent such results to a many-particle level where each electron has its own boundary
conditions. Let us recall, that we are looking for solutions of the N(t) Poisson equations (11).
Thus, we need to specify N(t) boundary conditions on the two opened border surfaces S1 and
S4 (see figure 6) for the N(t) terms Wk(�r1, .,�rk, .,�rN(t)).
In order to provide a clear notation for discussing the boundary conditions of
Wk(�r1, ...,�rk, ...,�rN(t)), we distinguish between the “source” vectors {�r1, ...,�rk−1,�rk+1, ...,�rN(t)}
and the additional “observation” vector�r that runs over all space (Javid & Brown, 1963). In
particular, the electrostatic potential that appears in the Hamiltonian (9) is defined as the value
of the potential Wk(�r1, ...,�rk−1,�r,�rk+1, ...,�rN(t), t) at the particular position�r =�rk:

Wk(�r1, ..�rk−1,�rk,�rk+1.,�rN(t), t) = Wk(�r1, ..�rk−1,�r,�rk+1.,�rN(t), t)
∣

∣

∣

�r=�rk

(18)

Our goal is to find an educated guess for all the N(t) terms Wk(�r1, ..�rk−1,�r,�rk+1.,�rN(t), t) at
all “observation” points �r = �rS and �r = �rD on the surfaces S1 and S4. The information
of such boundary conditions comes from the value of the total voltage (due to internal and
external electrons) at position�rS/D and time t, that can be defined as the electrostatic potential
associated to an additional probe charge qM+1 situated on that boundary, �rS/D ≡ �rM+1 ∈
S4/1. This potential can be then identified with the voltages VS/D(t) defined in the previous
subsection (see fig. 8), i.e.

VS/D(t) ≡
M

∑
j=1

V(�rM+1,�rj)
∣

∣

∣

�rM+1=�rS/D

(19)

where the expected restriction j �= M + 1 is hidden in the limit of the sum. Once the
relationship (19) is established, we can easily define the boundary conditions of any of the

N(t) electrostatic potential Wk

(

�r1, .,�r, .,�rN(t)

)

from the function VS/D(t). In particular, from
(13), we know that:

Wk(�r1, ..�rk−1,�r,�rk+1.,�rN(t), t)
∣

∣

∣

�r=�rS/D

=
M

∑
j=1
j �=k

V(�rS/D,�rj) = VS/D(t)− V(�rS/D,�rk)

; l = 1, ..., 6 (20)

where V(�rS/D,�rk) is defined according to (3).

4. Monte Carlo solution of the many-particle open system Hamiltonian

Once we have introduced the many-particle open system Hamiltonian and its boundary
conditions, we are ready to solve the electron transport problem. The classical description
of the particle dynamics subjected to the many-particle Hamiltonian (10) can be computed
by using the well-known Hamilton equations. In particular, we can obtain the (Newton like)
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Fig. 8. The electrostatic potential VD(t) (due to internal and external electrons) measured on
the surface S1 at position�rD and time t by an additional probe charge qM+1 situated on the
boundary�rD ≡�rM+1 ∈ S1.

description of the classical trajectory�ri[t] in the real space through:

d�pi[t]

dt
=

[

−∇�ri
H(�r1, ..,�rN(t),�p1, ..,�pN(t), t)

]

�r1=�r1[t],..,�pN(t)=�pN(t)[t]
, (21a)

d�ri[t]

dt
=

[

∇�pi
H(�r1, ..,�rN(t),�p1, ..,�pN(t), t)

]

�r1=�r1[t],..,�pN(t)=�pN(t)[t]
. (21b)

For the many-particle Hamiltonian studied here, expression (21b) gives the trivial result m ·
�vi[t] = �pi[t], while the evaluation of expression (21a) requires a more detailed development.
We know that the�ri-gradient of the exact many-particle Hamiltonian (10) can be written as:

[

∇�ri
H

]

�R=�R[t] =

[

∇�ri

N(t)

∑
k=1

{

e · Wk(�r1, ..,�rN(t), t)−
1
2

N(t)

∑
j=1
j �=k

e · V(�rk,�rj)

}]

�R=�R[t]

. (22)

We define the multi-dimensional vector �R =
(

�r1, ...,�rN(t)

)

to account, in a compact way, for

the classical trajectories of N(t) electrons �R[t] =
(

�r1[t], ...,�rN(t)[t]
)

. Substituting the definition

of Wk(�r1, ..,�rN(t), t) of expression (13) into equation (22), we find:

[

∇�ri
H

]

�R=�R[t]
=

[

∇�ri

{

2
N(t)

∑
j=1
j �=i

eV(�rj,�ri) +
M

∑
j=N(t)+1

eV(�rj,�ri)

}

−∇�ri

N(t)

∑
j=1
j �=i

e · V(�rj,�ri)

]

�R=�R[t]

. (23)

Now, from expressions (13) and (23), we realize that:

[

∇�ri
H

]

�R=�R[t] =
[

∇�ri
Wi(�r1, ..,�rN(t))

]

�R=�R[t]
. (24)

Only the term Wi(�r1, ..,�rN(t)) of the whole Hamiltonian (10) becomes relevant for a classical
description of the i-particle. In fact, since we only evaluate a�ri-gradient, the rest of particle
positions can be evaluated at their particular value at time t, i.e. �rk → �rk[t] for all k �= i.
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Therefore, we define the single-particle potential W̄i(�ri, t) from the many-particle potential as:

W̄i(�ri, t) = Wi(�r1[t], .,�ri−1[t],�ri,�ri+1[t], .,�rN(t)[t]). (25)

We use a “hat” to differentiate the (time-dependent) single-particle electrostatic potential from
the many-particle potential. Each i-term of the single-particle electrostatic potential, W̄i(�ri, t),
is a solution of one particular 3D-Poisson equation:

∇2
�ri

(ε(�ri) · W̄i (�ri, t)) = ρ̄i (�ri, t) , (26)

where the single-particle charge density is defined as:

ρ̄i (�ri, t) =
N(t)

∑
j=1
j �=i

eδ̇
(

�ri −�rj[t]
)

, (27)

and the boundary conditions are adapted here as:

W̄i (�ri, t)
∣

∣

�ri=�rS/D
= VS/D(t) − V (�rS/D ,�ri[t]) . (28)

Let us remind that expressions (25), (26) and (27) together with the boundary conditions in
(28), provide an exact treatment of the many-particle correlations in classical scenarios. The
N(t) Newton equations are coupled by N(t) Poisson equations. Therefore, the many-particle
Hamiltonian of (10) can be written exactly (without mean-field approximation) as:

H(�r1, ..,�rN(t),�p1, ..,�pN(t), t) =
N(t)

∑
k=1

{

K(�pk) + e · W̄k(�rk, t)
}

. (29)

It is important to recall here that, although electron dynamics within our open system is
deterministically described by the many-particle Hamiltonian (10) supplied with the Hamilton
equations (21), our simulations will be subject to an stochastic injection of electrons describing
how (i.e. in which position, time and momentum) electrons enter the simulated region.
Indeed, our approach to electron transport ultimately constitutes an statistical problem. Due
to computational limitations, we have been forced to reduce the degrees of freedom of our
system. Since we can only describe a very reduced number of variables in a very reduced
region of space (an open system representing the active region of an electron device), we are
obliged to deal with an essentially uncertain environment. The injection process, is then the
responsible of coupling an statistical external environment to our “deterministic” simulation
box, and thus, it is also the main responsible of converting the information that we have
on the dynamics occurring inside the simulation region into something statistical (Albareda,
López, Cartoixà, Suñé & Oriols, 2010). It is in this regard that we can classify our approach
to electron transport as a MC technique. Nonetheless, as we have already announced, our
many-electron method applied to semiclassical devices cannot be considered a solution of
the BTE because the latter is developed at a classical mean-field level. The term W̄k(�rk, t)
in the Hamiltonian of expression (29) means that each particle “sees” its own electrostatic
potential which is different to that of the others. Apart from the scattering rates, this is the
fundamental difference between our “many-electron” method applied to classical transport
and the standard MC solution of the BTE method for electron devices.
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Let us just mention here that the previous algorithm developed to describe classical electron
transport at a many-particle level can be easily generalized to quantum systems by means of
an original formalism based on quantum trajectories (Oriols, 2007; Oriols & Mompart, 2011).
In particular, recent efforts have made it possible to demonstrate the viability to develop
a quantum trajectory-based approach to electron transport with many-particle correlations
(Albareda, 2010; Albareda, López, Cartoixà, Suñé & Oriols, 2010; Albareda, Suñé & Oriols,
2009). We have named this simulator BITLLES.

5. Numerical example: Many-particle transport in the channel of quantum wire

DG-FETs with charged atomistic impurities

Up to now we have been focused mainly on the theoretical aspects of our MC approach to
electron transport. Sections 2, 3 and 4 constitute the keystone pieces for the development
of a versatile simulation tool capable of describing semi-classical electron transport including
Coulomb correlations at a many-particle level. The aim of this section is to present an example
of the capabilities of such a simulator to predict certain relevant aspects of future nanoscale
electron devices. In particular, we want to highlight the importance of accurately accounting
for (time-dependent) Coulomb correlations among (transport) electrons in the analysis of
discrete doping induced fluctuations.
Differences in number and position of dopant atoms in sub-10nm channel devices will
produce important variations on the devices’ microscopic behavior, and consequently,
the variability of macroscopic parameters such as drive current or threshold voltage will
increase. This particular phenomenon is known as discrete dopant induced fluctuations,
and constitutes one of the most reported causes of variations from sample to sample in
electron devices characteristics (coming from the atomistic nature of mater). We study here
the effect of single ionized dopants on the performance of a quantum wire double-gate FET
(QWDG-FET), mainly when its lateral dimensions approach the effective cross section of
the charged impurities. We find that neglecting the (time-dependent) Coulomb correlations
among (transport) electrons can lead to misleading predictions of devices behavior (Albareda,
Saura, Oriols & Suñé, 2010).

Fig. 9. Schematic representation of the quantum wire double gate FET.

5.1 Device Characteristics and Simulation Details

The structure of the simulated QWDG-FET is described in figure 9. Two highly N doped Si
contacts (N+ = 2 · 1019 cm−3) are connected to an intrinsic Si channel with lateral dimensions
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Ly = 5nm and Lz = 2nm. Such dimensions originate quantum confinement in the lateral
directions (a quantum wire), not only reducing the degrees of freedom of the system but
also inducing volume inversion within the channel (Balestra et al., 1987). In this regard,
the electrostatic blockade generated by the ionized dopants is expected to be favored when
impurities are distributed mainly in the center of the channel cross section. At the same time,
the length of the quantum wire is 10nm. This geometry results in a volume of only 100nm3, so
that the number of interacting electrons in the channel is of the order of 10. Under such special
conditions, the importance of the correlation among electrons is expected to be particularly
relevant.
Electron transport in the “x” direction (from source to drain) takes place along a Silicon (100)
oriented channel, at room temperature. In particular, the electron mass is taken according to
the six equivalent ellipsoidal constant energy valleys of the silicon band structure (Jacoboni &
Reggiani, 1983; Oriols et al., 2007). The effective masses of the ellipsoids are m∗

l = 0.9163 m0
and m∗

t = 0.1905 m0 with m0 being the free electron mass (Jacoboni & Reggiani, 1983).
As commented above, the lateral dimensions of the Si channel Lz and Ly are both small
enough, so that the active region behaves as a 1D system and the energy of an electron in one

particular valley is E = h̄2kx/ (2mt) + E
q
1D , where E

q
1D = h̄2π2/

(

2mtL2
y

)

+ h̄2π2/
(

2ml L
2
z

)

represents the minimum energy of the first sub-band, whose value is E
q
1D = 0.182eV for

Lz = 2nm and Ly = 5nm. The energies of the next lowest sub-bands (Eq
1D = 0.418eV or

E
q
1D = 0.489eV) are assumed to be high enough to keep a single band simulation sufficiently

accurate. Therefore, we use a 3D Poisson solver to deal with the device electrostatics, but a
1D algorithm to describe the velocity of each electron in the “x” direction. Due to the lateral
electron confinement, the velocities in “y” and “z” directions are zero6. This is an exact result
for describing electron confinement in the rectangular structure of figure 9 when the e-e and
e-i are not taken into account. The explicit consideration of the effect of e-e and e-i correlations
on the electron confinement (energy levels) is an extremely complicated issue within the
many-particle strategy developed here, which considers one different scalar potential for each
electron. The reader can find more information on the simulation details in Ref. Albareda,
Saura, Oriols & Suñé, 2010.

5.2 Analysis of discrete doping induced fluctuations

In order to highlight the importance of taking into account the time-dependent e-e and e-i
correlations, we will compare some results with those obtained through a single-particle
mean-field approach discussed in Ref. Albareda, Saura, Oriols & Suñé, 2010. In this regard, we
will refer to many-particle results to describe the simulation performed with the algorithms
that require solving N(t) Poisson equations with N(t) charge densities [expressions
(26),(27),(28)] at each time step. Alternatively, we will refer to the time-independent
single-particle approximation to the more simplistic (though usual) approach that consists
in solving a single time-independent Poisson equation [expressions (A1) and (A2) in Ref.
Albareda, Saura, Oriols & Suñé, 2010 for all electrons at each time step of the simulation.

6 We assume that the electron velocity is equal to zero in the lateral directions where there is energy
confinement. This is a reasonable assumption that can be formally justified (see Ref. Oriols, 2007) when
the probability presence in that direction does not change with time. The main approximation here is
assuming that the time dependence of the wave function involves only one quantized energy in the
mentioned direction. We define the geometry of the QWDG-FET to support these approximations.
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Fig. 10. Average drain current at VDrain = 1V as a function of the gate voltage for
positive/negative impurities located at different places along the channel. Reprinted with
permission from G. Albareda et al., J. Appl. Phys. 108, 043706 (2010). ©Copyright 2010,
American Institute of Physics.

Let us start the discussion with the study of threshold voltage (VT) fluctuations, a well known
effect related to discrete doping induced fluctuations in MOSFETs (Asenov, 1999; Asenov
et al., 2003; Gross et al., 2002; Millar et al., 2008; Reid et al., 2009; Vasileska & Ahmed, 2005). We
first analyze this phenomenon in the QWDG-FET for both positive and negative impurities.
Fig. 10 shows the value of the mean current as a function of the applied gate voltage (transfer
characteristic) in the saturation region (VDrain = 1V). While negative ions induce a shift of
the threshold voltage towards higher values, positively charged impurities shift it down to
lower values. The explanation of such a behavior is quite simple. Since the majority carriers
are electrons, positive charged impurities introduce a potential well that favors the flow of
the current, while negative impurities appear as potential barriers which tend to block the
transmission of electrons. A dependence of the saturation threshold voltage on the position
of the impurities along the channel can also be observed. As a negative (positive) dopant is
displaced from drain to source, the threshold voltage is increased (decreased) in a non-linear
way due to an increment of the height (depth) of the induced potential deformation that is
less and less masked by the applied drain voltage (Albareda, Saura, Oriols & Suñé, 2010).
Next, we show how negative dopants placed in the channel of a QWDG-FET induce
significant changes in the spatial distribution of the current-density across the channel section.
We consider the steady state current corresponding to a fixed bias point (VGate = 0V ; VDrain =
0.5V) and analyze the spatial distribution of the current in the channel cross section. Since we
deal with a confined electron system under stationary conditions, the continuity equation
reduces to �∇Jx = 0 and consequently the spatial distribution of the current-density, Jx , is the
same in any section along the transistor channel. In figure 11 we present the current-density
distribution when a negative impurity is located at the source-channel interface. As it can be
observed, the potential barrier produced by the dopant induces an important deformation
of the spatial current density distribution, pushing carriers away from its location. This
is a common result to both single- and a many-particle treatment of electron transport.
However, differences on the magnitude of the current-density between Fig. 11.a) and Fig.
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Fig. 11. Current density across the channel section when the negative impurity is placed at
the center of the channel length. In a) the results correspond to a many-particle treatment of
the system. In b) the results have been computed within a single-particle mean-field
approach discussed in Ref. (Albareda, Saura, Oriols & Suñé, 2010). Reprinted with
permission from G. Albareda et al., J. Appl. Phys. 108, 043706 (2010). ©Copyright 2010,
American Institute of Physics.

11.b) are only attributable to fundamental differences among both treatments. Although
from a single-particle point of view, a one-by-one electron energy conservation must be
accomplished, many-particle transport implies a much looser restriction on the energy of the
carriers.

Fig. 12. Spatial distribution of the transit times along the y direction (centred in z) when a
negatively charged impurity is placed at different places of the channel. Reprinted with
permission from G. Albareda et al., J. Appl. Phys. 108, 043706 (2010). ©Copyright 2010,
American Institute of Physics.
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In figure 12 we represent the distribution of the transit times along the y (centered in z)
direction. If all the traversing carriers had the same total energy, one would expect to find the
largest transit times concentrated around the impurity location, where the potential barrier
is higher (see Fig. 12). Nevertheless, since the injected carriers are energetically spread
according to Fermi statistics, only the fastest electrons (the most energetic ones) are able
to achieve the drain contact across the top of the barrier. Therefore, a minimum of the
transit time is found at the location of the impurity atom. When the dopant is placed at
the source-channel interface, the largest transit times appear away from the impurity and
the minimum above the dopant becomes absolute. Although both, single- and many-particle
simulations give similar overall results in this case, some discrepancies can be appreciated
due to an energy exchange among the different regions of the channel. When the impurity is
placed in the center of the channel, the transit times increase drastically up to 60 fs. Although
the shape of the scalar potential is the responsible of the important increment in both the
single-particle and the many-particle transit times results, electron-electron interactions play
a crucial role in explaining the important differences between these two treatments. Since
the spatial integral of the many-particle averaged transit times along the y and z directions
diverges significantly from its single-particle counterpart, it can be inferred that the exchange
of energy is produced not only among the electrons crossing the channel but also between
them and those being backscattered (Albareda, Saura, Oriols & Suñé, 2010). Indeed, if the
energy transfer would only involve electrons crossing the device, their total energy would
remain unchanged, and thus their averaged transit time would be identical to that found
for the single-particle approach. On the contrary, the mixture of energy exchange among
the traversing electrons and among traversing and backscattered electrons give rise to a non
conserving averaged transit time.

6. Conclusions

In this chapter we have presented a semi-classical MC approach to electron transport at
the nanoscale without assuming any mean-field or perturbative approximation to describe
the Coulomb interaction among transport electrons. Sections 2, 3 and 4 constitute the
theoretical core of our semi-classical MC approach. In section 2, a many-particle Hamiltonian
for N(t) electrons inside an open system has been developed. Departing from the exact
Hamiltonian of a whole closed circuit, using a single-band effective mass approximation we
are capable of developing a many-particle Hamiltonian (10) constituted by a sum of N(t)
electrostatic potentials, Wk(�r1, .,�rk, .,�rN(t)), solution of N(t) different Poisson equations (11).
In section 3, we have presented a novel boundary conditions algorithm capable of describing
the Coulomb correlations among electrons inside and outside the open system without
significantly increasing the simulated degrees of freedom. In terms of analytical expressions
describing the charge density, the electric field and the scalar potential along the leads and
reservoirs, we can transfer the assumptions about the boundary conditions at the borders of a
small simulation boxes into the simpler specifications of the boundary conditions deep inside
the reservoirs. Our boundary conditions algorithm is able to discuss far from equilibrium
situations where depletion lengths in the leads have to be added to standard screening.
More over, the frequency-dependent correlations included into our boundary conditions
algorithm, due to sample-lead Coulomb interaction, allow us to investigate the computation
of (zero-frequency and high-frequency) current fluctuations beyond the standard external
zero impedance assumption (i.e. most of the computations of current fluctuations in
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electron devices assume that the voltage applied in the simulation box is a non-fluctuating
quantity). In section 4, we have presented a classical solution of the many-particle open
system Hamiltonian supplied with our many-particle boundary conditions. The solution
is obtained via a coupled system of Newton-like equations with a different electric field
for each particle, and constitutes a many-particle generalization of the MC solution of the
semi-classical single-particle Boltzmann distribution. In the last section, our many-particle
approach to electron transport has been applied to predict the behavior of some characteristics
of a QWDG-FET under the presence of discrete impurities. We have revealed the significant
impact of the sign and position of the impurity along the transistor channel on the threshold
voltage, but more importantly, a comparison with more standard simulations which assume a
time-independent mean-field approximation has allowed us to highlight the importance of an
accurate treatment of the e-e interactions in the study of discrete doping induced fluctuations
in nanometer scale devices. Finally, let us emphasize that many efforts are being devoted
in the literature to improve the treatment of electron (and electron-atom) correlations on the
description of the band structure of nanoscale devices (i.e. the ground-state at equilibrium
conditions). Contrarily, in this work we open a new path to study the effects of electron (and
electron-impurity) correlations in the current measured in nanoscale electron devices under
(applied bias) far from equilibrium conditions.
Finally, let us mention that the presented technique can be also extended to describe quantum
transport by means of bohmian trajectories (Alarcon & Oriols, 2009; Albareda, 2010; Albareda,
López, Cartoixà, Suñé & Oriols, 2010; Albareda, Suñé & Oriols, 2009; Oriols, 2007). In this
regard, a versatile (classical and quantum) many-particle approach to electron transport,
called BITLLES, capable of reproducing DC, AC and noise performance in quantum scenarios
has been already developed (Albareda, 2010; Oriols & Mompart, 2011).
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