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1. Introduction

Branching processes are a class of stochastic processes that deals with the dynamics of
evolving populations and have an extensive literature dating back one hundred years or more.
Some references to this early literature may be found in the book of Harris (1963) (7) as well
as in the book Mode (1971) (9) on mulitype branching process and their applications. Other
books on branching processes include those on Athreya and Ney (1972) (2), Jagers (1975)
(8), Asmussen and Hering (1983) (1) and Haccou et al.(2007 (6), which contains discussions
of classes of stochastic processes and their applications to biology and other fields. Fisher
(1958), in Dover reprint of an edition of book first published in the late 1920’s, was the
first to apply what is now known as a Galton-Watson process to the study of the survival
of mutations in biological evolution. Mode and Gallop (2008) (11) in a review paper on the
applications of Monte Carlo simulation methods in the study and analysis of the widely used
Wright-Fisher process of evolutionary genetics suggested that multitype branching processes
could be used to eliminate the assumptions of constant population size which characterizes
most applications of this process in the study of biological evolution.
Despite this extensive literature, little attention has been paid to two sex process as well as
processes that are density dependent and evolve on a time scale of discrete generations. By
definition, two sex branching processes entail the formation of couples consisting of a female
and male, who produce offspring of both sexes. By a density dependent process, we mean that
the expected number of offspring produced by a couple as well as the survival of offspring
may depend on total population size in every generation. In this chapter such processes will
be referred to as self regulating branching processes. In most classes of branching processes
considered in the literature heretofore, total population size increases stochastically at a
geometric rate so that there is no finite bound on total population size. This property is
objectionable, because in real biological populations, the size of a population cannot increase
indefinitely due limitations of resources and the environment. As will be shown by examples
in subsequent sections, in the class of self regulating branching processes described in this
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chapter and elsewhere this objectionable property of classical branching processes has been
removed.
Two sex processes also allow for the inclusion of multitypes such as three or more genotypes
at some autosomal locus that provide a framework for the study of several components of
natural selection. Among these components are sexual selection, different expectations of the
number of offspring among couple types and the differential survival by genotypes of the
offspring. Sexual selection will be characterized in terms of probabilities of a female or male
selecting a mate according to genotype or phenotype of its prospective partner. Differential
expectations of the number of offspring among couple types as well survival of the offspring
will be expressed as functions of total population size. A preliminary version of the two
sex process described in this chapter may be found in Mode (1995) and more developed
versions of this process may be found in the forthcoming book Mode and Sleeman (2010-2011)
(13) chapter 11. The formulation developed in this book is at a general level in an attempt
to provide a framework within which many versions of the process may be considered.
However, the version of the two sex self regulating process described in this chapter is a
simplified version of a more general process, which entailed an almost complete rewrite of the
material in the forthcoming book. This rewrite is sufficient to make this chapter self contained
without laborious references to yet unpublished literature.
The class of branching processes just described would be very difficult to analyze if an
investigator had to resort to only the methods of classical mathematics. But thanks to the
continuing development of powerful Monte Carlo simulation methods, such processes can be
described algorithmically and analyzed by conducting Monte Carlo simulation experiments
and summarizing the simulated data statistically. In this chapter, an outline of the algorithms
involved in the computer implementation of such processes will be given and the results of
a few illustrative Monte Carlo simulation experiments will be presented as exercises in the
predictive implications of the model. Another property that is included in the formulation is
that of embedding of non-linear deterministic models in the stochastic process, which make
it possible to compare the predictive performance of the stochastic and deterministic models
in any computer experiment. It should also be mentioned that all the computer experiments
reported in this chapter were motivated by the book Wells (2008) (16), which presents evidence
based on mutations in mitochondrial and Y chromosome DNA that all humans existing on
planet earth today are descendants of small groups of hominids that migrated out of Africa
50,000 to 60,000 years ago.

2. Parameterization of couple formation processes

In the two sex branching process under consideration, offspring of the next generation are
produced by couples consisting of a female and male. The first step in the formulation of this
class of stochastic processes is to describe the couple formation process, which, among other
things, may involve a type of sexual selection in which females or males have preferences
as to the genotype or phenotype of their prospective sexual partners. When one includes
genetics in a formulation, it will also be necessary to describe the set of genotypes under
consideration in some suitable notation. For example, let G = (i, j, k, · · ·) be the set of
gametes under consideration with respect to some autosomal locus or set of autosomal
loci. A diploid genotype will be denoted by the ordered pair (i, j) , where i is the gamete
contributed by the female parent and j is the gamete contributed by the male parent. Let
T f = ((i, j) | i ∈ G, j ∈ G) denote the set of female genotypes and define the set Tm similarly
for males. Elements of these sets will be denoted by τf and τm, respectively. A couple will be
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of type κ =
(

τf , τm

)
if the female is of genotype τf and the male is of genotype τm and let

K denote the set of all couple types. Either females or males who are not members of couples
will be called singles. In practice, singles in some generation will consist of all offspring of the
couple types present in that generation.
For the sake of simplicity, in this paper only one autosomal locus with two alleles will be
under consideration. For this case the set of gametes will be denoted by G = (A, a) so that if
the gametes contributed by the maternal and paternal parents are distinguished, then the set
of genotypes T f for females would contain 4 elements, and, similarly, the set Tm of genotypes
for males would also contain 4 elements. For this case, it follows that the set K of couple types
would contain 16 elements.
Let the random function X

(
n; τf

)
denote the number of single females present in the

population in generation n = 0, 1, 2, · · · of genotype τf , and similarly let the random function
Y (n; τm) denote the number of single males of genotype τm in generation n. Given these
numbers of single females and males, let the random function NC (n; κ) ≥ 0 denote the
potential number of couples formed in generation n from the single females and males. A
helpful way of thinking about the random function NC (n; κ) is that it represents the maximum
number of couples that could be formed, given the interactions of single females and males in
their searches for mates in generation n.
Let the random function Z (n; κ) denote that actual number of couples of type κ formed in
generation n. Then, in the formulation under consideration, it will be assumed that Z (n; κ)
is a realization of a binomial random variable with index NC (n; κ) and probability p (κ) for
all κ ∈ K. From this assumption, it follows that 0 ≤ Z (n; κ) ≤ NC (n; κ) with probability
one for all κ ∈ K and generations n. As will be demonstrated subsequently, this condition
plays an essential role in showing that the random functions Z (n; κ) satisfy a set of necessary
constraints imposed by the number of single females and males eligible to form couples in
any generation n with probability one.
A basic component of the formulation under consideration is that of social contact
probabilities among single females and males in their searches for mates. Given a single female

of genotype τf ∈ T f in generation n, let γ f

(
n; τf , τm

)
denote the conditional probability that

she has contact with a single male of genotype τm ∈ Tm. The conditional contact probability

γm

(
n; τm, τf

)
for single males of genotype τm ∈ Tm in generation n is defined similarly.

Subsequently, it will be shown that these contact probabilities for single females and males will
be constructed in every generation from, among other things, the frequencies of the genotypes
within the female and male subpopulations of singles. In this construction, all probabilities
will belong to the closed interval [0, 1] , and for females, for example, will satisfy the condition

∑
τm∈Tm

γ f

(
n; τf , τm

)
= 1 (2.1)

for all τf ∈ T f and generations n. An analogous condition holds for the contact probabilities
of single males.
Let

γ f

(
n; τf

)
=

(
γ f

(
n; τf , τm

)
| τm ∈ Tm

)
(2.2)

denote a vector of contact probabilities for single females of genotype τf in generation n and
let γm (n; τm) denote a similar vector for single males in generation n. For single females of
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genotype τf in generation n, let the random function Z f

(
n; τf , τm

)
denote the number of

single males of genotype τm selected as potential sexual partners, and let

Z f

(
n; τf

)
=

(
Z f

(
n; τf , τm

)
| τm ∈ Tm

)
(2.3)

denote a vector of these random functions. Given the number X
(
n; τf

)
of single females of

genotype τf in generation n, it will be assumed that the vector Z f

(
n; τf

)
has a conditional

multinomial distribution with index X
(
n; τf

)
and probability vector γ f

(
n; τf

)
. In symbols,

Z f

(
n; τf

)
∼ CMultinom

(
X

(
n; τf

)
, γ f

(
n; τf

))
. (2.4)

Similarly, let Zm (n; τm) denote the corresponding vector of random functions for single males
of genotype τm in generation n. Then, it will also be assumed that

Zm (n; τm) ∼ CMultinom (Y (n; τm) , γm (n; τm)) . (2.5)

Having defined the distributions of the vectors Z f

(
n; τf

)
and Zm (n; τm) in (2.4) and (2.5) ,

it is now possible to state how realizations of the random function NC (n; κ) in any generation

n and couple type κ =
(

τf , τm

)
will be computed. Because the potential number of pair-wise

contacts of type
(

τf , τm

)
cannot exceed the number of single females of genotypes τf seeking

single males of genotype τm and similarly the number of single males of genotype τm seeking
singly females of genotype τf , it follows that a plausible choice for the random function
NC (n; κ) is

NC (n; κ) = min
(
Z f

(
n; τf , τm

)
, Zm

(
n; τm, τf

))
, (2.6)

for all κ ∈ K and generations n, where κ =
(

τf , τm

)
. As shown above, if the random function

Z (n; κ) is the actual number of couple of type κ realized in generation n, then Z (n; κ) ≤
NC (n; κ) for all κ ∈ K and generations n. Also note that from (2.4) it follows that

∑
τm∈Tm

Z f

(
n; τf , τm

)
= X

(
n; τf

)
(2.7)

with probability one for all genotypes τf ∈ T f and generations n. Therefore, from (2.6) is can
be seen that

∑
τm∈Tm

NC

(
n; τf , τm

)
≤ ∑

τm∈Tm

Z f

(
n; τf , τm

)
= X

(
n; τf

)
(2.8)

for all generations n and genotypes τf ∈ T f . Therefore, the total number of females of

genotype τf in couples of the types
(

τf , τm

)
such the τm ∈ Tm will not exceed the number

of single females of this genotype X
(
n; τf

)
present in the population prior to the time the

couple formation process occurred. By a similar argument, it can be shown that

∑
τf∈T f

NC

(
n; τf , τm

)
≤ ∑

τf∈T f

Zm

(
n; τm, τf

)
= Y (n; τm) (2.9)
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with probability one for all τm ∈ Tm and generations n. Thus, the number of couples with
males of genotype τm ∈ Tm will never exceed the number of single males Y (n; τm) of this
genotype present in the population before the couple formation processes occurred in every
generation n with probability one.
The last step in the formulation of the couple formation process is that of defining a procedure
for calculating the contact probabilities for single females and males, which will depend on
acceptance probabilities for both females and males. For example, given a single female of

genotype τf ∈ T f , let α f

(
τf , τm

)
denote the conditional probability that she finds a single

male of genotype τm ∈ Tm acceptable as a sexual partner. Similarly, for a single male of

genotype τm, let αm

(
τm, τf

)
denote the conditional probability that he finds a single female

of genotype τf acceptable as a sexual partner. These acceptance probabilities will be discussed
in more detail subsequently.
All contact probabilities will depend on the frequencies of the genotypes in the single
populations of females and males prior to the beginning of the couple formation process.
By definition, the frequency of genotype τf in the single female population in generation n is

U f

(
n; τf

)
=

X
(
n; τf

)

X (n; ◦)
, (2.10)

where
X (n; ◦) = ∑

τf∈T f

X
(
n; τf

)
(2.11)

and X (n; ◦) > 0. If X (n; ◦) = 0, then U f

(
n; τf

)
= 0. Similarly, let Um (n; τm) denote the

frequency of genotype τm ∈ Tm in the male population of singles in generation n.
By the law of total probability, the probability that a single female of genotype τf ∈ T f has
contact with some single male is

∑
τm∈Tm

Um (n; τm) α f

(
τf , τm

)
. (2.12)

By an application of Bayes’ formula, it follows that conditional probability that a single female
of genotype τf in generation n has contact with a single male of genotype τm is

γ f

(
n; τf , τm

)
=

Um (n; τm) α f

(
τf , τm

)

∑τm∈Tm
Um (n; τm) α f

(
τf , τm

) . (2.13)

Similarly, the conditional probability that a single male of genotype τm has contact with a
single female of genotype τf in generation n is

γm

(
n; τm, τf

)
=

U f

(
n; τf

)
αm

(
τm, τf

)

∑τf∈T f
U f

(
n; τf

)
αm

(
τm, τf

) . (2.14)

From these equations, it can be seen that if there are positive constants such that α f

(
τf , τm

)
=

a and αm

(
τm, τf

)
= b for all types of contacts,

(
τf , τm

)
and

(
τm, τf

)
, then

γ f

(
n; τf , τm

)
= Um (n; τm) (2.15)
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and
γm

(
n; τm, τf

)
= U f

(
n; τf

)
. (2.16)

When these conditions hold, the mating system is, by definition, random.
For a case of one autosomal locus with two alleles under consideration, the defining and
numerical assignments of the acceptance probabilities for both single females and males
reduce to considering 9 acceptance probabilities for each sex. Let

T = (AA, Aa, aa) = (1, 2, 3) (2.17)

denote the set of genotypes for each sex. Then, for the case of single females, the matrix of
acceptance probabilities takes the form

A f =

⎛

⎝
α f (1, 1) α f (1, 2) α f (1, 3)
α f (2, 1) α f (2, 2) α f (2, 3)
α f (3, 1) α f (3, 2) α f (3, 3)

⎞

⎠ . (2.18)

There is also a similar matrix of acceptance probabilities for single males. At first sight, it may
strike a reader that assigning numerical values of 18 probabilities may be an insurmountable
task. But, in subsequent sections, it will be shown that meaningful genetic examples may be
considered in computer simulation experiments by assigning numerical values to as few as
two parameters for each sex.
Another version of a couple formation process described in this section for the case of sexually
transmitted diseases may be found in the book Mode and Sleeman (2000) (12).

3. Gamete and offspring distribution for couples

In the class of two sex processes under consideration, describing the evolution of a diploid
population on a discrete time scale of generations, genes are passed on in the offspring of

those couples who reproduce. For, example consider a couple of type κ =
(

τf , τm

)
, where the

genotype of the female is τf and that of the male is τm. For the autosomal locus with two alleles
under consideration each of these genotypes will belong the to set (AA, Aa, aa) . From now
on for the sake of simplicity, the parental origin of the gametes making up a genotype will not

be distinguished as to whether it is maternal or paternal. Given a couple of type κ =
(

τf , τm

)

in some generation, let p (κ; τ) denote the conditional probability that the couple produces an
offspring of genotype τ ∈ (AA, Aa, aa) . Initially, the sex of the offspring will be ignored, but,
subsequently, it will be taken into account in the formulation.
One of the significant processes underlying evolution is that of mutation. For the sake of
simplicity, it will be assumed that mutations occur only among the two alleles in the set
(A, a) = (1, 2) . Let µ12 denote the conditional probability per meiosis that allele A mutates to
allele a, and, similarly, let µ21 be the conditional probability that allele a mutates to allele A
per meiosis. In what follows, it will be helpful to represent mutation probabilities in the form
of the 2 × 2 matrix

M =

(
µ11 µ12

µ21 µ22

)
(3.1)

where the diagonal elements are chosen such that each row of this matrix sums to one.
Observe that µ11 is the conditional probability that allele A does not mutate per meiosis, and,
similarly, µ22 is the conditional probability that allele a does not mutate per meiosis.
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The next step in the formulation is to derive the gametic distribution for each genotype under
the assumption that mutation occurs. Let pg (τ; ν) denote the conditional probability that a
genotype τ ∈ (AA, Aa, aa) = (1, 2, 3) produces a gamete of type ν ∈ (A, a) = (1, 2) during
meiosis. To illustrate the procedure for deriving these probabilities, suppose τ = AA = 1
and ν = A = 1. Then the probability that the left allele in the genotype AA is contributed
to the gene pool of the population without mutation is µ11/2. Similarly the right allele in the
genotype AA is contributed to the gene pool of the population without mutation is µ11/2.
Thus, pg (1; 1) = µ11 and by a similar argument it may be shown that pg (1; 2) = µ12. By
using this argument repeatedly, it can be shown that pg (2; 1) = (µ11 + µ21) /2, pg (2; 2) =
(µ12 + µ22) /2, pg (3; 1) = µ21 and pg (3; 2) = µ22.

Next consider a couple of type κ =
(

τf , τm

)
and let pc (κ; τ) denote the conditional probability

that a couple of type κ produces an offspring of genotype τ = (ν, ν′) . Then, under the
assumption that female and male gametes unite independently to form a zygote, it follows
that

pc (κ; τ) = pg
(

τf ; ν
)
pg

(
τm; ν′

)
(3.2)

for all couple types κ ∈ K and genotypes τ = (ν, ν′) ∈ (AA, Aa, aa) . The collection of
probabilities in (3.2) as τ varies over the set (AA, Aa, aa) will be referred to as the offspring
distribution for a couple type κ ∈ K. Note that for each couple type κ ∈ K there corresponds
an offspring distribution. For the case under consideration in which the parental origin of the
gametes making up an individual is not accounted for, it is easy to see that there would be 9
types of couples. In what follow, it will be helpful to let the vector

pc (κ) = (pc (κ; τ) | τ ∈ (AA, Aa, aa)) (3.3)

denote the offspring distribution for a couple of type κ ∈ K.
Up to now in our formulation, the only component of natural selection that has been
accommodated in the formulation is that of sexual selection. Another component of natural
selection that will be accommodated in the model is that of reproductive success of
each couple type κ ∈ K. Let N (κ) denote a random variable, taking values in the set
(m | m = 0, 1, 2, · · ·) of nonnegative integers, be defined for each couple type κ ∈ K, and
let W (κ; τ) denote a random variable representing the number of offspring of genotype τ
produced by a couple of type κ ∈ K in any generation. To simplify the notation, it will also be
helpful to let

W (κ) = (W (κ; τ) | τ ∈ (AA, Aa, aa)) (3.4)

denote a vector representing the number of offspring of each of the three genotypes produced
by a couple of type κ under consideration in some generation. It will be assumed that, given
a realization of the random variable N (κ) , the random vector W (κ) has a multinomial
distribution with an index N (κ) and probability vector pc (κ) . In symbols,

W (κ) ∼ CMultinom (N (κ) , pc (κ)) . (3.5)

To complete the formulation of this module of the model, it will be assumed that each random
variable N (κ) has a Poisson distribution with parameter λ (κ) , where κ ∈ K. For the case
under consideration, there are three genotypes (AA, Aa, aa) = (1, 2, 3) and 9 couple types. Let
λ (i, j) denote the Poisson parameter for a couple of type κ = (i, j) . Then, the nine Poisson
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parameters under consideration may be represented in the form of a 3 × 3 matrix

Λ =

⎛

⎝
λ (1, 1) λ (1, 2) λ (1, 3)
λ (2, 1) λ (2, 2) λ (2, 3)
λ (3, 1) λ (3, 2) λ (3, 3)

⎞

⎠ . (3.6)

When faced with models with many parameters, it is always of interest to find ways in which
the number of parameters to be considered may be reduced. For the case of the matrix in
(3.6) it seems reasonably to assume that the matrix Λ is symmetric. That is λ (i, j) = λ (j, i)
for all pairs. In terms of the genotypes of the female and male making up a couple, it seems
reasonable to assume that couples of type (AA, aa) or (aa, AA) would on average produce the
same number of offspring per generation. Of course, it may also be plausible to assume that
mothers of genotype AA are more successful in producing offspring than those of genotype
aa, but the exploration of such questions in computer experiments will be left to readers.

4. A Self regulating stochastic population process

In this section some algorithms will be described for computing realizations of the two sex
stochastic process under consideration. The aim of these algorithms is set up a procedure such
that, given some number of generations G such as four to six thousand, a number M ≥ 1 of
replications of the stochastic evolution of the process for G generations may be computed.
This sample of M realizations of the process will then be summarized statistically and will
be used as a graphic description of the variability among the realizations of the process

for G generations of evolution. In any generation n, for n = 0, 1, 2, 3, · · ·, let X
(
n; τf

)
and

Y (n; τm) denote, respectively, the number of single females and males in the population with

genotypes τf and τm. In any simulation experiment, the initial numbers X
(

0; τf

)
and Y (0; τm)

will be assinged by an experimenter. Given these numbers of single females and males in
some generation n, let the random function Z (n; κ) denote the number of couples of type

κ =
(

τf , τm

)
formed in generation n from the single females and males.

In generation n ≥ 1, let the random function T (n; κ; τ) denote the total number of individuals
of genotype τ ∈ T = (AA, Aa, aa) produced by couples of type κ in generation. For, given
Z (n; κ) ≥ 0, let (Wν (κ; τ) | ν = 1, 2, · · ·, Z (n; κ)) be a collection of conditionally independent
random variables whose common distribution is that of the random variable W (κ; τ) in (3.5) .
Then, T (n; κ; τ) is the random sum

T (n; κ; τ) =
Z(n;κ)

∑
ν=1

Wν (κ; τ) , (4.1)

where T (n; κ; τ) = 0 if Z (n; κ) = 0. Let the random function V (n; τ) denote the total number
of offspring of genotype τ produced in generation n. Then,

V (n; τ) = ∑
κ∈K

T (n; κ; τ) . (4.2)

The sex of each genotype will be considered subsequently. The total number of offspring
produced by couples in generation n is given by the random function

T (n) = ∑
τ∈T

V (n; τ) , (4.3)
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which will play a role in the survivability of each offspring in generation n.
At this point in the discussion, the sex of each offspring will be taken into account. Let p f

denote the probability that an offspring is female and let pm denote the probability that an
offspring is male. Then, given V (n; τ), the total number of females offspring of genotype
τf = τ, say XT (n; τ) , is given by a realization of a conditional binomial random variable with
index V (n; τ) and probability p f . In symbols,

XT (n; τ) ∼ CBinom
(
V (n; τ) , p f

)
(4.4)

and the number of male offspring of genotype τm = τ is given by YT (n; τ) = V (n; τ) −
XT (n; τ) .
If at this point in the description of the algorithms, a reader may concerned as to the
validity of these computations, because it would make more sense to simulate whether
an offspring is female or male for each couple type. In this connection, it is suggested
that the following property of a sum of independent binomial random variables Xk with
respective indices Nk for k = 1, 2, · · ·, M with a common probability p f be recalled. For in
this case, the random variable Y = X1 + X2 + · · ·XM has a binomial distribution with index
N = N1 + N2 + · · · + NM and probability p f . Hence, the computational procedure indicated
in (4.4) is justified, and, moreover, it is more efficient from the computational point of view
than doing the computation for each couple type separately.
At this point in the formulation of the model, another component of natural selection will be
taken into account; namely, the ability of the female and male offspring of generation n to
survive, form couples and contribute offspring to generation n + 1. For a female of genotype

τf ∈ T in generation n, let s
(
n;T (n) , τf

)
denote the conditional probability that she survives

to reproduce in generation n + 1, given T (n) . Then, it will be assumed that s
(
n;T (n) , τf

)

has a parametric form of a Weibull survival function

s f

(
n; T (n) , τf

)
= exp

(
−(β f

(
τf

)
T (n))α f (τf )

)
(4.5)

for every τf ∈ T, where β f

(
τf

)
and α f

(
τf

)
are positive parameters. The corresponding

survival function sm (n;T (n) , τm) for males of genotype τm is defined similarly with
parameters βm (τm) and αm (τm) .

Let the random functions X
(
n + 1; τf

)
and Y (n + 1; τm) , respectively, denote the number of

single females and males in generation n of genotypes τf and τm who survive to produce the
offspring of generation n + 1. Then, it will be assumed that

X
(
n + 1; τf

)
∼ CBinom

(
XT

(
n; τf

)
, s f

(
n; T (n) , τf

))
(4.6)

for every τf ∈ T. Similarly, it will be assumed that

Y (n + 1; τm) ∼ CBinom (YT (n; τm) , sm (n; T (n) , τm)) (4.7)

for every τm ∈ T.
Given realizations of the random functions in (4.6) and (4.7) , the algorithms developed
in section 2 may be applied to compute realization of the collection of random functions
(Z (n + 1; κ) | κ ∈ K) for generation n + 1. It should also be observed that, because the
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parameters in the Weibull survival function depend on sex and genotype, values of these
parameters may be assigned by sex, genotype or a combination of sex and genotype. Thus,
in implementation of the formulation under consideration, the α and the β parameters may
differ among genotypes in each sex. In subsequent computer experiments, examples of these
differences will be given.

5. Non-linear deterministic equations embedded in the stochastic population

process

Some stochastic formulations start with a deterministic set of equations, such as difference
or differential equations in continuous or discrete time, and then proceed to extend them to
stochastic model by adding a stochastic "error" term or some other random components. In
this section, however, a different approach will be followed in that, given a stochastic process,
a set of recursive non-linear difference equations will be embedded in the stochastic process
discussed in the previous section by a procedure that entails the idea of estimating the sample
functions of the process. To illustrate the idea of estimating the sample function of a stochastic
process, let the sequence of random variables X1, X2, X3, · · · denote some Markov process in
discrete time and suppose each random variable in this sequence has a finite expectation.
It is well known that if one is considering a Markovian sequence of random variables, then the
best estimate, in the sense of mean square error, of the sample function Xn+1 based on some
function of the random variable Xn is to find some function of Xn, say f (Xn) , such that the
conditional expectation

E
[
(Xn+1 − f (Xn))

2 | Xn

]
(5.1)

is a minimum. By using well known properties of conditional expectations, it can be shown
that

f (Xn) = E [Xn+1 | Xn] (5.2)

Thus, if we let X̂n+1 denote the best estimate of Xn+1, then

X̂n+1 = E [Xn+1 | Xn] . (5.3)

Observe that the conditional expectation on the right is a random variable, since it is a function
of the random variable Xn. Quite often, the conditional expectation on the right is a non-linear
function of the random variable Xn so that finding a useful expectation of this random variable
if often difficult or nearly impossible. But, if one knows that the value of an initial random
variable X0, then the estimate

X̂1 = E [X1 | X0] (5.4)

is known exactly. Next consider the estimate

E [X2 | X1] , (5.3)

which is also a non-linear function of the X1. But, an estimate of X1 is given in (5.4) . Thus, it
seems reasonable, to choose

X̂2 = E
[
X2 | X̂1

]
(5.4)

as an estimate of X2. By continuing this procedure, one arrives at the recursive system

X̂n+1 = E
[
Xn+1 | X̂n

]
(5.5)
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for n = 0, 1, 2, · · ·. In subsequent sections of this chapter, trajectories that have been computed
using a non-linear difference equation or equations of form (5.5) will be compared graphically
with a statistical summarization of a sample of realizations of the stochastic population
process discussed in the preceding section.
As a first step in applying the ideas just discussed, let the symbol B (n) denote a realization

of the sample functions of the population process in generation n. Then, from (4.6) and (4.7)
it follows that for any arbitrary genotype τ ∈ T

E [X (n+ 1; τ) | B (n)] = s f (n;T (n) , τ)XT (n; τ) . (5.6)

Similarly,
E [Y (n + 1; τ) | B (n)] = s f (n;T (n) , τ)YT (n; τ) . (5.7)

From these equations, it can be seen that the random variables T (n) , XT (n; τ) and YT (n; τ)
will have to be estimated. From (4.4) it follows that

E [XT (n; τ) | B (n)] = p fV (n; τ) , (5.8)

and
E [YT (n; τ) | B (n)] = pmV (n; τ) . (5.9)

Thus, the random function V (n; τ) , which denotes the total number of offspring of genotype
τ produced by couples in generation n, will also have to be estimated.
From (4.1) and (4.2) it can be seen that the first step in estimating the random function V (n; τ)
is that of estimating the random function

T (n; κ; τ) =
Z(n;κ)

∑
ν=1

Wν (κ; τ) . (5.10)

Observe that for every ν = 1, 2, · · ·,Z (n; κ) , it follows from (3.2) and (3.5) that

E [Wν (κ; τ)] = λ (κ) pc (κ; τ) . (5.11)

Therefore, from (5.10) it can be seen that

E [T (n; κ; τ) | B (n)] = Z (n; κ) λ (κ) pc (κ; τ) . (5.12)

From this equation, it follows that the random function Z (n; κ) needs to be estimated.
To estimate this random function, section 2 should be consulted. From this section, it can be
seen that

E [Z (n; κ) | B (n)] = Nc (n; κ) p (κ) , (5.13)

where p (κ) is the probability that a couple of type κ ∈ K is formed during any generation n.
From (2.6) it can be seen that the random function Nc (n; κ) is computed from the random

functions Z f

(
n; τf , τm

)
and Zm

(
n; τm, τf

)
for couples of type κ =

(
τf , τm

)
. But, these

random functions are, respectively, elements of random vectors of multinomial distributions

with probability vectors γ f

(
n; τf

)
and γm (n; τm) and indices X

(
n; τf

)
and Y (n; τm) , see

(2.1) − (2.5) for details. From the properties of multinomial distribution, it follows that

E
[
Z f

(
n; τf , τm

)
| B (n)

]
= X

(
n; τf

)
γ f

(
n; τf , τm

)
(5.14)
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and
E

[
Zm

(
n; τm, τf

)
| B (n)

]
= Y (n; τm) γm

(
n; τm, τf

)
. (5.15)

Observe that the probabilities γ f

(
n; τf , τm

)
and γm

(
n; τm, τf

)
are computed from the

realized random functions in every generation n, see (2.10) − (2.15) for details. In particular,
in the initial generation 0 integers are assigned to the initial values X (0; τ) and X (0; τ) for

all τ ∈ T. Given these initial values, γ f

(
0; τf , τm

)
and γm

(
0; τm, τf

)
could be calculated.

Thus, the estimate of the random function Z f

(
n; τf , τm

)
in generation 0 would be computed

according to the formula

Ẑ f

(
0; τf , τm

)
= X

(
0; τf

)
γ f

(
0; τf , τm

)
, (5.16)

and similarly

Ẑm

(
0; τm, τf

)
= Y (0; τm) γm

(
0; τn, τf

)
. (5.17)

Finally, the random function Nc (n; κ) would be estimated in generation n = 0 by using the
formula

N̂C (0, κ) = min
(
Ẑ f

(
0; τf , τm

)
, Ẑm

(
0; τm, τf

))
(5.18)

for every couple of type κ =
(

τf , τm

)
∈ K.

Given these estimates, the random function V (n; τ) denoting the total number of offspring of
genotype τ produced in generation n = 0 would be estimated using the formula

V̂ (0; τ) = ∑
κ∈K

N̂C (0, κ) p (κ) λ (κ) pc (κ; τ) . (5.19)

Therefore, from (5.6) − (5.9) it follows that

X̂ (1; τ) = s f

(
0; T̂ (0) , τ

)
p f V̂ (0; τ) , (5.20)

and
Ŷ (1; τ) = sm

(
0; T̂ (0) , τ

)
pmV̂ (0; τ) (5.21)

for all τ ∈ T.
Now suppose the procedure just described in continued recursively so that in generation n ≥
2 we arrive at the collection of estimates

B̂ (n) =
(
X̂ (n; τ) , Ŷ (n; τ) | τ ∈ T

)
. (5.22)

Then the estimates of these random functions in generation n + 1 would be computed using
the equations

X̂ (n + 1; τ) = s f

(
n; T̂ (n) , τ

)
p f V̂ (n; τ) , (5.23)

and
Ŷ (n + 1; τ) = sm

(
n; T̂ (n) , τ

)
pmV̂ (n; τ) . (5.24)

As can be seen form the derivation just completed, the pair of equations (5.23) and (5.24) are
purely deterministic and depend on the numerical values that are assigned to the parameters
of the model in any computer experiment as well as the initial conditions. Given these
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parameter assignments in generation n = 0 and the initial conditions, trajectories based on
the embedded deterministic model could be computed for generations n = 1, 2, · · ·, G, where
G is some preassigned integer. It would also be possible to compute a sample of M ≥ 2 of
Monte Carlo replications of realizations of the process for G generations, which could then
be statistically summarized in the form of quantile and mean trajectories over G generations.
In such experiments, an interesting question to ask is: do the predictions for the evolution
of a population for G generations computed by using the embedded deterministic model
compare in some favorable or unfavorable sense with the predictions of the stochastic process?
In subsequent sections of this chapter, the results of a number of computer experiments will
be reported in an attempt to provide some answers to this question.

6. Failure of deterministic model to predict the evolution of the stochastic process

Among the conceptual schemes of evolution is the idea that many existing populations
evolved from a small founder population and beneficial mutations among them and their
descendants led to significant genetic transformations as the population evolved. For the
case of the present of the world wide human population, a reader may wish the consult the
interesting book by Wells (2006) (16) in which evidence is presented for the idea that various
sub-populations of man making up the present world population evolved from a small
founder population that migrated out of Africa in successive waves about 50,000 to 60,000
years ago. Another related theme is that humans also evolved in genetically significant ways
with the development of agriculture during the last 10,000 years, which provided a means
to gather in communities in which further cultural evolution occurred at various geographic
regions around the world. Cultural evolution in turn, which progressed on a shorter time
scale than biological evolution, made it possible for populations to grow to unprecedented
sizes, which increased the probability that beneficial mutations would emerge and become
established in a population. For an extensive account of this view that human populations
have undergone significant genetic changes during the last 10,000 years, the interesting book
of Cochran and Harpending (2009) (3) with the title, "The 10,000 Thousand Year Explosion"
may be consulted.
The views just discussed motivated the computer experiment that will be reported in this
section, using the stochastic framework described in the preceding sections of this chapter.
To implement the embedded deterministic model described in section 5, 4,000 generations of
evolution were considered. If one assumes that in humans, the length of a generation is 15
years, the age most human females become fertile, then 4,000 generations would represent
about 4, 000 × 15 = 60, 000 years, which falls within the "out of Africa" hypothesis. If,
however, a generation is assumed to be 20 years, then 4,000 generations would represent
4, 000 × 20 = 80, 000 years. Thus, under both assumptions as to the time length of a
generation, 4,000 generations are adequate to cover the evolutionary time periods under
consideration. As indicated in previous sections of this chapter, the genetic evolution of a
population will be considered with respect to an autosomal locus with two alleles with the set
T = (AA, Aa, aa) = (1, 2, 3) of genotypes common to both sexes.
In the experiment reported in this section, two components of natural selection were
considered. The first was that sexual selection was in force among males so that the matrix
of acceptance probabilities for males were given the assinged values

Am =

⎛

⎝
0.1 0.1 0.9
0.1 0.1 0.9
0.1 0.1 0.9

⎞

⎠ . (6.1)
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Observe that according to this matrix, males of all genotypes 1, 2, and 3, prefer females
of genotype 3 = aa as sexual partners. By assumption sexual selection among females
was neutral in the sense that each element in the matrix of acceptance probabilities A f

was assigned the value 1. It was also assumed that the probability per generation that the
probability p (κ) that a pair of type κ formed a couple was p (κ) = 0.9 for all κ ∈ K.
Another component of natural selection considered in this experiment was that of differential
reproductive success as expressed in terms the matrix of expected values

Γ =

⎛

⎝
3 3 3
3 3 3
4 4 4

⎞

⎠ (6.2)

for Poisson distributions. According to these assignments of values, all those couples in which
the females were of genotype 3 = aa were most successful reproductively in the sense that
such couples produced an expected number of 4 offspring per generation; whereas the other
couple types produced on average only 3 offspring per generation.
Among the driving forces of evolution is that of mutation among the two alleles under
consideration. To take mutation into account is was assumed that the mutation matrix had
the numerical form

M =

(
µ11 10−6

10−7 µ22

)
, (6.3)

where the diagonal elements µ11 and µ22 were chosen such that the sum of each row the matrix
M was 1. Observe that by assumption the mutation A → a occurred with probability 10−6 per
generation, but the back mutation a → A occurred with probability 10−7 per generation.
With respect to the survival of the offspring for each generation, it was assumed that natural
selection was neutral in the sense that all parameters in the Weibull survival functions were the

same, see formula (4.5) . Let β f =
(

β f1, β f2, β f3

)
denote the vector of alpha parameters for

each of the three female genotypes and let βm denote the corresponding vector of parameters
for males. Throughout of all experiments reported in this chapter, the beta parameters for
females and males were assigned the common values (2, 2, 2) . Let alpha parameters for
females and males be denoted by the vectors β f and βm, respectively. For the experiment
reported in this section, both the beta vectors of the Weibull survival function were assigned
the common values β f = βm =

(
10−7, 10−7, 10−7

)
. Another way of viewing these parameter

assignments was that the environment in which the population evolved could support about
10,000,000 individuals of each sex in any generation.
It was also assumed that the evolution of the hypothetical population under consideration
evolved from a small founder population with the initial number of 100 females of genotypes
1 = AA as symbolized by the vector X (0) = (100, 0, 0) and that the initial population vector
for males had the form Y (0) = (105, 0, 0) , indicating that only genotype 3 = AA was present
in the initial female and male populations. Finally, it was assumed the p f , the probability an
offspring was female, had the value p f = 100/205 and that for males had the value pm =
105/205. Throughout all experiments reported in this chapter, it was assumed that the initial
conditions and values of parameters stated in this paragraph were in force.
Presented in Figure 1 are the graphs of the trajectories of the three genotypes, which were
computed using the embedded deterministic model described in section 5. In this figure, the
horizontal axis is expressed in generations and the vertical axis denotes the estimated number
of individuals of each genotype present in the population in each of the 4,000 generations.
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Fig. 1. Graphs of the Trajectories for the Three Genotypes as Computed by the Deterministic
Model for the Female Population

As can be seen from this figure, the trajectory for genotype 1 = AA rises to a little less that
2 × 106 individuals in less than 500 generations into the evolutionary time period considered
in the experiments; whereas the heterozygote, genotype 2 = Aa, did not rise to noticeable
numbers until about 2,000 generations of evolution. But, on the other hand, genotype 3 = aa,
which had selective advantages from the point of view of sexual selection and reproductive
success, did not rise to noticeable numbers in the population until a little less than 4,000
generations when it rose to predominance among the three genotypes. By generation 4,000
the numbers of individuals of this genotype appear to have converged to a constant with a
value greater than 2 × 106, while the numbers of the other two genotypes fell to values near
zero. It should also be mentioned that the deterministic graphs for the male population were
similar to those presented in 1.
The experiment just described was also carried out with the same parameter values and initial
numbers as those used for the deterministic projections displayed in 1, using the two sex
stochastic population stochastic process described in foregoing sections of this chapter. In this
Monte Carlo simulation experiment 100 replications of 4,000 generations of evolution were
computed and summarized statistically as described in Mode and Gallop (2008). Furthermore,
the random number generators described in that paper were also used in this and all other
Monte Carlo simulation experiments that are reported in this and subsequent sections of this
chapter. Curiously, in this Monte Carlo experiment, it was observed that none or very few
individuals of genotype 3 = aa arose in either the female or male sub-populations among the
100 replications of 4,000 generations of evolution.
This observation came as a surprise, because in other Monte Carlo simulation experiments
conducted with this model, it was observed that deterministic predictions based on the
embedded deterministic model were reasonable predictors for the stochastic process in the
long run, even though it would miss entirely the high levels of variation or stochasticity that
were observed among the 100 realizations of the process, during the beginning generations of
experiments. Similar very high levels of stochasticity in Monte Carlo simulation experiments
were also observed during those time periods of evolution when one genotype started its
evolution to predominance over the others. Consequently, the contrary observations made in
this experiment motivated a search of the parameter space of the model to find examples of
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chosen parameter values such that the embedded deterministic model was a better predictor
for the trajectories of the stochastic process in the long run. It is also important to mention
that without a formulation in which deteministic and stochastic approaches to modeling were
considered simultaneously within one structure, this discrepancy between the predictions
of a deteministic and a stochastic process would never have been realized. It is also very
interesting to note that if Monte Carlo simulation techniques had not been developed with
the help of many investigators over several decades, it would have been impossible to carry
out the computer experiments reported in this chapter.

7. A Case in which the Deterministic model was a better predictor of the stochastic

process

In the computer experiment reported in this section, all parameter values assigned in the
experiment reported in the preceding section were in force except that the vectors of beta
parameters β f and βm were assigned different values. In particular, the values chosen for

these vectors were β f = βm =
(
10−9, 10−9, 10−9

)
so that in this experiment the carrying

capacity of the environment for each sex and genotype was about 109 or one billion
individuals. The value of 10−9 was chosen, because in the experiment reported in the
preceding section, where the beta value 10−7 was used for all genotypes in both sexes, it was
thought that in the Monte Carlo simulation experiment the number of individuals of genotype
1 = AA in the female population did not become sufficiently large to ensure that genotype
3 = aa would occur with sufficiently high probability. As will be seen subsequently, the beta
value 10−9 was sufficient to ensure that the genotype 3 = aa arose in the early generations
of the experiment and in the long run became the predominant genotype in the population.
It should be mentioned that, even by today’s standards, a population of a billion people or
more people would be considered large and may be distributed over a geographic area which
would encompass several countries.
Presented in Figure 2 are the trajectories for the three genotypes, which were computed using
the deterministic model embedded in the stochastic process for the first 200 generations of a
computer simulation experiment simulating 4,000 generations of evolution.

Fig. 2. Deterministic Trajectories for the Three Genotypes in the Male Population for the First
200 Generations
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As can be seen from 2, genotype 3 = aa rose to predominance in the male population in
many fewer generations than that shown in 1 for the population of females. In this figure, it
can be seen that by about 50 generations of evolution, the number of individuals of genotype
1 = AA had risen to about 0.4× 108 = 40, 000, 000 individuals, which was sufficiently large to
ensure that the genotype 3 = aa did appear the in population after of about 120 generations
of evolution. After appearing in the population, this genotype quickly rose to predominance
and reached a constant value of over 28 individuals in the male population. It should also be
mentioned that, had the graphs for the female population been plotted, they would have been
very similar to those for the male population displayed in 2. In this experiment, the numbers
of individuals of each of the three genotypes converged to constants, which has been the case
for most experiments conducted with the embedded deterministic model.
Presented in Figure 3 are the Min,Q50, Max, Mean and SD of the trajectories for the
population of individuals of genotype 3 = aa, which were estimated from the first
200 generations of a sample Monte Carlo realizations of the stochastic process based on
100 replications of evolution for 4,000 generations. By way of definitions, the symbols
Min, Q50, Max, Mean and SD represent, respectively, the minimum, median, maximum, mean
and standard deviation of 100 realizations of the process at each of the 200 generations shown
in 3.

Fig. 3. Estimated Statistical Trajectories for Individuals of Genotype aa in the Male
Population in the First 200 Generations of Evolution

As can be seen from this figure, summarizing the results of a Monte Carlo simulation
experiment, genotype 3 = aa did not begin to appear in the population until about 100
generations into the projection as indicated by the Max trajectory, in contrast the experiment
reported in the previous section in which a significant number of the genotype did not appear
during 4,000 generations of evolution. At somewhat more than 120 generations, the Min
trajectory for the genotype 3 = aa begins its ascent to higher values and the Q50 and Mean
trajectories, which lie between the Min and the Max also begin their ascent to higher values.
At about 140 generations of evolution, all trajectories are close to each other and settle in to
values over 2 × 108 individuals. It is also very interesting to note that during of the period
between about 120 and 140 generations the trajectory for the standard deviation, SD, rises
to a maximum of about 0.5 × 28 individuals before it declined to small values at about 140
generations of evolution. This rise and fall of the SD trajectory is a signature of the presence
of high levels of stochasticity during the evolutionary period that genotype 3 = aa was rising
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to predominance in the population. If one relied only on the trajectories computed using
the deterministic model, this high level of stochasticity would have been missed entirely. In
should also be mentioned in passing, that if trajectories for the female population had been
plotted, they would have been very similar to those in 3.
It is also of basic interest to mention that the close proximity of the Min, Q50, Max and
Mean trajectories after about 140 generations of evolution is indicative of a stochastic process
converging to a quasi-stationary distribution for which the level of variation among the
realizations of the process is low as indicated by small values of the SD trajectory after about
140 generations of evolution. No formal treatment of this statement will be given here, except
to mention that the stochastic process under consideration may be viewed as a Markov chain
with a state space that will not be described here. But, if a reader is interested pursuing the
subject of quasi-stationary distributions further, it is suggested that this phrase be typed into
a search engine for the internet, where many references to this concept may be found.
If a generation time in human population is in the range of 15 to 20 years, then 200 generations
would consist of 200 × 15 = 3, 000 to 200 × 20 = 4, 000 years of evolution. The notion
that a case for sexual selection in humans may be made was the thought that in some
populations males preferred female sexual partners with blue eyes, which are inherited
as a recessive homozygous autosomal genotype aa. Of course, if it were assumed that
females or both females and males prefer sexual partners with blue eyes, the results of
such computer experiments would not have differed much from the one reported in this
section. Consequently, the experiment reported in this section lends credence to the notion
advanced by Cochran and Harpending (2009) (3) and others that during the last 10,000 years
as agriculture developed and populations became large, blue eyes may have risen by mutation
and rose to significant frequencies in some human populations due to the process of sexual
selection or perhaps some other form of selection. Computer simulation experiments, such as
the one reported in this section, are supportive of this notion.

8. Competitive advantage for one genotype is a sufficient condition for

evolutionary predominance

In the computer experiment reported in this section, all acceptance probabilities in the
matrices A f and Am were chosen as 1 so that, by definition, the mating system was random. It
was also assumed that each couple type, consisting of a female and male of given genotypes,
produced 4 offspring per generation; thus no genotype was had reproductive advantage over
the others. All other parameters of the model were the same as those used in the experiment in
section 7 except for the beta parameters that were assigned to each genotype for both sexes. In
the experiment reported in section 6, it was observed that when the probability of the mutation
A → a was assigned the value µ12 = 10−6, the reverse probability of mutation was assigned
the value µ21 = 10−7 and all beta parameters were assigned the value 10−7, then the mutant
genotype 3 = aa rose to predominance in the population when the embedded deterministic
model was used to compute the evolutionary trajectories for each of the three genotypes. In
the corresponding Monte Carlo simulation experiment, however, only very small numbers
of the mutant genotype 3 = aa appeared among the 100 replications of 4,000 generations of
evolution.
Similar results were observed in a preliminary experiment in which the beta parameters were
assigned the values β f = βm =

(
10−7, 10−7, 10−8

)
for both sexes, which, by assumption,

gave the mutant genotype 3 = aa a competitive edge over the other genotypes. In an
attempt to avoid the case in which the deterministic model was not a good predictor for the
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evolutionary behavior of stochastic model, the beta parameters for both sexes were chosen as
β f = βm =

(
10−8, 10−8, 10−9

)
in the experiment reported in this section. As will be shown

in what follows, these choices of parameter values were sufficient to show that after a rather
large number of generations of evolution, the mutant genotype 3 = aa rose to predominance
in the population according to both the deterministic and stochastic models.
Presented in Figure 4 are the evolutionary trajectories for the three genotype in the male
population as computed using the deterministic model. As can be seen form this figure,
the competitive advantage for genotype 3 = aa was sufficient for this genotype to become
predominant in the population at about 1,800 generations into the projection. In this
deterministic projection, the number of individuals of genotype 3 = aa converged to a
constant with a value greater than 2 × 108.

Fig. 4. Trajectories for the Three Genotypes in the Male Population for the First 2,500
Generations in an Experiment with 4,000 Generations

In Figure 5, the trajectories Min, Q50, Max, Mean and SD are plotted using for the first 2,500
generations of Monte Carlo simulation data consisting of 100 replications of 4,000 generations
of evolution.

Fig. 5. Estimated Statistical Trajectories for Individuals of Genotype aa in the Male
Population in the First 2,500 Generations of Evolution
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As can be seen from this figure, significant numbers of genotype 3 = aa did not appear in the
population until about 1,800 generations into a stochastic projection of 4,000 generations as
can be seen from the Max trajectory as it begins its nearly vertical rise for a level greater than
2 × 108. Unlike the experiment reported in section 7, the level of variability or stochasticity
was higher in this experiment in that the Min trajectory did not begin its steep rise until about
2,250 to 2,300 generations into the stochastic projection. Interestingly, the Q50 trajectory begins
its steep rise at a little more than 2,000 generations, which is approximately the midpoint
between the steep rise of the Max and Min trajectories. That the level of stochasticity among
the realizations of the process was high can be seen by observing that the SD trajectory had
a maximum greater than 1 × 108 at about 2,000 generations of evolution. Another interesting
feature of 5 is that, unlike previous experiments with the stochastic model, the Q50 and Mean
trajectories are distinct, during the evolutionary period when genotype 3 = aa was rising to
predominance in the population. The coalescence of all trajectories in this figure at about 2,500
generations is indicative of a stochastic process converging to a quasi-stationary distribution
with relatively low levels of variability among the realizations of the stationary process.
When compared with the experiment reported in section 7, the pace of evolution in this
experiment was rather slow. For example, if in humans a generation time is in the interval 15
to 20 years, then the period of evolutionary time covered in the above figures was in the range
2, 500 × 15 = 37, 500 to 2, 500 × 20 = 50, 000 years. It is interesting to note that this range is
within the estimated range of the "Out of Africa Hypothesis", in which it is postulated that all
humans that inhabit the earth today are descendants of waves of human migration out Africa
about 50,000 to 60,000 years ago.

9. An Example of slow evolution when mutation probabilities are small

In the experiment reported in this section, all values of parameters used in the experiment
in section 8 were retained except that the probabilities of mutation per generation were
chosen to be much smaller and the capacities to compete with other individuals for resources,
which depended on the genotype, were chosen to be orders of magnitude smaller. In
particular, the mutation probabilities per generation were assigned the values µ12 = 10−8

and µ21 = 10−9 and the beta parameters for both sexes were assigned the values β f = βm =(
10−10, 10−10, 10−12

)
. Observe in this experiment, the beta values 10−10 were two orders of

magnitude smaller than the mutation probability µ12 = 10−8 of the mutation A → a, which
was analogous to the values used in the experiment reported in section 8. In terms of actual
population size, these choices of beta parameters indicate, by assumption, that individuals of
genotypes 1 = AA and 2 = Aa of either sex could compete for resources only in populations
of sizes up to about 1010 individuals; whereas individuals of genotype 3 = aa of either sex
could compete for resources successfully in populations of sizes up to 1012 individuals. It is
suggested that reader compare these numbers with the estimated size of the present world
population of humans, which is thought to lie in the interval 6 to 7 billion individuals.
In preliminary experiments with the deterministic model, it was observed that no individuals
of genotype 3 = aa appeared in the population after 10,000 generations of evolution.
Consequently, it was decided to do an experiment which simulated 20,000 generations of
evolution based on the deterministic model. As can be seen from 6 below, mutant genotype
3 = aa did not rise to predominance in the population until about 18,000 generations of
evolution when its numbers rose almost vertically to a constant number of individuals with a
value of over 2 × 1011.
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Fig. 6. Evolutionary Trajectories for the Three Female Genotypes as Computed Using the
Deterministic Model

In terms of human evolution with generation times of 15 to 20 years, the time period of
evolution covered in this experiment was in the range 20, 000× 15 = 300, 000 to 20, 000× 20 =
400, 000 years. It is thought that Homo erectus, a hominid species ancestral to man, evolved in
Africa about 1.8 million years ago and spread out of Africa to as far as China. For further
information on this extinct species, it is suggested that the internet be consulted. When
compared to 1.8 million years of evolution time periods of 300,000 to 400,000 years are
relatively short. Even though in terms of recent evolutionary history of the hominid line, it is
doubtful whether population sizes ever attained those considered in this experiment, but it is
plausible that other combinations of numerical values of parameters could be found such that
genotype 3 = aa, with a superior ability to compete for resources, could rise to predominance
in a population within 300,000 to 400,000 years. With reference to human evolution, it is
plausible that a superior ability to compete for resources would be associated with increased
cognitive abilities, which may be in turn associated with enhanced neural networks in the
brains of individuals.
No attempt was made to do a stochastic version of the experiment reported in this section
by computing Monte Carlo simulations of the process for 100 replications of 20,000 years
of evolution, because it was doubtful that such an experiment could be completed in an
acceptable period of time. It was also doubtful if the desk top computers available to do such
an experiment had sufficient memory capacity to store the rather large arrays that would have
been generated.

10. Discussion

From the experiments reported in the preceding sections on the evolution of an autosomal
locus with two alleles by mutation and selection, a general conclusion that may be drawn
is that whether a beneficial mutation becomes established in a population depends not only
the probability of mutation per generation that an ancestral form of a gene mutates to a more
beneficial form but also on the ability of a mutant genotype to compete with other individuals
for available resources. At the molecular level many mechanisms may underlie the ability
of a mutant genotype to compete with other individuals, but in this section attention will be
focused only on two mechanisms that may be involved in this component of natural selection.
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One mechanism that comes to mind is that a mutant genotype may be able to process
available sources of food more efficiently, which may, for example, involve some change in the
chemical mechanisms of digestion such that an individual of a mutant genotype can extract
more calories from the same amount food than as an individual with an ancestral genotype
and would thus have more energy to expend in the search for food and other activities.
Another mechanism that may be involved in a beneficial mutation is that individuals of
a mutant genotype may have increased cognitive abilities, which result in the invention of
technologies and methods to greatly expand the amount of food that can be extracted from
a given geographical region. Another beneficial impact of increased cognitive abilities is that
such individuals may be more adept at passing on information from generation to generation
and would thus increase the survivability of individuals with such genotypes over many
generations. It is beyond the scope of this chapter to further pursue the evolution of the human
brain, but, it is suggested that an interested series of lectures on this and other subjects by
Sapolsky (2005) (14) be consulted.

One of the limitations of the class of branching processes described in this chapter is
that attention has been focused only on discrete generations of individuals and not on
accommodating the existence of many birth cohorts in a population at any time, which
provides a milieu for the passing of information from the older to younger individuals.
This passing of information and techniques from older to younger individuals is among the
defining characteristics of human populations, and there is little doubt that this educational
process has played a significant role in the development of civilization as we know it today.
An example of the outcome of this type of activities in human populations are the inventions
of techniques and the passing on of information from generation to generation in man as
agriculture developed during the last 10,000 years. It is also beyond the scope of this chapter
to give a detailed account of the evolution of agriculture and the rise of urban communities,
but it is suggested that an interested reader consult a series of lectures by Sojka (2009) (15),
where this and other related subjects are treated in more detail.
In chapter 12 of the forthcoming book, Mode and Sleeman (2010-2011) (13), the two sex
branching process described in this chapter has been extended to an age dependent process
in a preliminary formulation that accommodates over lapping generations or the presence of
many birth cohorts in a population at any time. Within the framework of this formulation,
many more components of natural selection can be considered than in the formulation
described in this chapter. Among these components is a parametric survival function for long
lived species such as humans, which provide a means for calculating conditional probabilities
of death or survival for each sex, given an age group to which an individual belongs. In
principle, these parameterized conditional probabilities provide a means for changing the
conditional probabilities of death or survival for infants and the elderly as a population
evolves in a simulation experiment as conditions for survival either improve or decline
over time. Within this age dependent framework, components of natural selection involving
altruism may also be included in the formulation in terms of parental care of the young, which
increases their probabilities of survival. This age dependent formulation also has the self
regulating property in the sense that whether an individual of any age group or sex survives
to reproduce also depends of total population size as described in this chapter and elsewhere.
Although the case that age dependence should be included in mathematical models of human
evolution that accommodate age dependence is easy to justify, including age groups in a
formulation as well as a set of possible genotypes leads to the necessity of processing large
arrays in a computer, which can be problematic even if networks of computers are available to
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an investigator or team of investigators. Among the problems that arise is the need to consider
many couple types, which give rise to very large arrays, particularly when sexual selection
according to age as well as genotype or phenotype are included in a formulation. These
problems become particularly acute when computing samples of Monte Carlo realizations
of the process and inventing procedures for informative statistical summarizations of Monte
Carlo simulation data of high dimension. For these reasons, in the preliminary computer
experiments reported in chapter 12 of the forthcoming book (13) attention has been confined to
the deterministic model embedded in the stochastic process. Even in this deterministic case, a
special sub-case in which females choose male sexual partners without couple formation was
implemented to avoid the necessity of processing large arrays that arise when all possible
couple types are considered. Some cases were also implemented when the evolution of a
hypothetical species may be described in terms of only a few age groups. These cases served
as a "proof of principle" that the formulation could be implemented on a computer even
though much more work needs to be done on the age dependent formulation. It is hoped
that in the future other investigators will join in the quest to develop stochastic age dependent
self regulating population processes that may be implemented on computers. Even though
these age dependent formulations involve high dimensional structures, the implementation
of Monte Carlo simulation methods will play an essential role in developing an understanding
of these models.
There is one other property of the embedded deterministic model considered in this chapter
as well as those described in the forthcoming book Mode and Sleeman (2010-2011) (13) that
should be mentioned. Without exception, when some combinations of numerical values of
parameters are considered in computer experiments, the trajectories, which were computed
using a deterministic model, become chaotic after a small number of generations of evolution.
If a reader in interested in the subject chaos in deterministic systems, it is suggested that the
book Gulick (1992) (5) and others be consulted. In chapter 9 of the forthcoming book, Mode
and Sleeman (2010-2011) [13], examples of chaotic behavior of the embedded deterministic
model are presented along with statistical trajectories estimated from samples of Monte Carlo
simulation for a case of only one type of individual. As it turned out, in some cases the
behavior of the statistical trajectories displayed more regularity than the chaotic deterministic
trajectories. It is suggested that an interested reader consult chapter 9 of the forthcoming book
for more details on cases of chaotic behavior in one type self regulating branching processes.
For the sake of simplicity, no cases of chaotic behavior in the embedded deterministic model
have been included in this chapter.
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