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1. Introduction 

As new technological achievements take place in the robotic hardware field, an increased 
level of intelligence is required as well. The most fundamental intelligent task for a mobile 
robot is the ability to plan a valid path from its initial to terminal configurations while 
avoiding all obstacles located on its way. 
The robot motion planning problem came into existence in early 70’s and evolved to a vast 
and active research discipline as it is today. Numerous solution methods have been 
developed for robot motion planning since then, many of them being variations of a few 
general approaches: Roadmap, Cell Decomposition, Potential Fields, mathematical 
programming, and heuristic methods. Most classes of motion planning problems can be 
solved using these approaches, which are broadly surveyed in (Latombe, 1991), (Hwang & 
Ahuja, 1992), and (Choset et al., 2005).  
This chapter introduces two new offline path planning models which are founded on the 
Roadmap and Potential Fields classic motion planning approaches. These approaches have 
their unique characteristics and strategies for solving motion planning problems. In fact, 
each one has its own advantage that excels others in certain aspects. For instance, the 
Visibility Graph yields the shortest path; but its computational time exceeds other methods. 
Or, while the Voronoi Diagram plans the safest path and is easy to calculate in 2D, it often 
produces overly lengthy paths, and yields poor results in higher space dimensions. On the 
other hand, Potential Fields are easy to compute and are suitable for high dimensional 
problems, but they suffer from the local minima problem, and the oscillating paths 
generated near narrow passages of configuration space reduce their efficiency. A brief 
review on these underlying methods is given in this section. 
In order to benefit from the strong aspects of these classic path planning methods and 
compensate their drawbacks, a policy of combining these basic approaches into single 
architectures is adopted. In devising the new planners it is intended to aggregate the 
superiorities of these methods and work out efficient and reliable composite algorithms for 
robot motion planning. 

1.1 Roadmap Methods 

The Roadmap approach involves retracting or reducing the robot’s free Configuration space 
(Cfree) onto a network of one-dimensional lines (i.e. a graph). Motion planning is then 
reduced to a graph-searching problem. At first, two paths are constructed from the start and 

Source: Mobile Robots: Perception & Navigation, Book edited by: Sascha Kolski, ISBN 3-86611-283-1, pp. 704, February 2007, Plv/ARS, Germany Open Access Database www.i-techonline.com
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goal positions to the roadmap, one for each. Then a path is planned between these points on 
the roadmap. The correctness of the solution strongly depends on the connectivity of the 
roadmap representing the entire C-space. If the roadmap does not represent the entire C-
space, a solution path may be missed. 
The Visibility Graph is the collection of lines in the free space that connects a feature of an 
object to that of another. In its principal form, these features are vertices of polygonal 
obstacles, and there are O(n2) edges in the visibility graph, which can be constructed in 
O(n2) time and space in 2D, where n is the number of features (Hwang & Ahuja, 1992). 
The Reduced Generalized Visibility Graph can be constructed in O(n3) time and its search 
performed in O(n2) time. The shortest path can be found in O(n2logn) time using the A* 
algorithm with the Euclidean distance to the goal as the heuristic function (Latombe, 1991). 
Works such as (Oommen et al., 1987) and (Yeung & Bekey, 1987) have employed this 
approach for path planning.
The Voronoi Diagram is defined as the set of points that are equidistant from two or more 
object features. Let the set of input features be denoted as s1, s2, …, sn. For each feature si, a 
distance function Di(x) = Dist(si, x) is defined. Then the Voronoi region of si is the set Vi = {x|

Di(x) Dj(x) ∀ j ≠ i }. The Voronoi diagram partitions the space into such regions. When the 

edges of convex obstacles are taken as features and the C-space is in ℜ2, The Voronoi 
diagram of the Cfree consists of a finite collection of straight line segments and parabolic 
curve segments, referred to as Medial Axis, or more often, Generalized Voronoi Diagram
(GVD).

In an ℜk space, the k-equidistant face is the set of points equidistant to objects C1, ..., Ck such 
that each point is closer to objects C1, ..., Ck than any other object. The Generalized Voronoi 
Graph (GVG) is the collection of m-equidistant faces (i.e. generalized Voronoi edges) and 
m+1-equidistant faces (i.e. generalized Voronoi vertices, or, meet points). The GVD is the 
locus of points equidistant to two obstacles, whereas the GVG is the locus of points 

equidistant to m obstacles. Therefore, in ℜm, the GVD is m–1-dimensional, and the GVG, 1-
dimensional. In planar case, the GVG and GVD coincide (Aurenhammer & Klein, 2000). 

The Voronoi diagram is attractive in two respects: there are only O(n) edges in the Voronoi 

diagram, and it can be efficiently constructed in (nlogn) time, where n is the number of 

features. The Voronoi diagram can be searched for the shortest path in O(n2) time by using 

the Dijkstra’s method. Another advantage of Voronoi method is the fact that the object’s 

initial connectedness is directly transferred to the diagram (Hwang & Ahuja, 1992). In 

(Canny, 1985) and (Choset & Burdick, 2000) the Voronoi diagram is used for planning robot 

paths.

For higher-dimensional spaces than 2D, both the Visibility graph and the Voronoi diagram 

have higher complexities, and it is not obvious what to select for the features. For example, 

the Voronoi diagram among polyhedra is a collection of 2D faces, which is not a 1D 

roadmap (Agarwal et al., 1998). 
The Silhouette method has been developed at early stages of the motion planning discipline, 
and is complex to implement. Its time complexity is in O(2m), where m is the dimension of 
the C-space, and is mostly used in theoretical algorithms analyzing complexity, rather than 
developing practical algorithms. A path found from the silhouette curves makes the robot 
slide along obstacle boundaries (Canny, 1988). 
Probabilistic Roadmaps use randomization to construct a graph in C-space. Roadmap nodes 
correspond to collision-free configurations of the robot. Two nodes are connected by an 
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edge if a path between the two corresponding configurations can be found by a ‘local 
planning’ method. Queries are processed by connecting the initial and goal configurations 
to the roadmap, and then finding a path in the roadmap between these two connection 
points (Kavraki et al., 1996). 

1.2 The Potential Fields Method 

A robot in Potential Fields method is treated as a point represented in configuration space, 
and as a particle under the influence of an artificial potential field U whose local variations 
reflect the ‘structure’ of the free space (Khatib, 1986). In order to make the robot attracted 
toward its goal configuration while being repulsed from the obstacles, U is constructed as 
the sum of two elementary potential functions; attractive potential associated with the goal 
configuration qgoal and repulsive potential associated with the C-obstacle region. Motion 
planning is performed in an iterative fashion. At each iteration, the artificial force induced 
by the potential function at the current configuration is regarded as the most appropriate 
direction of motion, and path planning proceeds along this direction by some increment. 
The most serious problem with the Potential Fields method is the presence of local minima 
caused by the interaction of attractive and repulsive potentials, which results in a cyclic 
motion. The routine method for getting free is to take a random step outwards the 
minimum well. Other drawbacks are (Koren & Borenstein, 1991): 

- No passage between closely spaced obstacles. 
- Oscillations in the presence of obstacles or in narrow passages. 
- Non-smooth movements of the robot when trying to extricate from a local 

minimum. 
- Overlapping of different obstacles’ repulsive potentials when they are adjacent to 

each other. 
- Difficulty in defining potential parameters properly. 

Nevertheless, the Potential Fields method remains as a major path-planning approach, 
especially when high degrees of freedoms are involved. This approach has improved later 
through a number of works such as (Sato, 1993), (Brook & Khatib, 1999) and (Alvarez et al., 
2003) to overcome the problem of getting trapped in local minima. 
The next sections of this chapter introduce two new composite models for robot path 
planning, called V-P Hybrid, and V-V-P Compound. They are apt to cover the shortcomings 
of their original methods and are efficient both in time complexity and path quality. 
Although originally devised for two-dimensional workspaces, they can be extended 
straightforwardly to 3D spaces. Experiments have shown their strength in solving a wide 
variety of problems. 

2. The V-P Hybrid Model 

In this section we present a new algorithm, called V-P Hybrid, where the concepts of 
Voronoi diagram and Potential fields are combined to integrate the advantages of each. In 
this approach, the initial path planning problem is decomposed to a number of smaller 
tasks, having intermediate milestones as temporary start and goal points. Through this 
iterative process the global path is incrementally constructed. 
For the path planning task, a number of assumptions are made: (i) the map of workspace is 
known a priori, (ii) the obstacles are static, and (iii) the robot is considered a point. For real 
world applications, the latter assumption can be attained by expanding the obstacles using 
the Minkowski Set Difference method. 
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The algorithm’s major steps are: 
(1) Preprocessing Phase; consisted of constructing a Pruned Generalized Voronoi Graph of the 
workspace, and then applying a Potential Field to it. This operation yields a network of 
Voronoi valleys (Sec. 2.1). 
(2) Search Phase; consisted of implementing a bidirectional steepest descent – mildest ascent 
search method to navigate through the network of Voronoi valleys. The search phase is 
designed to progressively build up a start-to-goal path (Sec. 2.2).  
Before explaining the details of the composite model, a mathematical representation of some 
variables is given: 

- n : Total number of obstacles’ vertices. 
- s : The Start configuration.
- g : The Goal configuration. 
- G = (V, E): The Generalized Voronoi Graph (GVG) of the Cfree with the set of 

vertices (nodes) V(G) and edges E(G).

- E(v, w): The edge connecting vertices v and w , ∀ v, w ∈ V(G).

- N(v) = {w E(v, w) ≠ ∅} : Neighboring vertices of the vertex v.

- E(v): The set of all edges at vertex v.
- d(v) = E(v): The degree of vertex v, equal to the number of passing edges. 

2.1 Preprocessing Phase 

The V-P Hybrid model starts solving the problem by constructing the Generalized Voronoi 
Graph (GVG) of the C-space. The Start and Goal configurations are then connected to the 
main Voronoi graph through shortest lines which are also included in the diagram. Fig. 1(a) 
provides an example of GVG. 

Fig. 1. (a) Generalized Voronoi Graph (GVG). (b) Algorithm for pruning the GVG. 

The main reason for incorporating the Voronoi concept in the Hybrid algorithm is its 
property of lying on the maximum clearance from the obstacles. This property helps the 
robot to navigate at a safe distance from obstacles, making it less prone to be trapped in 
local minimum wells. 
The next step is to exclude redundant or unpromising edges from the GVG. This is done 
through the pruning operation, where the Voronoi edges which either touch obstacle 
boundaries or have vertices with a degree (d(v)) equal to 1 are iteratively truncated. The 
pruning procedure is explained in Fig. 1(b). Also, the result of this operation performed on 

Procedure PRUNE(G, s, g)

      P={ vv ∈ V(G) \ {s, g}, d(v) = 1 } 

      if (P = ∅) then Stop
      V(G) V(G) \ P

      E(G) E(G) \ E(v, N(v)), v ∈ P
      PRUNE(G, s, g)
 end 
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the example of Fig. 1(a) is portrayed in Fig. 2. The resulting subgraph is called Pruned 
Generalized Voronoi Graph, or simply PGVG. 
Note that the hypersensitivity of Voronoi diagram to minor inaccuracies in workspace 
definition which may lead to redundant edges (as in the lower-right disjoint obstacle in Fig. 
2(a)) is resolved after running the pruning procedure. 
The pruning operation is an important stage in the Hybrid algorithm since it truncates all 
paths toward collision with obstacles and dead-end traps, and therefore reduces the search 
space drastically. The resulting graph is a ‘lean’ network of interconnected Voronoi vertices, 
including the Start and Goal nodes.  

     
 (a) (b) 

(c)
Fig. 2. The construction of the Pruned Generalized Voronoi Graph in two iterations. 

The last step of the preprocessing phase is constructing a potential field for guiding 
the robot toward its goal. Unlike the conventional Potential Fields concept where 
there are two kinds of attractive and repulsive potentials associated with goal and 
obstacles respectively, the V-P hybrid algorithm makes use of only attractive 
potentials, related to the goal and the PGVG. By this, we avoid some known problems 
of the standard Potential Fields method concerning the calculation of repulsive forces 
for each obstacle and their integration into a single function, which usually gives rise 
to complexities due to overlapping and parameter setting (Koren & Bornstein, 1991). 
This reduces the computational time and memory significantly. Moreover, the 
problem of narrow corridors, where most Potential Field algorithms give way is fixed 
in this version. 
To apply these potentials, we graduate the configuration space into a grid of fine-enough 
resolution. For every grid point (xi, yi) the potential can then be numerically calculated in a 
very short time. 
As mentioned, the path planning process is decomposed into intermediate stages. So, each 
stage has its own temporary goal point, gtemp. The attractive potential of the goal is exerted 
through a paraboloid function with a nadir at the temporary goal by: 
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( ) ( )U ( )
2 2

temp temp tempg g gx,y = x - x + y - y , (1) 

where ξ is a scaling factor. 
The next attractive potential applies to the PGVG. Because the GVG keeps a safe distance 
from obstacles the robot will hardly collide with them. Besides, since we prune the GVG 
such that all Voronoi edges toward obstacles (mainly leading to dead-ends) are eliminated 
from the graph, the possibility of the robot to get trapped in local minima reduces 
drastically. So we try to “encourage” the robot to move along the edges of PGVG. This is 
done by associating an attractive potential with the points on PGVG, which generates a 
network of deep “valleys” located at the maximum distance from obstacles, with a width of 
one gridpoint (Fig. 3(a)). The (virtual) robot will safely navigate at the bottom of PGVG 
valleys. The following function gives the desired result, in which s is the depth of valley: 

∈if ( ) PGVG
U ( )

0 otherwise.
i i

PGVG i i

-s x ,y
x ,y =  (2) 

The UPGVG field is calculated only once and remains constant till the end of the path 
planning. Instead, the attractive potential of the (temporary) goal is calculated at each 
iteration and is added to the UPGVG to yield the total potential used for the Search phase by 

 U
Total

 = Ug + U
PGVG

 (3) 

The resulting manifold is depicted in Fig. 3(b) for a typical temporary goal point. Note that 
due to the numerical nature of the model, working with these complex functions is 
extremely easy, and just a simple addition of corresponding grid values is sufficient. 

 (a) (b) 
Fig. 3. (a) PGVG potential valleys for the sample problem (here the width of canals are 
intentionally aggrandized for a better view). (b) the total potential manifold as the sum of 
PGVG valleys and goal attractive potentials. 

Since the PGVG is a connected roadmap, a path connecting the Start and Goal points (which 
are located at the bottom of PGVG valleys) certainly exists.  
This combination of potentials provides a straightforward and guaranteed attraction from 
start to goal point. The potential associated with the goal absorbs every point to itself, as the 
gradient direction at every configuration points to the goal. Note that repulsive potentials 
are not calculated and consequently all the problems related to them are avoided. 
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The parameters of the functions such as the valley depth and concavity of the paraboloid 
should be selected carefully to make sure that the robot will not “escape” from valleys and 
surmount the obstacles, which are implicitly defined by their high potentials compared to 
the deeper valleys. 
It should be mentioned that the obtained total potential field may still have local minima 
(e.g. the V-shaped channel left to the center in Fig. 3(b)), but due to the applied search 
method they are resolved. 

2.2 Search Phase 

To search within the potential manifold, a bidirectional approach is adopted. First, two 
trajectory sets, Traj(s) and Traj(g), spanned from the Start (s) and Goal (g) points 
respectively, are initialized to keep the track of planned paths. Then through an iterative 
process, the PGVG valleys are being navigated alternately by Traj(s) and Traj(g). At each 
iteration first Traj(s) and then Traj(g) extend toward the endpoints of each other. Whenever 
a trajectory reaches a junction (i.e. a Voronoi vertex) it stops extending more, and the 
expansion is shifted to the other trajectory. The trajectories meet on the halfway and are 
concatenated into a single start-to-goal trajectory. 
The bidirectional nature of the search requires that for each iteration, the PGVG manifold be 
numerically added to a paraboloid centered on an intermediate goal point. For instance, 
when extending Traj(s), the temporary goal is to reach the endpoint of Traj(g), which is 
located on a junction of PGVG valleys.  
To maintain the movement of the robot in each iteration, the method of descent search is 
employed, which is the simplest and fastest searching method in numerical contexts. 
The neighborhood of each cell is defined to be 2-neighbors, that is, the points lying in the 
range of (x±1, y±1) for the point (x, y). The number of neighbors of a cell is thus 32 –1 = 8. For 
a k-dimensional space, it would be 3k –1. 

The searching begins at Start point, with examining all its neighboring gridpoints. The 
descent search selects a neighboring cell with the lowest potential among all neighbors as 
the next configuration. The simple steepest descent method, however, is prone to stop at a 
local minimum. To cope with this problem, taking ascending steps (or, “hill climbing”) is 
devised for exiting from local minimums. The amount of ascension is kept minimal. 
Therefore, the concept used here is a “steepest descent, mildest ascent” motion. The hill 
climbing movement is comparable to the random walk in the randomized planning 
(Barraquand et al., 1992). Upon reaching a junction, the next edge to navigate is the one 
having the lowest potential value at that point. 
In order to prevent the robot from looping (i.e. infinitely fluctuating between two 
neighboring cells), we assign to all visited grid cells a relatively higher potential, but still 
lower than the potentials of points not on the PGVG. Therefore, the robot will not return 
immediately to a local minimum after it has been once there, simply because it is not a local 
minimum anymore. The height to which a visited point is elevated is suggested to be less 
than 1/3 of the valley depth (Fig. 4). This will allow traversing an edge for three times (as in 
correcting a wrong route) without diverting from the PGVG edges. 
The process of the steepest descent - mildest ascent search applied to the example in Fig. 2(c) 
is shown in Figs. 5(a)-(d). Fig. 5(b) shows iteration 1, navigating from Start toward Goal. The 
Traj(s) stops at the first encountered junction (or Voronoi vertex). Fig. 5(c) shows iteration 1, 
navigating from the Goal point towards the temporary goal, which is now the endpoint of 
Traj(s). The Traj(g) stops at the first encountered junction, which becomes the new 
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temporary goal. Fig. 5(d) illustrates iteration 2, navigating from endpoint of Traj(s) toward 
the temporary goal. The two trajectories Traj(s) and Traj(g) are now get connected, and the 
Search phase is completed. Note the changes in depth of valleys as they are being filled. 

Fig. 4. Valley-filling operation: the potential valley is being filled as the trajectory proceeds. 

    
 (a) (b) 

      
 (c) (d) 

Fig. 5. The process of searching in the V-P Hybrid model is completed in two iterations. 

2.3 Experiments 

In order to test and evaluate the V-P Hybrid algorithm, 20 problems with obstacles differing 
in number and shape (including convex, concave, and maze-like problems) were designed 
and solved by three different methods: the V-P Hybrid, the classical Potential Fields, and the 
A* Search. Experiments were run on a PC with a 1.4 GHz processor using MATLAB.  
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Table 1 shows the average values of path lengths (in equal units), CPU time (in seconds) and 
the number of evaluated grid points computed for the test problems via different 
approaches. The average length of optimal paths was 27.46 units. 

                                Model 

  Parameter 
Potential Field

Algorithm 
A* Search 
Algorithm 

V-P Hybrid 
Algorithm 

Path Length 33.49 30.67 33.62 

Search CPU Time 1.0375 19.40 0.0715 

Total Examined Grid points 2513 2664.2 331.8 

Table 1. Experimental results. 

An advantage of the V-P Hybrid algorithm over the classical Potential Fields method is its 
completeness. While the Potential Fields approach is not guaranteed to generate a valid 
path (Latombe, 1991), the V-P algorithm is exact, i.e. it finds a path if one exists. Since the 
Goal should be connected to the PGVG at the Preprocessing phase, the algorithm will report 
any failure in this stage, and so is complete.
The V-P Hybrid algorithm has also resolved a number of problems inherent in the 
conventional Potential Fields method. The local minimum problem is settled by 
implementing the steepest descent – mildest ascent search method and utilizing the PGVG. 
Problems due to obstacle potentials and narrow passages are totally fixed. 

The Voronoi diagram-Potential Field Hybrid algorithm averagely spent much less time 
for searching the C-space than the Potential Field method (around 15 times faster). Also 
the number of examined grid-points was reduced about 7.5 times for the Hybrid 
algorithm. We ascribe these results to the efficient abstraction of workspace due to the 
pruning procedure where most local minimum wells are excluded from the search space. 
The number of Voronoi vertices is also reduced effectively. The pruning procedure 
together with the fast searching of Voronoi valleys made the V-P model successful in 
solving complex and labyrinthine, maze-like workspaces. In sparse environments the 
Potential Fields found slightly shorter paths, but for maze-like problems the Hybrid 
algorithm outperformed. 
The time complexity of A* search is O(n2) (Latombe, 1991). A* is complete and optimal, 
but its space complexity is still prohibitive. The A* search employs a heuristic function for 
estimating the cost to reach the goal. For our experimentation a Euclidean straight-line 
distance was used as the heuristic. The Hybrid algorithm searched the grid space very 
much faster than A* search (270 times), examining around 8 times less points than it. This 
is because of the lower time complexity order of the Hybrid method compared to the 
O(n2) of A*. However, the quality of the path generated by A* is better than the Hybrid 
model by %10. The Hybrid algorithm also outperforms the Dijkstra’s algorithm which has 
an O(n2) time complexity. The time complexity of the V-P Hybrid algorithm is discussed 
below. 

2.4 Time Complexity Analysis 

For a time complexity analysis of the V-P Hybrid algorithm, its two phases must be 
analyzed separately. Time complexities of constructing and pruning the Voronoi graph, as 
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well as the potential field calculation determine the computational burden of the 
Preprocessing phase. To evaluate this, we first need to study the problem’s size. The 
following two lemmas deal with this issue: 

Lemma 1.The Voronoi diagram has O(n) many edges and vertices, in which n is the 
number of Voronoi sites.  

Lemma 2. The average number of edges in the boundary of a Voronoi region is bounded 
by 6. 

Proofs to these lemmas are provided in (Aurenhammer & Klein, 2000). The proofs are 
originally developed for the case of points or convex objects taken as Voronoi sites. 
However, since due to the pruning procedure any non-convex obstacle is located in a 
unique connected Voronoi region, the above lemmas hold true for non-convex cases as 
well. 
The direct consequence of the Lemma 1 is that the Hybrid algorithm must perform O(n)
neighborhood checks for pruning the Voronoi Graph. Therefore, considering that the 
construction of the Generalized Voronoi Diagram takes O(nlogn) time, we conclude that the 
Pruned Generalized Voronoi Diagram is built in O(nlogn) time. 
For the potential field calculation, since we do not need to calculate the potential values for 
all gridpoints, save for those located on the PGVG, it is essential to have an estimate for the 
number of gridpoints on the PGVG. 
Assuming that after graduating the C-space the PGVG edges are divided into small 
intervals of size , each PGVG edge with vertices v and w will have grid points equal to 

e =
E v,w( ) . Considering the O(n) edges of the C-space, the number of all grid points would 

be O(e×n)  O(n), which also gives the complexity of potential field calculation. 
For obtaining an average-space complexity, the average length of the PGVG edges should 
be computed. Let m be the total number of configuration gridpoints, o the number of 
configuration gridpoints occupied by obstacles, and b the number of obstacles. Then the 
average number of C-points around an obstacle (Voronoi region) is (m–o)/b. Since the 
average number of edges around each obstacle is bounded by 6 (Lemma 2), we will assume 

that the typical shape of the region is hexagonal, with the surface area of /S = a23 3 2 ,

where a is the edge of the hexagon (Fig. 6). By setting this surface area equal to the average 
number of C-points in a Voronoi region, we get 

≅
(m - o) (m - o)

a =
b b

1 2 3
0.62

3
. (4) 

Since o < m in (4), we conclude that the average length of a Voronoi edge in terms of its 

number of gridpoints is in O m( ) . This means that the number of points whose potentials 

are to be computed is inO m( ) , where m is the total number of gridpoints. 

The above space complexity can also be used for calculating the time complexity of the 
Search phase. Since only the gridpoints on the PGVG need to be searched, and the average 

number of these points is O m( ) , the Search phase averagely will take O m( )  time to 

navigate the PGVG and accomplish the search. This result is superior to the conventional 
Potential Field’s search which contains a neighborhood checking operation and is carried on 
in O(m), m being the number of C-points (Latombe, 1991). 
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Fig. 6. A typical problem with hexagonal Voronoi regions. 

To conclude, the Preprocessing phase of the algorithm takes O(nlogn) time (n being the total 
number of obstacle vertices), which is due to construction of the GVG. The remaining 
components of the algorithm, i.e. the pruning, potential calculation, and potential search 
procedures all have linear or sub-linear time complexities. Since these components are 
executed sequentially, the most time-consuming operation will be bound to O(nlogn) time, 
which is the total time complexity. 

3. The V-V-P Compound Model 

Since the paths generated by the V-P Hybrid model are a subset of the Generalized Voronoi 
Graph of the workspace, they have lengths identical to the ones generated by the Voronoi 
Diagram method. The Voronoi paths are longer than the optimal Visibility Graph-based 
paths, especially in sparse environments. Aiming to improve the quality of generated paths, 
another composite algorithm is proposed (Masehian & Amin-Naseri, 2004) where three 
methods of Voronoi Diagram, Visibility graph, and Potential Fields are integrated in a 
single architecture, called V-V-P Compound model. 
The Compound model provides a parametric tradeoff between the safest and shortest paths 
and generally yields shorter paths than the Voronoi and Potential field methods, and faster 
than the Visibility graph. In the proposed model, positive attributes of these three path 
planning techniques have been combined in order to benefit from the advantages of each. 
To accomplish this, they are tailored and associated with a number of complementary 
procedures to generate a valid and high quality path. Hence, the Compound algorithm 
borrows its name, V-V-P, from these basic techniques, although the outcome is a new and 
different model as a whole. 
An overview of the model is as follows: after constructing the PGVG, a network of broad 
freeways is developed through a new concept based on medial axis, named �MID. A 
potential function is then assigned to the freeways to form an obstacle-free network of 
valleys. Afterwards we take advantage of a bidirectional search, where the Visibility Graph 
and Potential Field modules execute alternately from both Start and Goal configurations. A 
steepest descent – mildest ascent search technique is used for local planning and avoiding 
local minima. The assumptions on which the model is principally developed are the same as 
for the V-P Hybrid model; that is, the workspace is considered two-dimensional, and the 
map of workspace is known a priori. Similar to the Hybrid model, the Compound model 
has also two major stages: the Preprocessing phase and the Search phase. The Search phase 
contains two modules: Visibility, and Potential Field, which are executed alternately, as 
illustrated in Fig. 7. 

a
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The main differences between the V-V-P Compound and V-P Hybrid models are the width 
of the potential valleys and their filling technique. Additionally, the V-V-P model employs a 
Visibility module to obtain shorter paths than the V-P model. The description of algorithm’s 
phases is presented in the next subsections. 

Fig. 7. The overall process of problem solving in the V-V-P path planning model. Each 
iteration in search phase is comprised of two sequentially executed modules, Visibility 
and Potential Field. The gradually darkening shades imply the completion of a 
solution. 

3.1 Preprocessing Phase 

 This phase establishes an obstacle-free area for robot navigation. The main steps are:  

P1) Constructing the PGVG of the workspace (as described in Sec. 2.1). 

P2) Forming an obstacle-free C-space region based on PGVG points. 

P3) Associating an attractive (negative) potential to that region. The result is an obstacle-
free network of valleys as the robot’s navigation area. 

As noted in Sec. 1.1, the Generalized Voronoi Graph is also known as Medial Axis (MA). 
Voronoi diagram lies on the maximum clearance of objects. Although this property offers 
some advantages regarding to path safety, it makes the path longer, especially in 
workspaces where the obstacles are located quite far from each other. Besides, the generated 
path usually has sharp angles at Voronoi vertices, making it ineffective for robots with 
nonholonomic or rotational constraints. 
In order to compensate these shortcomings, unlike the 1-pixel-wide valleys in the V-P 
model, a network of “wider” channels is built based on PGVG. These channels are “dilated” 
Voronoi edges that provide sufficient space for the robot to plan shorter paths and 
maneuver freely. Due to the varying sizes of inter-obstacle free spaces, the widths of these 
channels must vary from region to region. 
For constructing this obstacle-free network of channels the Maximal Inscribed Disc (MID)
concept is incorporated. First some definitions are presented: 

A Locally Maximal Disc (LMD) of the point x ∈ Cfree is the set of points such that: 

{ }( ) ,= − ≤ ∂ ∈Min free freeLMD x q x q x - C q C , (5) 

and denotes a disc centered at x and tangent to the nearest obstacle boundary ( Cfree).
The Maximal Inscribed Disc (MID) is defined as: 
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{ }( ) ( )( ) ( ) , ( )= > ∈ ∧ ∈LMD x LMD yMID x LMD x x MA y N xr r , (6) 

in which the rLMD(x) is the radius of the LMD(x), and N(x) is the neighborhood of x.
For the Compound model, only the radii of all MIDs centered on PGVG points are 
calculated. Also, in order to maintain a safe distance from obstacle borders, MIDs radii are 

multiplied by a lessening factor α (α ∈ [0, 1]), to produce αMIDs defined as: 

{ }( ) ( )( ) ( ) , ,MID x LMD x αα = = α × ∈ ≤ ≤0 1LMD x MID x x MAr r  (7) 

 All �MIDs are integrated in a connected region called Region(�MID). The 
Region(�MID) of a C-space is the union of all �MIDs centered on the medial axis: 

( ) ( )
∀ ∈

α = α
x MA

Region MID MID x  (8) 

The Region(αMID) is obstacle-free and non-convex, and reflects the topology of the Cfree. An 

interesting property of the α is that it offers a balance between the Roadmap and full Cfree

concepts. If we set α=0, the Region(αMID) will turn into the medial axis roadmap. For α =1, 

the region’s borders will be tangent to obstacles. Based on experiments, we recommend α ∈
[0.5, 0.8]. 

The Region(αMID) for the workspace of Fig. 2(c) is calculated and depicted in Fig. 8(a). Fig. 8 

also indicates the property of Region(α 
MID) in smoothening the Voronoi roadmap’s sharp corners and local irregularities. 

 (a) (b) 

Fig. 8. (a) The Region(αMID) is comprised of αMIDs centered on the medial axis. Here the α
is set to 0.6. (b) Attractive potentials associated with the Region(αMID). 

Similar to the Hybrid model, the Compound model also creates a network of navigable 

valleys. It assigns attractive potentials to the points lying in Region(αMID):

(∈ α- if ( , )
U( , ) =

0 otherwise.
i i

i i

s x y Region MID)
x y  (9) 

The preprocessing phase terminates with the construction of potential valleys. 

3.2 Search Phase 

This phase is designed to progressively build up a Start-to-Goal path. The initial problem is 
decomposed to a number of smaller path planning tasks, having intermediate milestones as 
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temporary start and goal points. Through this iterative process the solution path is 
incrementally constructed, and the algorithm becomes capable to resolve more complex 
problems. 
Similar to the V-P Hybrid, the global search process is performed bidirectionally. Again we 
initialize the two trajectories Traj(s) and Traj(g), and set Traj(s) = {s} and Traj(g) = {g} for the 
beginning.  
The main modules included in this phase are Visibility and Potential Field, which are 
executed iteratively until the construction of the final path. The termination condition is 
satisfied when Traj(s) and Traj(g) are either being seen or get in touch with each other. We 
characterize ‘being seen’ as being able to draw a straight line in free space to connect the 
two trajectories’ endpoints. 
The following subsections describe the Visibility and Potential Field modules. 

3.2.1 Visibility Module 

Each iteration of the Search phase starts with a Visibility scan performed concurrently for 
both endpoints of Traj(s) and Traj(g). For this purpose, a “ray sweeping” technique is used 
to collect information about the surrounding valley borders and probably the opposite 
trajectory.
The aim of this procedure is to determine whether the opposite trajectory is visible from the 
current point or not. If it is visible, then the Search phase is over. If not, we have to find the 
boundary vertices as seen from the current point, as described below. 
By applying a polar coordinate system with the origin defined on the vantage point (e.g. 
endpoint of Traj(s)), the radial Euclidean distances to valley borders ( Cfree) are calculated for 

[0, 2π] and integrated in an array (i.e. Visibility Polygon). Fig. 9(a) shows the Cfree valleys and 
the point (q) considered for visibility scan in a sample problem. Fig. 9(b) shows the distance 
of that point from its surroundings. 

 (a) (b) 
Fig. 9. (a) Visible configurations (visibility polygon) as a result of a visibility scan performed 
for the point q. (b) The polar representation of radial distances (i.e. ray magnitudes) of the 
point q from Cfree boundary ( Cfree).

Subsequent to the calculation of distances (ρ) between the vantage point and Cfree for any 

angle (θ ∈ [0, 2π]), this data is mapped into Cartesian coordinates (Fig. 10(a)). 
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Since the Cfree boundary generally has a complex geometrical shape and lacks definite 
vertices as in polygonal objects, we take advantage of the ray sweeping data to determine 
the boundary points being tangent to any ray emanated from the vision source point. A ray 
is tangent to Cfree if in the neighborhood of their contact point the interior of Cfree lies entirely 
on a single side of it. 
In order to find the tangent rays and their touching boundary points, we apply a difference 
function for successive adjacent rays. We define the Ray Difference variables as  

∆ρ
θ
 = ρ

θ +1
 − ρ

θ
  for  θ ∈ [0, 2π] and collect them in an array plotted in Fig. 10(b). By applying 

a notch filter, the peaks of the Ray Difference array are determined. These peaks imply 
abrupt and large differences in successive ray magnitudes and therefore indicate the points 
where sweeping rays leave (positive peaks) or meet (negative peaks) a convex contour on 
Cfree, based on anticlockwise rotation of rays. 

The boundary points corresponding to the tangent rays are treated as boundary vertices 
visible from the vantage point, q. These points are called Critical points and form the set R(q)
(see step S1(d)). The tangent rays and critical points are shown in Fig. 11. 

 (a) (b) 
Fig. 10. (a) The Cartesian representation for the ray magnitudes of Fig. 9. (b) Magnitude 
difference of sweeping rays for successive angles. The three peaks show tangent rays. 

Fig. 11. The tangent rays and their corresponding boundary vertices (critical points). 
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By concurrently implementing the visibility scan for both ends of Traj(s) and Traj(g), we 
discover that either there exists a line which connects the two trajectories (and lies entirely 
in Cfree), or none of them is within the scope of the other’s endpoint. If the first case holds 
then the search phase terminates. For the latter case, critical points of the two sets R(p) and 
R(q) are calculated and matched to find the closest pair, one point from each. These points 
determine the two positions which the two trajectories must extend toward. 
The following steps are taken for the Visibility module: 

S1) Performing Visibility scan. The scan is concurrently implemented for the endpoints of 
both Traj(s) and Traj(g).

Suppose that the visibility scan operation is performed from p and q, the endpoints of Traj(s)
and Traj(g), respectively. Consequently, four incidences may occur (Fig. 12): 

 (a) (b) (c) (d) 
Fig. 12. Four different combinations of Traj(s) and Traj(g) in visibility scan. The visibility 
envelope is shown in grey. 

(a) A subset of points in Traj(g) is visible from p, but no point from Traj(s) is visible 
from q (Fig. 12(a)). In this case, by a straight line, connect p to a visible point in 
Traj(g), say q , which is nearest to the Goal (i.e. has the smallest ordinal rank in 
Traj(g) among the visible points), and truncate all elements in Traj(g) located after 
q . Note that the Goal point might be visible itself, which in that case point p is 
directly connected to the g (Fig. 12(c)). 

(b) A subset of points in Traj(s) is visible from q, but no point from Traj(g) is visible 
from p (Fig. 12(b)). This is the reverse of the previous case, so act similarly, but 
swap p and q, and also Traj(s) and Traj(g). 

(c) Subsets of points in both Traj(g) and Traj(s) are visible from p and q, respectively 
(Fig. 12(c)). In this case, define the following criterion C as: 

{ }
{ }

′ ′

′ ′ ′ ′∈ ∈

C spq g gqp s

Traj s p q q Traj g Traj g q p p Traj s

= Min ,

= Min ( ) + - + ( ) , ( ) + - + ( )

  (10) 

  where Traj(s) means the cardinality (or length) of Traj(s), ′p q-  is the Euclidean 

distance of p and q , and q ∈Traj(g) indicates the ordinal position of q  in Traj(g)

(i.e. the distance of q  to g via the Traj(g)). Among pq  and qp , the line providing the 
minimum value for the above criterion will be selected to connect Traj(s) and 
Traj(g). Again truncate the elements of the trajectory located after the connection 
point p  or q , according to the drawn line. 

(d) If none of the Traj(s) and Traj(g) are visible to each other’s endpoints, then for both 
p and q, determine those rays that are tangent to visible Cobs boundary. Note that 
this boundary is at a safe distance from actual obstacles’ edges. The intersection of 
these rays and the free space’s boundary produces two sets of Critical Points, R(p)
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and R(q). Fig. 12(d) shows the result of visibility scan from q, which consequently 
renders 4 visible obstacle vertices in R(q) = {1, 2, 3, 4}. 
Now among all combinations of the elements of R(p) and R(q), select the closest x
and y pair meeting the following condition:  

 {(x, y)|∀ x, u ∈ R(p); y, v ∈ R(q); x – y u – v }, (11) 

where •  shows Euclidean distance. The total number of combinations to be 

evaluated is R(p)×R(q), where • is the cardinality of sets. This operation 

determines the mutually best points that Traj(s) and Traj(g) must extend toward via 
two straight lines. 

S2) Map the line segment(s) found in step S1 to the configuration space grid. Through 
a fine-enough discretizing operation, new points are added to Traj(s) and/or Traj(g).

If any of the cases (a), (b), or (c) in step S1 holds, then terminate the Search phase and go to 
step S10 (Sec. 3.2.2). For the case (d) continue with the next step. 

S3) Since all the points in Traj(s) and Traj(g) lie on the bottom of roadmap valleys, in 
order to mark the valleys as traversed, increase the potentials of trajectory points 
and their surroundings to ‘fill’ the width of valleys (Sec. 3.2.2). This is an effective 
operation for preventing the planner from searching the Cfree exhaustively. 

3.2.2 Potential Field Module 

The bidirectional nature of the V-V-P algorithm requires that for each iteration, the valley 
potentials manifold be numerically added to a paraboloid with a nadir on a temporary goal 
point (see step S4). For instance, when extending Traj(s), the temporary goal is the endpoint 
of Traj(g), and vice versa. To apply the paraboloid potential, we graduate the configuration 
space in a fine-enough resolution, then assigning every grid cell as (xi, yi), the potential is 
calculated numerically. Fig. 13(a) shows the Potential Field manifold superimposed on the 
‘flat’ valley potentials manifold. 
As soon as new points are appended to the trajectories, the navigated valleys must be 
distinguished by ‘elevating’ their potentials in order to prevent the robot to re-traverse them 
later (Fig. 13(b)). 

 (a) (b) 
Fig. 13. (a) The Potential Field manifold (upper object) is constructed by numerically adding 
a paraboloid function defined in (1) to the valley potentials manifold (lower object). (b) A 
scene from an intermediate iteration in potential search. Trajectory points are shown black 
and the medial axis points are in white. 
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The valley filling technique is somehow a “micro-visibility” process; it marks the 
neighboring configurations as ‘seen’, and excludes them from the search space. This process 
is analogous to walking in a long corridor while trying to get out by reaching an open door 
or a junction. Naturally one does not consider the tiles across the corridor and near his feet 
as promising cells leading to a desired destination. Rather, he deems those points as 
traversed (though physically not indeed), and continues his wall-following motion. This is 
done in filling technique by ‘elevating’ the potentials of those cells, making them less 
attractive. Since in a steepest descent context the robot occupies the cell with the least 
potential value across the valley, the filling procedure does not affect the path length 
adversely. 
The filling procedure is applied immediately after a new point is appended to a trajectory. 
So it is performed in a layer-by-layer manner. Suppose that a point p is just being added to 
an existing trajectory array (Fig. 14(a)). In order to ‘mark’ and elevate the potentials of 
visited cells across the Cfree valley, we must find a line passing from p and perpendicular to 
the local direction of the channel. To do this, the point p must be connected to its nearest 
point q on the medial axis (skeleton) of the valley. By interpolation and extrapolation, the 
cells along this line are found and increased in potential. The amount of this increase is 
proposed to be about 1/3 of the valley depth (i.e. s in (9)). Fig. 14 shows three consecutive 
iterations of filling operation. 

 (a) (b) (c) 

Fig. 14. Three iterations from the valley filling process. As new points (black dots) are 
appended to the trajectory, the cells across the channel are elevated in potential, so that the 
planner is encouraged to move along the valley’s main direction. Points on the medial axis 
are shown white, except for the point q which is nearest to trajectory’s endpoint p (shown in 
black). The elevated rack is highlighted in each iteration. 

For a better understanding of the role of this process, imagine that an attractive potential 
(i.e. a local minimum) is located in the upper-end of the narrow channel in Fig. 14(a). 
Then according to the steepest descent search, the trajectory points should move towards it, 
which is of course hopeless. However, the elevated barrier created in each iteration blocks 
this motion, and forces the planner to take a mildest ascent step and run off the fatal 
situation. 
For channels of uniform width this method fills the cells thoroughly and compactly, but it 
may cause porosities in curved and bent valleys, or leave unfilled areas behind, as in Figs. 
14 or 15(b). The case in Fig. 15(b) arises from the fact that for two successive trajectory points 
their respective nearest medial axis points are not adjacent. Although this does not cause a 
serious problem most of the time, we will present a variation to this procedure to overcome 
such conditions: 
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First a square (or rectangular) frame with a symmetrical center on the medial point q is 
defined (the dashed line in Fig. 15(c)). This frame is partitioned into two hyper-planes by the 
connecting line pq. The hyper-plane that contains the penultimate trajectory point is 
therefore the ‘backward’ region which may contain some unfilled cells. Then, the potentials 
of the cells confined within the frame and valley border are elevated. The magnitude of this 
frame can be set such that all the unfilled cells can be covered. However, a size equal to the 
valley width in that point suffices. The still unfilled area at the right of Fig. 15(c) will not 
cause any problem since it is far from trajectory points. 

 (a) (b) (c) 

Fig. 15. An unfilled area is originated from the fact that for two successive trajectory 
points, their respective nearest medial axis points are not adjacent. To resolve this problem, 
a frame is defined around the medial point q (drawn by dashed line), and the unfilled area 
confined within this frame is elevated in potential. 

The implemented valley filling routine provides some advantages for the model: 
(1) It reduces the potential searching time significantly by discarding the 

configurations in Cfree which have normal vectors pointing toward a local 
minimum, and so obviates the random or ‘Brownian’ movements. 

(2) This technique enables the planner to perform a ‘hill climbing’ operation for coping 
with the attraction of  a nearby local minimum, and as such, is a subtle way to 
avoid exhaustively filling up dead-end or saddle point regions and the consequent 
path smoothing operations (Barraquand et al., 1992). 

For more clarification, suppose that the planner incrementally builds up a search tree and 
adopts a ‘best-first’ strategy to find the goal point. This task becomes time-consuming when 
the tree has many branches. The valley filling process curtails most of the non-promising 
branches and directs the planner along an effective branch leading to another valley. In 
other words, this technique converts a ‘breadth-first’ or ‘best-first’ search into a ‘depth-first’ 
search. 
Experiments showed that the valley filling process aids the robot considerably especially in 
departing from deep local minimum wells.  
Now the Potential Field module is executed according to the following steps. It is applied in 
two directions: first the Traj(s) is extended (steps S4 to S6), then Traj(g) is stretched out (step 
S7 to S9). 

S4) Setting the endpoint of Traj(g) as the temporary goal (gtemp), construct an attractive 
field by the paraboloid function introduced in (1). Then add this potential to the 

potential of Region(αMID) calculated in step P3 (Sec. 3.1). 
S5) Now the steepest descent – mildest ascent search is performed with setting the 

endpoint of Traj(s) as temporary start and the endpoint of Traj(g) as temporary goal 
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point. This step contains a gradient search for selecting the next gridcell to proceed. 
New points are appended to Traj(s). Also, in order to provide a mechanism for 
escaping from local minima, perform the valley filling procedure. 

S6) Repeat the step S5 until one of  the following situations take place: 
(a) If before the occurrence of case (b) below, the endpoint of Traj(s) meets any 

point in opposite trajectory Traj(g), the search phase is completed. First 
truncate the elements of Traj(g) located after the connection point, then go to 
step S10. 

(b) The gridcell wavefront distance between the endpoint of Traj(s) and the free 
space boundary, Cfree, exceeds a certain limit, i.e. |END(Traj(s)) – Cfree| > d.
Through experimentations d = 3 was found appropriate. 

The steepest descent search for Traj(s) is now terminated and the searching process is 
shifted to steps S7 to S9, where Traj(g) is being extended towards Traj(s).

S7) This step is similar to step S4, except that the paraboloid which is added to the 
Region(αMID) valleys has a minimum on the endpoint of Traj(s).

S8) Setting the endpoints of Traj(g) and Traj(s) as temporary start and goal points 
respectively, perform a steepest descent – mildest ascent search, as well as the 
valley filling procedure, as described in step S5. 

S9) Repeat the step S8 until either of  the following cases happen: 
(a) If before the occurrence of case (b) below, the endpoint of Traj(g) meets any 

point in Traj(s), the search phase is completed. Truncate the elements of Traj(s)
located after the connection point, then go to step S10. 

(b) If the gridcell wavefront distance between the endpoint of Traj(g) and the Cfree

exceeds a certain limit, i.e. |END(Traj(g)) – Cfree| > 3, terminate the Potential 
Field module and start the next iteration from step S1, the Visibility module.

S10) Reverse the order of elements in Traj(g) and concatenate it to the endpoint of 
Traj(s). As a result, a single start-to-goal trajectory is achieved which is the final 
output of the V-V-P algorithm.  

3.3 An Example 

Now the algorithm’s path planning technique is demonstrated through solving a problem 
illustrated in Fig. 16(a).  
After preparing the valley potentials (Fig. 16(b)), the Search phase is accomplished in 3 
iterations. The bidirectional progression of trajectories is clearly shown in Figs. 17(a)-(c). The 
Cfree region is light-colored, and the ‘filled’ area has a darker shade. Fig. 17(a) indicates the 
development of Traj(s) (upper-right), and Traj(g) (lower-left) trajectories in iteration 1, by 
first performing a visibility scan, then a Potential Field search. The visibility scan matches 
with case S1(d), where none of the two trajectories is in the scope of another. Hence, 6 
possible pairs of critical points ((2 for g) × (3 for s)) are evaluated and the closest pair is 
selected as the destination of trajectories. The filling procedure is then implemented for the 
drawn lines (darker area in Cfree) according to step S3. 
The Potential Field module now starts with performing a steepest descent – mildest ascent 
search from the endpoint of Traj(s) toward the endpoint of Traj(g), the temporary goal. This 
requires a superimposition of a paraboloid function with a minimum on END(Traj(g)) on 
the ‘flat’ potential manifold in Fig. 16(b) (as described in step S4). This search generates 
points directed to the temporary goal, elevates the potentials across the current valley, and 
stops after a few repetitions upon detaching enough from the Cfree (case S6(b)). These points 
are appended to Traj(s). 
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 (a) (b) 

Fig. 16. (a) The PGVG and Region(αMID) (Step P2). (b) Obstacle-free network of valley 
potentials (Step P3). 

 (a) (b) (c) 
Fig. 17. The first, second and third iterations of the Search phase. The black lines show 
tangent rays for visibility scan, and white points are generated by potential search. 

The same operation is carried on from END(Traj(g)) to the new endpoint of Traj(s), which 
now includes recently added potential search points. Note that in Fig. 17(a), due to the 
filling operations executed before and during the Potential Field module, the steepest 
descent search does not fill the nearby minimum well, and thus avoids entrapment in the 
local minimum around the Goal point. Rather, it utilizes the mildest ascent concept, and 
exhibits a hill climbing behavior. This case shows the importance and effectiveness of the 
filling procedure, which helps the planner substantially through the whole process. Fig 
17(b) illustrates the second iteration, which is performed in the same fashion as the first 
iteration. Note the wall-following function of the potential module before detachment from 
Cfree border. 
Fig. 17(c) displays the case S1(c) occurred in the third iteration, where both trajectories are 
being seen by each other’s endpoints. By applying the criterion (10) it becomes evident that 
the endpoint of Traj(s) must be connected to a visible point in Traj(g) closest to g. The 
remaining points to the end of Traj(g) are truncated afterwards. Eventually the reversely-
ordered Traj(g) is concatenated to the Traj(s) and yields the final path from Start to Goal 
(Fig. 18(a)). 
Another example is presented in Fig. 18(b) to display the shape of the generated path for a 
maze-like problem. The meeting point of the approaching trajectories is shown by a color 
contrast. The search took 7 seconds and five iterations. 
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 (a) (b) 
Fig. 18. (a) The final start-to-goal path. (b) Maze-like problem solved by the V-V-P algorithm. 

3.4 Time Complexity 

As discussed in the Sec. 2.4, the time complexity of constructing the PGVG is O(nlogn). The 
time required for establishing the Region(�MID) depends on the total length of PGVG 
edges, which is in O(n). The time required to calculate the valley potentials is constant for 
each gridpoint lying in Region(�MID). Hence, the total time complexity for the 
preprocessing phase is in the order of O(nlogn).
The Search phase has the Visibility and Potential Field modules which are executed for k
iterations. In the worst-case, k is bounded by half the number of all edges, which is in 
O(n/2) O(n). During the Search phase, the visibility radial sweep operation has constant 
time complexity and depends on the number of radial rays. The number of potential valleys 
is in O(n), which is affected by the O(n) number of Voronoi edges, n being the total number 
of obstacle vertices. The time complexity for the Potential Field searching operation is O(m)
in the total number of gridpoints (m), and is independent of the number and shape of the 
obstacles (Latombe 1991). Therefore, the time complexity of the Search phase is in the order 
of O(m).

3.5 Comparisons 

In order to compare the V-V-P model with the Visibility Graph, Voronoi diagram, and 
Potential Fields methods, we solved the 20 problems mentioned in Sec. 2.3 by these methods 
and calculated the lengths of produced paths. Path lengths were normalized via a uniform 
scale to set up a proper benchmark for comparison. The value of � in V-V-P algorithm was 
set to 0.7. The Preprocessing phase of the Compound model took about 9 seconds averagely, 
and the Search phase finished within 6 seconds on average. The experiments were run in 
MATLAB using a 1.4 GHz processor. A comparison of path lengths, as well as time 
complexities of the preprocessing and search procedures of all tested methods is provided 
in Table 2. 
The results show that the V-V-P Compound takes advantage of the superiorities of its 
parent methods; that is, low construction time from the GVG, low search time from the PF, 
and short paths from the VG. It provides an effective balance between computational speed 
and path quality. The extent of this tradeoff is determined by selecting different values for 

α ∈ (0, 1), after which the V-V-P method assumes the properties of either the Visibility, or 
Voronoi methods, or an intermediate state. 
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SearchingPath planning 
method 

Preprocessing 
Time complexity

Time complexity Search method 

Relative
path length 

Voronoi 
Diagrams

O(nlogn) O(n
2
)

Dijkstra
on graph nodes 

125.7

Potential
Fields 

O(n) O(m)
Improved numerical 
navigation function 

128.0 a

Visibility 
Graph O(n

2
) O(n

2
)

A*
on graph nodes 

100.0

V-P 
Hybrid

O(nlogn) O m( )
Steepest descent –  

mildest ascent 
126.8

V-V-P 
Compound 

O(nlogn) O(m)
Steepest descent –  

mildest ascent 
114.3

a After post-processing and path smoothing 

Table 2. Time complexity and path quality comparison for five path planning approaches. 

It is worth noting that similar to the V-P Hybrid method (Sec. 2.4), the V-V-P Compound 
algorithm has the property of completeness. 

3.6 Extension to Higher Spaces 

The V-V-P algorithm has the potential to be extended to three and higher dimensional 
spaces. Though the full n-dimensional implementation of the algorithm is among our future 
research, we will briefly discuss here the possibility of its extension to 3D. 
Recall that the Generalized Voronoi Graph (GVG) in n-D space is the locus of points being 
equidistant from n or more obstacle features. Figs. 19(a)-(b) demonstrate a 3D environment 
and its GVG. The GVG is constructed incrementally using an algorithm which is the 3D 
version of our work presented in (Masehian et al., 2003). 
Due to the one-dimensional nature of the GVG roadmap, the pruning procedure is still 
applicable to 3D context. Fig. 19(c) depicts the result of pruning the GVG in Fig. 19(a), after 
fixing Start and Goal positions. Similar to the 2D case, the pruning procedure reduces the 
search space considerably in 3D.  
The Maximal Inscribed Discs can easily be generalized to 3D space, resulting in Maximal 
Inscribed Balls (MIBs), which are spheres centered on the GVG and tangent to 3 or more 

obstacle boundaries. In the same manner, we can extend the concept of αMID to αMIB,

and the concept of Region(αMID) to Region(αMIB). The Region(αMIB) is a network of 
“tube-like” obstacle-free navigable channels. Fig. 19(d) illustrates the Region(�MIB)

with α = 0.5. Greater values for α cause “fatter” tubes, and freer space for robot’s 
maneuvering. 
The visibility scan in 3D can be applied via “sweep surfaces” instead of sweep rays in the 

2D method. The robot should scan the space inside the Region(αMIB) to find “tangent 
surfaces”. The Potential calculations for gridpoints is still tractable in 3D workspace, and the 
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search phase can be performed similar to the 2D V-V-P method; the Visibility and Potential 
Field modules will execute alternately, and the valley filling procedure will change to “tube 
filling”. Therefore, the V-V-P and V-P models are extendable to at least 3D C-spaces. 

 (a) (b) 

 (c) (d) 
Fig. 19. (a) Front view, and, (b) Back view of the medial axis (GVG) of a 3D workspace. (c) 

The PGVG of the same workspace. (d) The Region(αMIB). 

4. Summary and Future work 

This chapter introduces two new offline path planning models which are based on the 
Roadmap and Potential Fields classic motion planning approaches. It is shown that how 
some relatively old methods can combine and yield new models. 
The first path planning model is established based on two traditional methods: the Voronoi 
Diagrams and Potential Fields, and so is called V-P Hybrid model. The model integrates the 
advantages of Voronoi diagram’s safest distance and Potential Fields’ search simplicity 
properties. After constructing the Generalized Voronoi Graph roadmap for the workspace, 
it is reduced to the Pruned Generalized Voronoi Graph (PGVG) through a pruning 
procedure. The PGVG decreases the search time effectively. An attractive potential is then 
applied to the resulting roadmap, which yields a new version of Potential Fields method, 
since it implicitly models the obstacles by attractive potentials rather than repulsive ones. 
The search technique developed for finding the trajectory is a bidirectional steepest descent 
– mildest ascent stage-by-stage method, which is complete, and performs much faster than 
the classical Potential Fields or Dijkstra’s methods. 
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The second model is a generalization of the V-P Hybrid model: it integrates three main 
approaches: Voronoi Diagrams, Visibility Graph, and Potential Fields, and is called V-V-P 
Compound path planner. After constructing the PGVG roadmap, a broad freeway net 
(called Region(�MID)) is developed based on the Maximal Inscribed Discs concept. A 
potential function is then assigned to this net to form an obstacle-free network of valleys. 
Afterwards, a bidirectional search technique is used where the Visibility Graph and 
Potential Fields modules execute alternately from both start and goal configurations. The 
steepest descent – mildest ascent search method is used for valley filling and local planning 
to avoid local minima. This Compound model provides a parametric tradeoff between 
safest and shortest paths, and generally yields shorter paths than the Voronoi and Potential 
Fields methods, and faster solutions than the Visibility Graph. 
Different implementations of the presented algorithms exhibited these models’ competence 
in solving path planning problems in complex and maze-like environments. Comparisons 
with classical Potential Fields and A* methods showed that composite methods usually 
perform faster and explore far less grid-points. 
The developed composite path planning models can however be extended in numerous 
directions to accommodate more general assumptions. Here we mention two possible 
extensions which are achievable in the future versions of the models: 

(1) Both methods are basically developed for point robots. This assumption is not 
realistic and requires an extra preprocessing step for obstacle expanding through 
the Minkowski Set Difference technique. Moreover, the robot is bound to have 
mere translational movements, and not rotational. The models can be modified to 
accommodate arbitrary-shaped robots with rotational ability. 

(2) The developed models handle single-robot problems. The potential valleys in both 
V-P and V-V-P models may provide a framework for multiple robots motion 
planning. Especially, the Visibility component of the Compound model can be 
readily applied to mobile robots teams with vision capabilities. 
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