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1. Introduction 

The rapid growth in genetics and molecular biology combined with the development of 
techniques for genetically engineering small animals has led to increased interest in in vivo 
small animal imaging (Cherry & Gambhir, 2001; Riemann et al., 2008; Rowland & R., 2008). 
Small animal imaging has been applied frequently to the imaging of small animals (mice 
and rats), which are ubiquitous in modeling human diseases and testing treatments. The use 
of PET in small animals allows the use of subjects as their own control, reducing the 
interanimal variability. This allows performing longitudinal studies on the same animal and 
improves the accuracy of biological models (Cherry, 2004). However, small animal PET still 
suffers from several limitations. The amounts of radiotracers needed, limited scanner 
sensitivity, image resolution and image quantification issues, all could clearly benefit from 
additional research (Chatziioannou, 2002; Tai & Laforest, 2005). 
Because nuclear medicine imaging deals with radioactive decay, the emission of radiation 
energy through photons and particles alongside with the detection of these quanta and 
particles in different materials make Monte Carlo method an important simulation tool in 
both nuclear medicine research and clinical practice. In order to optimize the quantitative 
use of PET in clinical practice, data- and image-processing methods are also a field of 
intense interest and development. The evaluation of such methods often relies on the use of 
simulated data and images since these offer control of the ground truth. Monte Carlo 
simulations are widely used for PET simulation since they take into account all the random 
processes involved in PET imaging, from the emission of the positron to the detection of the 
photons by the detectors. Simulation techniques have become an importance and 
indispensable complement to a wide range of problems that could not be addressed by 
experimental or analytical approaches (Rogers, 2006). 
Monte Carlo methods are numerical calculation methods based on random variable 
sampling. This approach has been used to solve mathematical problems since 1770 and has 
been named “Monte Carlo” by Von Neumann because of the similarity of statistical 
simulations to games of chance, represented by the most well known center for gambling: 
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the Monte Carlo district in the Monaco principality. The general idea of Monte Carlo 
analysis is to create a model, which is as similar as possible to the real physical system of 
interest, and to create interactions within that system based on known probabilities of 
occurrence, with random sampling of the Probability Density Functions (PDFs). As the 
number of individual events (called histories) increase, the quality of the reported average 
behavior of the system improves, meaning that the statistical uncertainty decreases. 
Virtually, any complex system can in principle be modeled: if the distribution of events that 
occur in a system is know from experience, a PDF can be generated and sampled randomly 
to simulate the real system. A detailed description of the general principles and applications 
of the Monte Carlo method can be found elsewhere: (Andreo, 1991; Zaidi, 1999; Ljungberg, 
1998, 2004; Zaidi & Sgouros, 2002; Zaidi, 2006). 
The simulation of PET imaging using Monte Carlo allows the optimization of system design 
for new scanners, the study of factors affecting image quality, the validation of correction 
methodologies for effects such as scatter, attenuation and partial volume, for improved 
image quantification, as well as the development and testing of new image reconstruction 
algorithms. Another major advantage of simulations in nuclear medicine imaging is that 
they allow studying parameters that are not measurable in practice. The fraction of photons 
that are scattered in a phantom and their contribution to the image are examples of such 
parameters, and they can only be measured indirectly for a very limited number of 
geometries. In addition, in a computer model it is possible to turn off certain effects, such as 
photon attenuation and scattering in the phantom, which means that ideal images, which 
include camera-specific parameters, can be created and used as reference images. In 
combination with patient-like phantoms, the Monte Carlo method can be used to produce 
simulated images very close to those acquired from real measurements. In this context, 
Monte Carlo simulations are becoming an essential tool for assisting this research and some 
specific Monte Carlo simulation packages have been evaluated for nuclear medicine 
applications (Andreo & Ljungberg, 1998; Buvat & Castiglioni, 2002; Buvat et al., 2005; Buvat 
& Lazaro, 2006). Recently, the Geant4 Application for Tomographic Emission (GATE) 
platform has been developed (Jan et al., 2004a; GATE, 2010) and validated for the simulation 

of the microPET® FOCUS 220 system (Jan et al., 2005). 
An important aspect of simulation is the possibility of having a realistic model (phantom) of 
the subject’s anatomy and physiological functions from which imaging data can be 
generated using accurate models of the imaging process (Ljungberg, 2004; Zaidi, 2006; 
Zubal, 1998; Poston et al., 2002; Peter et al., 2000). Conceptually, the purpose of a physical or 
computerized phantom is to represent an organ or body region of interest, to allow 
modeling the biodistribution of a particular radiotracer and the chemical composition of the 
scattering medium, which absorbs and scatters the emitted radiation in a manner similar to 
biological tissues. In other terms, a phantom is a mathematical model designed to represent 
an organ or tissue of the body, an organ system, or the whole-body. 
The widespread interest in molecular imaging spurred the development of more realistic 3D 
to 5D computational models based on the actual anatomy and physiology of individual 
humans and small animals. The advantage in using such phantoms in simulation studies is 
that the exact anatomy and physiological functions are known, thus providing a gold 
standard or truth in order to evaluate and improve imaging devices, data acquisition 
techniques, and imaging processing and reconstruction methods. Moreover, computer 
phantoms can be altered in order to model different anatomies and pathological situations. 
A review of the fundamental and technical challenges of designing computational models of 
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the human anatomy can be found in (Zaidi & Xu, 2007; Zaidi & Tsui, 2009). These reviews 
summarize the latest efforts and future directions in the development of computational 
anthropomorphic models for application in radiological sciences. 
Based on state-of-the-art computer graphics techniques, the 4D Mouse Whole Body (MOBY) 
phantoms provide a realistic model of the mouse anatomy and physiology for imaging 
studies (Segars et al., 2004). The phantom, when combined with accurate models for the 
imaging process, is capable of providing realistic imaging data from subjects with various 
anatomies and motions (cardiac and respiratory) in health and disease. With this ability, the 
phantom has enormous potential to help studying the effects of anatomical, physiological, 
physical, and instrumentation factors on small animal imaging and to research new 
instrumentation, image acquisition strategies, image processing and reconstruction methods 
as well as image visualization and interpretation techniques. 
It is known that the localization and detection of thoracic and abdominal lesions in PET 
imaging is often perturbed due to the displacement of the organs during normal breathing. 
The respiratory motion compromise image quality and quantification in PET, and affect 
clinical diagnosis. Motion can actually introduce large biases, for instance tracer uptake 
underestimation greater than 50% in lung lesion. Moreover, respiratory motion can induce 
resolution degradation (blurring effect) for PET imaging. Contrast loss of small lesions in 
PET images due to the above motion blurring effect can adversely affect the lesion detection 
sensitivity for PET imaging of lung or liver cancers. The degree of motion blurring and 
contrast loss depends on the lesion size and location.  
In order to contribute for the full understanding of this problem, the GATE Monte Carlo 
platform was used to model the microPET® FOCUS 220 system and the MOBY phantom to 
produce realistic simulated mouse scans. GATE is a well-validated and very versatile 
application for Monte Carlo simulations in emission tomography that can be used for highly 
realistic simulations. MOBY was developed to provide a realistic and flexible model of the 
mouse anatomy and physiology to be used in molecular imaging research. 

2. Material and methods 

2.1 The GATE platform 

GATE is a Monte Carlo simulator (object-oriented simulation platform) based on Geant4 
libraries (a generic Monte Carlo code), providing a scripting interface with a number of 
advantages for the simulation of Single Photon Emission Computed Tomography (SPECT) 
and PET systems, including the description of source decay phenomena, moving detector 
components and time management (Jan et al., 2004a). Since the code is based on Geant4, it 
profits from the validation of the underlying physics components including testing from a 
very large scientific community. At the same time, the scripting interface provides a 
convenient platform for most of the users to create their own simulation of emission 
tomography experiments and complicated emission tomography system designs. 
The use of GATE facilitates the description of the different components necessary for the 
accurate modeling of a PET system, starting from the geometry configuration, up to the 
creation of a processing chain for the detected events. Analytical phantoms can also be 
defined through the use of these basic structures, while voxelized sources can be equally 
employed in order to represent realistic patient imaging conditions. The physics processes 
are based on Geant4 libraries including the modeling of radioactive source decays and 
particles interactions for standard and low energies. Users may also interactively select 
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which gamma-ray interactions should be considered (photoelectric effect, Compton and 
Rayleigh scattering, and gamma-ray conversion), and may specify the energy cuts applied 
to the production of secondary gamma-rays and electrons. In addition, Geant4 material 
libraries in combination with user defined material tables are used to cover all of the object 
compositions necessary for the modeling of a system. A number of modules are available for 
modeling the detection process, going from the detection of the gamma-rays by the 
scintillating crystals (singles) to the detection of coincidences in PET. Simulation data results 
may be stored into multiple output files with different file formats. Time-dependence is 
taken into account at all steps of the simulation, so that realistic simulations of the 
acquisitions count rates and source decay can be achieved under dynamic configurations 
(e.g. rotation detectors or evolving bio-distributions). 

2.2 Modeling the MicroPET® FOCUS 220 

The microPET® FOCUS 220 system is a commercial scanner consisting in 4 detector rings: 
each ring is made of 42 detector blocks (Tai et al., 2005). Each detector block is composed of 

a matrix of 12×12 LSO crystals with the dimensions 1.5×1.5×10.0 mm3. Its axial Field of View 
(FOV) is 7.6 cm and has a diameter of 26.0 cm. The FOCUS system has a volume resolution 
of 2.5 μL and an absolute sensitivity of 3.4%, both measured at the center of the FOV. The 
system is suitable for acquiring high-resolution images of small animal as rodents (mice and 
rats) and primates (macaque and small baboon).  
The microPET® Focus 220 system was simulated in order to validate the use of GATE in the 
simulation of small animal PET. In order to do this, a model of the detection system and its 
geometry was developed. The accuracy of the developed detection model was tested 
through the comparison of simulated and measured results obtained from the FOCUS 
system for a number of performance protocols including spatial resolution, counting rate 
and contrast. Time dependence was introduced as a new feature to work with small animal 

imaging simulations. The geometry description of the microPET® scanner is illustrated in 
Fig. 1. 
Accuracy and variability of quantitative values obtained for mouse imaging using the Focus 
system can be found in (Jan et al., 2004b). 
 

 

Fig. 1. MicroPET® FOCUS 220 geometry modeled by GATE (left) and the real system (right). 

2.3 The MOBY phantom description within GATE 

The MOBY mouse phantom combines the realism of a voxelized phantom, with the 
flexibility of a mathematical phantom, based on non-uniform rational B-splines (NURBS) 
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(Segars et al., 2004). The organ shapes are modeled with NURBS surfaces, widely used in 
three dimensional computer graphics to accurately describe complex 3D surfaces, providing 
the foundation for a realistic model of the 3D mouse anatomy. The phantom software could 
generate voxelized representations of the mouse anatomy at any user-defined resolution. 
Also, organs can be set to different tissue resolutions. The execution of the MOBY program 
generates 3D voxelized attenuation coefficient phantoms and 3D voxelized emission 
phantoms. These voxelized representations can be used as input in the GATE Monte Carlo 
platform. 

The default whole body MOBY phantom consists of a matrix of 128×128×448 cubic voxels 
with 0.25 mm sides. We applied a resampling on the default MOBY matrix to reduce the 

voxel number to 40×40×124 voxels with a voxel unit size of 0.5×0.5×0.5 mm3. This allowed to 
significantly reduce the computational time resulting from the particle tracking inside the 
simulated volume and took into account the spatial resolution of the scanner. The MOBY 
phantom includes 4D models of the mouse’s cardiac and respiratory motions. Both motions 
were parameterized allowing changes on magnitude or rates of each motion to simulate 
many different variations, normal and abnormal. The MOBY respiratory motion was set up 
to be dependent on two time varying parameters: the change in the height of the diaphragm 
(Δdiaphr.) and the amount of chest expansion (ΔΔP). In the default MOBY configuration, the 
extent of diaphragmatic motion for normal breathing is set to be 1.0 mm while the chest 
expansion is 0.7 mm. These values correspond to a respiratory cycle with a period of 0.37 s. 
We manipulated these parameters to produce a “stress breathing” condition, in order to 
reproduce the respiratory motion of a mouse during a typical PET examination: the Δdiaphr.(t) 
was set to 6.0 mm and the ΔΔP(t) was defined to 4.2 mm. 
A spherical lung lesion was implemented in the middle region of the left lung and its 
motion modeled as a function of the non-normal tidal breathing condition. The motion of a 
specific spot of the lung is modeled as a two-way motion between two points in space, with 
same cycle of the diaphragm movement.  
For a respiratory cycle with a typical period of 0.37 s, the diaphragm motion can be decided 
by: 
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(1) 

The ΔΔP(t) diameter of the chest was assumed to change a maximum of N mm’s sinusoidally 
as shown in Equation: 
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(2)  

The N parameter was adjusted according to the total amount of volume change in the lungs 
(0.15 mL for normal tidal breathing in the mouse). 
Each respiratory cycle was divided into N bins (temporal frames), and one phantom was 
created for each of the N instances of the respiratory cycle. Based on Equations (1) and (2), a 
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set of 10 temporal frames (gates) of 0.037 s was generated over a complete respiratory cycle 
of 0.37 s in addition to a non-gated data set. The 10 respiratory gated images were produced 
by the MOBY program for 10 different position of one respiratory cycle. The first 5 images 
correspond to the inhalation and the other 5 images to the exhalation process respectively. 
The modified MOBY phantom and the parameter curves for both respiratory and lesion 
motion are illustrated in Fig. 2 and Fig. 3. 
 

                

Fig. 2. Parameter curves and lesion motion for the “stress” breathing condition in the MOBY 
phantom.  

 

 

Fig. 3. Slices of the emission map of the MOBY phantom including a spherical lesion in 
middle region of the left lung, generated by the MOBY program. 
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For the studies without the inclusion of respiratory motion, simulations were carried out 
approximating clinical acquisitions of 15 minutes (last frame of a FDG acquisition) in order 
to provide whole-body images of variable statistical quality. For the simulations with 
respiratory motion, the acquisition time used in static simulation, TacqTot , was divided by the 
number of respiratory cycles, Ncycles, and the number of bins, Nbins, per respiratory cycle to 
obtain the acquisition time at one instance (bin) of the respiratory cycle, TacqBin: 

 

TacqBin =
TacqTot

N cyclesN bins  

(3) 

In this way the total acquisition time remains the same for simulations with or without the 
inclusion of respiratory motion. 

2.4 Metabolic imaging using FDG 

The 2-Deoxy-[18F]fluoro-D-glucose (FDG) is the most common radiotracer used for the study 
of cancer in the clinical setting. FDG is an analog of glucose and is taken up by living cells 
through the normal glucose pathway. 
Tumor imaging with FDG is based on the fact that malignant tumors with high metabolic 
rates take up greater amounts of glucose and FDG than surrounding tissues (Couturier, 
2004; Larson & Schwartz, 2006). 
A dynamic whole body mouse FDG exam was used to generate an emission map that 

consist of a matrix of 104×61×95 voxels, which are of 0.46 mm along the x and y axis, and 
0.80 mm along the z axis. The mouse was injected with an activity of 220 mCi and scanned 

during 90 minutes. Data was binned into 18 frames (5×60 s; 5×120 s; 3×300 s; 3×600 s; 2×900 s).  
 

        

Fig. 4. Measured TACs used as input for the FDG uptake simulation. 

The microPET images were employed in order to accurately model the variable FDG 
distributions. The FDG biodistribution is defined by the Time Activity Curves (TACs), 
which are assigned to different body structures. The dynamic FDG mouse exam was used to 
compute the FDG biodistribution, needed to set the activity distribution in each organ at 
each point of time in the simulation studies performed. Regions of Interest (ROIs) were 
drawn around the bladder, heart, liver, kidneys and whole body. The activity in each ROI 
was normalized to the total body activity in order to obtain a relative concentration in each 
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organ at each time point. Fig. 4 shows the TAC for each organ at each time frame. The TACs 
for the function model of the FDG tracer are used to set the input activity function in each 
structure for the MOBY phantom. 

2.5 Simulation and reconstruction set-up 

In order to evaluate the effect of the respiratory motion in 3D and 4D microPET images, a 
set of static (non-gated MOBY data set without any motion associated) and dynamic (gated 
MOBY data set, where respiratory and lesion motions are present) FDG simulations were 
performed. Different lesion diameter (0.75 mm, 1.0 mm, 1.25 mm, 1.5 mm and 2.0 mm) were 
considered as well as different activity uptakes of FDG (0.01 µCi, 0.03 µCi, 0.05 µCi, 0.08 µCi, 
1.08 µCi and 1.35 µCi), for the last time frame.  
The gated and non-gated MOBY emission maps are integrated into GATE as voxelized 

sources to assign the activity to different anatomical structures, in order to obtain static and 

dynamic emission data sets.  

The activity distribution in all of the other organs was defined according to the last 

acquisition time frame for an FDG exam (determined with a typical mouse FDG-PET exam). 

The concentration activity of the last frame (900 s of acquisition time) corresponds to a 131 

µCi. 
The FDG biodistribution was defined by the TACs obtained from real whole-body mouse 
PET exams, as described previous. The activity distribution, within the MOBY phantom, 
was set according to the activity distribution assigned to the different whole body structures 
for the FDG radiotracer. In all simulation protocols physical effects like positron range, 
gamma accolinearity and tissue attenuation were not taken into account in order to obtain 
the “best case scenario”, which could be used as defining the optimal results that we could 
obtain with a dedicated scanner and a specific radiotracer. Simulated data were rebinned 
with the Fourier Rebinning algorithm (FORE) and reconstructed using the OSEM2D method 
(16 subsets and 4 iterations). 

2.6 Evaluation of the respiratory motion in lung lesion quantification 

With the goal of better understanding the effect of the respiratory motion we have 
investigated the combined effects of target size, target-to-background activity concentration 
ratio and extent of respiratory motion on signal recovery of spherical lesions (targets) in 3D 
and 4D microPET images.  
Sets of static (non-gated MOBY data set without any motion associated) and dynamic (gated 
MOBY data set, where respiratory and lesion motions are present) FDG simulations were 
performed. Different lesion diameters (0.75 mm, 1.0 mm, 1.25 mm, 1.5 mm and 2.0 mm) 
were considered as well as different activity uptakes of FDG (0.1 mCi, 0.3 mCi, 0.5 mCi, 0.8 
mCi, 1.08 mCi and 1.35 mCi), for the last time frame. The gated and non-gated MOBY 
emission maps are integrated into GATE as voxelized sources to assign the activity to 
different anatomical structures, in order to obtain static and dynamic emission data sets. 
The activity distribution in all of the other organs was defined according to the last 
acquisition time frame for an FDG exam (determined with a typical mouse FDG PET exam). 
The concentration activity of the last frame (900 s of acquisition time) corresponds to 131 
mCi. 
The FDG biodistribution was defined by the TACs obtained from real whole-body mouse 
PET exams, has described previously. The activity distribution, within the MOBY phantom, 
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was set according to the activity distribution assigned to the different whole body structures 
for the FDG radiotracer. In all simulation protocols, physical effects like positron range, 
gamma accolinearity and tissue attenuation were not taken into account in order to obtained 
the “best case scenario”, which could be used as defining the optimal results that could be 
obtain with a dedicated scanner and a specific radiotracer. 

2.7 Data analysis 

Detection in PET images strongly depends on the ability to recognize the signal pattern in 
the presence of noisy background that in turn, is limited by the capability of the imaging 
system to detect objects with very low contrast relatively to the background level and to 
spatially resolve a focal uptake. In the following paragraphs, the general methodology to 
evaluate the signal detection capability of an imaging system is presented. Although only 
the basic concepts on signal detection theory will be introduced, its description is important 

to contextualize the adopted analysis using the simulated data acquired with the microPET® 
Focus 220 scanner model. 
The spatial resolution was measured by the Full Width at Half Maximum (FWHM). The 
FWHMs of reconstructed lesion images were determined along the direction of lesion 
movement due to respiratory motion. The image statistics were evaluated by calculating the 
signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The SNR is defined as the ratio 
of the average activity concentration measured in the target to the standard deviation. The 
higher the SNR, the less obtrusive the noise is. SNR is often defined as: 

 
SNR =

T

σT  
(4)

 

The CNR was calculated as: 

 

CNR =
T − B

σT

2 + σB

2

 

(5) 

where T and B are the average activity concentrations measured in the target (lung lesion) 
and background region in the reconstructed image, respectively. σT , B

2  are the variances of 

these activities (Lartizien et al., 2004). 
In general, the “quality” of an image can be described (quantitatively) by its SNR. The SNR 
directly affects diagnostic and quantitative accuracy. In essence, then, a major goal of 
nuclear medicine equipment is to maximize the SNR in an image. The CNR refers to the 
ability in PET to distinguish between various contrasts in an acquired image and the 
inherent noise in the image. The mean signal recovery of SNR and CNR were evaluated as a 
function of the lesion size and the lesion activity uptake, using Equations (4) and (5). 
The target-to-background ratio (TBR) is defined as the relation between the lesion activity to 
the background activity concentration. The TBR values are computed using the following 
relation: 

 
TBR =

T

B  
(6)

 

The data recorded from the ROIs were used to compute the contrast (C) and the volume 
recovery coefficient (VRC). The evaluation of the contrast indicates how reliable the 
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reconstructed image would be for lesion detection tasks in real situations. This result in the 
ability to evaluate the reconstruction algorithm used to recover a certain simulated contrast 
between a lesion and a background. The contrast between the simulated lesions and the 
surrounding organs in the reconstructed images was computed using the expression: 

 
C =

T − B
T + B  

(7) 

where T was the mean activity in the simulated spherical lesion ROI and B was the mean 
activity in the background region ROIs. Higher contrast values are often related with noisier 
images. In practice, this contrast is provided by the radiotracer’s distribution. The goal of the 
imaging system is to preserve this contrast in the image. Contrast is maintained by avoiding 
blurring, which smears counts from higher activity regions into lower activity regions (and 
vice versa), thus reducing image contrast. In this way, spatial resolution and contrast are 
closely linked. 
In order to determine temporal resolution, the VRC was defined as: 

 
VRC =

Vmeasured

Vtrue  

(8) 

where Vmeasured is the measured lesion volume and Vtrue is the real lesion volume. To perform 
data analysis, and quantify VRC values, we have drawn a volume of interest (VOI) around 
the centroid of each lesion. The size of the drawn VOI depends on the lesion size, in order to 
include as many voxels as possible, to keep a good statistic, and, at the same time, to include 
only voxels that corresponded to the lesion. For each VOI we calculated the average number 
of counts in each voxel. Background values were obtained by drawing and merging circular 
VOIs around each lesion (within the surrounding soft tissues: lung and liver regions) and by 
calculating the average number of counts and the corresponding standard deviation within. 
These data was also used to calculate the mean percent error in the volume for each lesion. 
The mean percent error between the estimated volume and the true volume of the spherical 
lesions was given by: 

 
% error =

Vmeasured −Vtrue
Vtrue  

(9) 

3. Results 

3.1 Quantification considerations 

Detection in PET images At the beginning of this discussion we stated that the results 
obtained for the higher diameter lesions (1.25 mm, 1.5 mm and 2.0 mm) in the dynamic 
mode (gated images) are not show due to lesion blending into the liver. Additionally, due to 
the limited spatial resolution of the scanner used the results obtained for the smallest lesion 
(0.75 mm) may be compromised by a decrease in the sensitivity of detection and thus 
statistics could not be accurately measured. Due to this, to evaluate the effects produced by 
the respiratory motion we choose to use the 1.0 mm lesion. 
Concerning data analysis, a selected lesion ROI for each particular case was used to estimate 
T (average activity concentrations measured in the lesion) when positioned over a 
background region. In the present analysis, the mean lung lesion activity T was computed as 
the average pixel intensity in the spherical ROI located at the lesion. The ROIs were all 
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extracted from transaxial slices of the MOBY phantom passing through the different planes 
containing the lesion activity. The mean background activity B was estimated as the average 
pixel intensity within ROIs projected into reconstructed images without the lesion data 
added, however surrounding the lesion location. The placement of the lesion ROI for a 1.0 
mm diameter lesion and background ROIs is illustrated in Fig. 5. 
 

 

Fig. 5. Sagital slices through the MOBY phantom containing a 1.0 mm diameter lung lesion 
or only background, illustrating the placement of the background and lesion ROIs used for 
data analysis. 

The statistical errors measured as the ratio standard deviation over mean for all ROIs 
considered for each lesion diameter, as function of the activity defined, are represented in 
Table 1. We found higher values in higher activity concentrations. This Table suggests that 
for the smaller lesion sizes (0.75 mm and 1.0 mm diameter) we have compromised results 
when compared to the statistical errors obtained for the other lesion sizes due to limited 
FOCUS system resolution. In addition, lower activity concentrations (0.1 mCi and 0.3 mCi) 
show the same behavior because lower activity concentrations significantly deteriorate the 
lesion signal recovery. The statistical errors for the ROIs considered in static simulation were 
found to be 18.92% and 22.44% for the dynamic simulations. 
 

Static Simulations 
Dynamic 

Simulations 

Lesion Diameter 

Activity 

(μCi) 

0.75 mm 1.0 mm 1.25 mm 1.5 mm 2.0 mm 1.0 mm 

0.1 12.26% 21.0% 20.58% 14.56% 18.91% 11.81% 

0.3 17.16% 33.92% 25.82% 16.98% 19.41% 9.11% 

0.5 20.22% 43.43% 33.66% 31.72% 24.39% 11.88% 

0.8 22.80% 49.65% 39.39% 37.25% 27.64% 14.54% 

1.08 24.68% 51.74% 41.85% 40.35% 32.76% 19.54% 

1.35 24.82% 55.46% 43.72% 42.67% 37.73% 20.71% 

Table 1. Statistical error obtained for the defined ROIs in the lung lesion implementation in 
the MOBY phantom, from the static and the dynamic simulation modes. 

3.2 Motion blurring versus spatial resolution 
”Best case scenario” images are presented in Fig. 5 and Fig. 6, from static (non-gated data, 
without motion involved) and dynamic simulated data (gated data, where respiratory and 
lesion motions are present). 
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From Fig. 6 and Fig. 7 differences between the non-gated data set (static simulation) and the 

gated data set (dynamic simulation) can be seen. The extent of respiratory motion is evident 

between the 1st and the 10th frames in Fig. 7. The coronal slices shows the realistic motion of 

the various structures present in the thorax and upper abdomen due to the lungs expansion 

and contraction for the non normal tidal breathing configuration. 

 

 

Fig. 6. Sagital slices, of the reconstructed MOBY phantom, for a static acquisition, where no 
motion was simulated, and for the simulation of a dynamic acquisition, where respiratory 
and lesion motions were considered, with a lung lesion of 1.0 mm diameter and an FDG 
uptake of 0.5 mCi. The maximum concentration profiles from 3D and 4D simulated exams: 
where the blurring or smearing effect induced by respiratory motion are represented in the 
right. 

From the visual inspection of the static image, in Fig. 6, the lesion is clearly shown, keeping 

its spherical shape. However, for the dynamic image, in the same Figure, the lesion appears 

blurred and elongated as a consequence of the breathing movement. Consequently, 

respiratory motion may preclude the accurate detection of small lung lesions. 

The motion vector defined in section 2.3 (Equation (1)) indicates more motion blurring 
within the transaxial plane than along axial (z) direction. Fig. 8 shows the difference of 
blurring along different directions. This result also indicates, due to respiratory motion, that 
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a sphere lesion can be blurred to a shape with different size in different directions in 3D 
space. Additionally, the extent of blurring along different directions will depend on the 
motion vector at the position in the lung. 
 

 

Fig. 7. Coronal slices of the MOBY phantom corresponding to the simulation of a “stress” 

condition breathing motion including a lung motion lesion of 1.5 mm diameter and an FDG 

uptake of 1.35 mCi. These coronal slices represent one respiratory cycle for an FDG exam in 

the last time frame. The dynamic 3D emission assumed an event collection during 900 s, 

where 5.65×109 particles were generated. 

 

 

Fig. 8. Transaxial, coronal and sagital slices of the reconstructed lung lesion, in the MOBY 

phantom, with 2.0 mm diameter and an FDG uptake of 0.8 mCi. No motion was simulated. 

The image spatial resolution was parameterized by the FWHM of Gaussian fits of the profiles 

taken over all lesions in the reconstructed images of the MOBY phantom. The results 

obtained for the static acquisitions are illustrated in Fig. 9. Spatial resolution improves most 

significantly for the smallest lesion diameter and at the same time for higher activity 

uptakes. 

Fig. 10 shows the axial resolution of the lesion with 1.0 mm diameter for static and dynamic 

acquisitions, as a function of different FDG uptakes. It demonstrates that the blurring effect 

is lower for static acquisitions. It also demonstrates that when the FDG uptake increases the 

blurring decreases for dynamic and static acquisitions and consequently improves spatial 

resolution. 

www.intechopen.com



 Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science 

 

190 

             

Fig. 9. FWHM of the line spread function through the lesion centroid as a function of the 
lesion diameter defined for the static acquisitions schemes. 

 

                        

Fig. 10. FWHM of the line spread function through the lesion centroid as a function of the 
FDG activity defined for static and dynamic acquisitions schemes, for the 1.0 mm diameter 
lesion. Data from dynamic acquisitions are represented by dashed curves and static 
acquisition data are represented by solid curves. 
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3.3 Lesion detectability 

Signal-to-noise (SNR) ratios are indicators of the visual utility of an image for detection 
purposes. The SNR directly affects diagnostic and quantitative accuracy (Sain & Barrett, 
2003). The SNR describes the relative “strength” between the desired information and the 
noise in the image. The higher the SNR, the less obtrusive the noise is. The value SNR = 5 is 
the conventional value of detectability used in radiology, and as also been used in emission 
tomography images. Lesions for which T − B > 5σT

 can be considered 100% visible (Cherry 

et al., 2003; Graham & Links, 2007). SNR values for the lower lesion activity concentration 
are in the vast majority of situations higher than the 100% detectability limit. 
Fig. 11 show that the SNR depends strongly both on the lesion diameter and on the activity 
concentration. Nevertheless, the plots presented show that, for the highest activity values, 
most of the lesions converge to SNR values that are below the line of 100% visibility. In the 
case of higher activity concentrations, the smallest lesion diameter tend to converge to SNR 
values close to the 100% detectability line against SNR values that are significantly below 
that value for highest lesion diameter. However, according to the reconstructed images, the 
lesions with the considered diameters for all activity concentration ratios are all observable 
by visual inspection (some difficulties appear for the smallest lesions with lower activity 
concentrations, and the largest due to the lesion blending in the surrounding organs). This 
seems to indicate that the SNR = 5 criterion, from conventional radiology, might not be a 
good detectability criterion for emission tomography images. Keeping this in mind, we will, 
nevertheless, use this criterion as a reference for the quality of the images with respect to its 
SNR ratio. 
 

             

Fig. 11. SNR of the 0.1 mCi, 0.3 mCi, 0.5 mCi, 0.8 mCi, 1.08 mCi and 1.35 mCi FDG uptakes 
for the spherical lesions as a function of the lesion diameter. Results obtained for the static 
simulations. 
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Despite of the increase in the mean signal recovery, as a function of the FDG concentration 
increase, the standard deviation had also a significant increase. This result in a decrease of 
the SNR recovers values. We get the same behavior for the CNR values as a function of the 
activity concentration. These results can also be explained through the results obtained for 
the spatial resolution versus the motion blurring. 
In respect to the CNR, when the size of a lesion is substantially larger than the limiting 
spatial resolution it can influence the detection ability, especially if the lesion has low 
contrast. The CNR is displayed in Fig. 12 as a function of the lesion diameter, and for 
different activity uptakes. Overall, CNR improves significantly as lesion contrast decreases 
and lesion size increases. 
We need to have into account the same line of the results inspection: caused by the small 
size of lesions relative to scanner resolution (partial-volume effect) we got higher CNR 
values for the smallest lesion. 
 

               

Fig. 12. CNR of the 0.1 mCi, 0.3 mCi, 0.5 mCi, 0.8 mCi, 1.08 mCi and 1.35 mCi FDG uptakes 
for the spherical lesions as a function of the lesion diameter. Results obtained for the static 
simulations. 

Table 2 summarizes SNR and CNR values in the lesion with 1.0 mm diameter as a function 
of the FDG activity concentration. The first columns show the CNR and the SNR from the 
non-gated images of the phantom in a static mode. The other results correspond to data 
obtained from the gated images of the phantom in the dynamic mode. The dynamic 
simulations results in larger overestimations of SNR due to poor counting statistics and high 
image noise. This effect is more significant as the lesion activity concentration decreases, as 
it is shown in Table 2. However, the same table shows a slight improvement in CNR 
recovery for the dynamic acquisitions as the lesion activity increases. Respiratory motion 
has less of an effect on the peak lesion signal and thus could explain the improvement on 
the dynamic CNR results. 
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We expected improvements on the SNR and the CNR data as a function of the increase of 
the FDG activity (higher activities always provide better SNR and CNR). This is due to the 
fact that we defined the lesion motion as a function of the no normal tidal breathing and 
thus with a largest magnitude of motion. Because there is a higher motion in this condition 
then it is expected that we will get an improved signal recovery for the lower contrast 
lesions. As discussed before, the values obtained for the other dynamic acquisitions sets are 
quantitatively changed due to the lesion blending into the liver (in the case of the largest 
diameter lesions) and are not used in the comparative set. We decided to remove the 
comparative set for the smallest lesion because the statistical results may be compromise by 
the limited spatial resolution of the microPET® FOCUS 220. 
 

 Static Simulations Dynamic Simulations 

Activity (μCi) CNR SNR CNR SNR 

0.1 4.274 4.764 0.213 8.465 

0.3 2.785 2.948 2.405 10.975 

0.5 2.225 2.303 2.407 8.419 

0.8 1.966 2.014 2.920 6.880 

1.08 1.897 1.933 2.823 5.117 

1.35 1.766 1.803 2.968 4.829 

Table 2. SNR and CNR values in the lesion with 1.0 mm diameter as a function of the FDG 
activity concentration. The first columns show the CNR and the SNR from the images of the 
phantom in a static mode. The other results correspond to data obtained from the images of 
the phantom in the dynamic mode. 

 

             

Fig. 13. TBR of the 0.1 mCi, 0.3 mCi, 0.5 mCi, 0.8 mCi, 1.08 mCi and 1.35 mCi FDG uptakes 
for the spherical lesions as a function of the lesion diameter. Results obtained for the static 
simulations. 
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Fig. 13 illustrates the relationship between contrast and activity concentration, TBR, as a 
function of the lesion diameter. The higher the contrast the higher is the detectability. Fig. 14 
shows the TBR plot for a set of dynamic and static acquisitions as a function of the FDG 
activity concentration, for the lesion diameter of 1.0 mm. The curves show that the TBR 
increases as the activity concentration increases. Moreover, and as expected, the figure also 
illustrates that we achieved lower TBR values for the images of the moving lesions. 
 

                 

Fig. 14. TBR of a set of a dynamic and a static acquisition as a function of the FDG activity 
concentration for the 1.0 mm diameter lesion. Data from dynamic acquisitions are 
represented with the dashed curve and static acquisition data are represented by the solid 
curve. 

3.4 Evaluation of the contrast and volume recovery coefficient 

The Fig. 15 shows the trends of the contrasts, in the static acquisition simulations, against 
lesion diameter, for all the lesion activity uptakes considered. As it can be seen in these 
plots, the contrast values obtained in these studies are always high, even for the smallest 
lesion diameter. These plots highlight the fact that the contrast depends more strongly on 
the lesion diameter than it depends on the lesion to background considered. In fact, for a 
given diameter, the contrast is approximately the same for all the different activity uptakes. 
The strong dependence on lesion diameter illustrates a significant partial volume effect. 
Fig. 16 illustrates the contrast of a set of dynamic and static acquisitions as a function of the 
FDG activity concentration for the 1.0 mm diameter lesion. We found higher contrast values 
from the dynamic data against the static data. We expected that the motion decrease the 
contrast in the reconstructed images, while images from static acquisitions can largely 
recover the signal lost due to motion. These results are influenced from the ROIs defined in 
the background level. However, the mean signal recover is higher in static data when 
compared to the dynamic data. These results suggest that the ROIs approach for the 
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background level used probably was not the best choice (despite of the approach used in 
pre-clinical practice). 
 

              

Fig. 15. Contrast of the 0.1 mCi, 0.3 mCi, 0.5 mCi, 0.8 mCi, 1.08 mCi and 1.35 mCi FDG 
uptakes for the spherical lesions as a function of the lesion diameter. Results obtained for the 
static simulations. 

 

                   

Fig. 16. Contrast of a set of dynamic and static acquisitions as a function of the FDG activity 
concentration for the 1.0 mm diameter lesion. Data from dynamic acquisitions are 
represented by the dashed curve and static acquisition data are represented by the solid 
curve. 
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Table 3 summarizes the VRC as a function of the lesion diameter, for static and dynamic 
acquisitions. As expected, with dynamic acquisitions the volumes of sphere were 
overestimated due to the smearing effect resulting from motion. For static acquisitions the 
VRC values are close to 1.0, which means that values were correctly recovered. The table 
also shows the mean percent errors in volume estimates measured on the simulated lesions 
as a function of the real lesion volume. 
 

Static Simulations Dynamic Simulations Lesion 
diameter 

(mm) 
VRC % error VRC % error 

0.75 1.629 61.30 3.259 225.88 

1.0 1.120 12.02 2.930 192.98 

1.25 1.098 9.83 N/A N/A 

1.5 0.987 1.27 N/A N/A 

2.0 0.995 0.54 N/A N/A 

Table 3. VRC in the static and dynamic acquisitions as a function of the lesion diameter. The 
mean percent errors in volume estimates measured on simulated lesions as a function of the 
real lesion volume are also shown.  

(Note: N/A - ”not available” - is this context means that the VRC value was not possible to 
measure due to the blurring and to the smearing effect resulting from the respiratory 
motion.) 

4. Conclusions and perspectives 

The FWHMs of reconstructed lesion images were determined alongside with the direction 
of movement due to respiratory motion for static and dynamic acquisitions. The results 
demonstrate how the respiratory motion would affect the blurring of a lung lesion along the 
direction of movement. 
As expected, contrast-to-noise ratio (CNR) recovery improves for static acquisitions. The 
static images have a slightly greater CNR recovery compared to the dynamic images, which 
is due to the loss of resolution in the motion images. CNR recovery also improves as lesion 
size increases and lesion contrast decreases. 
The results illustrates that the signal-to-noise ratio (SNR) deteriorate for motion data. 
Results for higher diameter lesions in the lung were influenced by lesion blending into the 
liver. However, results for the 1.0 mm lesion shown better SNR data induced by the 
respiratory motion. Concerning the static acquisitions we found better SNR for lower FDG 
uptakes and higher lesion sizes. The contrast depends more strongly on the lesion diameter 
than it depends on the lesion to background considered. Better temporal resolution (volume 
recover) was found in the non-gated data. 
As discussed before, respiratory motion leads to reduced contrast and quantitative accuracy 
in terms of recovered contrast activity concentration and functional volumes. Several 
methodologies proposed for reducing the effects of respiratory motion have been based on 
the development of respiratory-gated acquisitions (Visvikis et al., 2006; Nehmeh et al., 2002; 
Dawood et al., 2006; Detorie & Dahlbom, 2006; Lamare et al., 2007a; Dawood et al., 2008; 
Bettinardi, 2009; Lamare et al., 2007b; Detorie & Dahlbom, 2008). However, in general, 4D 
PET images have low counting statistics and high image noise compared to static 3D PET 
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images. Since the same number of coincidence events in 3D PET is divided into many 
different respiratory phase bins or time frames, the number of coincidence events per image 
bin is considerably reduced. This leads to higher image noise in 4D PET images, resulting in 
an even lower SNR of the reconstruction. Therefore, there is a trade-off between image noise 
and temporal resolution. Long duration time per frame gives low noise but blurred images 
resulting from the loss of temporal resolution (Park et al., 2008; Zhu et al., 2002). In order to 
determine the effect of the number of gating bins on image noise and temporal resolution, 
sets of 4D simulations will be performed for the MOBY phantom following the same line of 
reasoning of these studies. 
Some other limitations of our research are related to the phantom’s anatomy and breathing 

cycle. In future studies different phantoms anatomy can improve our quantitative 

evaluation. In our work, we produced a stress breathing condition on the respiratory motion 

cycle of the phantom, whereas variations in respiratory cycle from an animal to another and 

in time may also influence the observed effects. Moreover, variations in the amplitude of the 

diaphragm motion also influence the results. A reference to a real examination can be 

helpful to compare the results obtained. Therefore, there is still the need for a method that 

takes into account the effect of respiratory motion without, at the same time, affecting the 

quantification analysis on the reconstructed images. For that reason, this work is being 

complemented by accessing the impact of such motion in the quantification analysis using a 

dynamic VOI, placed around the centroid of each lesion, in 4D imaging studies. 

This research contributes to evaluating the respiratory motion effect in the quantification of 

microPET images. A complete evaluation should also consider real dynamic FDG 

examinations that need to be compared against the results presented in this thesis. 

Moreover, the production of realistic images, where attenuation information (using the 

phantoms attenuation maps to set the different body structures and the correspondent 

attenuation information) and physical effects (using the isotope decay instead a 

gamma/gamma emission source) are included, was not done. Although this was not among 

the main goals of this work, its inclusion would allow evaluating the consequence of these 

physical effects on image sensitivity and quantification. Since the physical effects are not 

taken into account, further investigation is needed to accurately evaluate these effects on 

image quantification. 

We have used the OSEM algorithm for image reconstruction with fixed parameters (16 

subsets and 4 iterations). These parameters are normally used in pre-clinical standard 

protocols. However, there are several other image reconstruction algorithms and parameters 

including smoothing filters and the number of subsets and iterations that could affect the 

results (namely, lesion quantification may be inaccurate depending on the reconstruction 

algorithms used), but have not been addressed in this study. Further studies are required to 

investigate the effect of these parameters on signal and volume recovery. 

In this research we have always used the same breathing condition to simulate respiratory 

motion. 

However, image quantification is influenced by the amplitude and pattern of respiratory 

motion. This suggests that it may be beneficial to simulate different breathing motion 

conditions to obtain a reasonable estimate on image quantification under clinical conditions. 

Background activity is unavoidable and it causes significant noise and contrast loss in PET 
images (Tai & Laforest, 2005). The effect of background activity concentration will be 
analyzed in the next phases of this research. 
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surprising, because of the ubiquitous use of these methods in many fields of human endeavor. In an attempt

to focus attention on a manageable set of applications, the main thrust of this book is to emphasize

applications of Monte Carlo simulation methods in biology and medicine.
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