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1. Introduction     

Automatic control can be defined as a way of analyzing and designing a system that can 
self-regulate with minimal human intervention. It is based on control theory, viewed as an 
interdisciplinary branch of engineering and mathematics. The device that monitors and 
modifies the operational conditions of a dynamic system is called a controller. 
The global technology evolution has triggered an ever-increasing complexity of 
applications, both in industry and in the scientific research fields. Many researchers have 
concentrated their efforts on providing simple control algorithms to cope with the 
increasing complexity of the controlled systems (Al-Odienat & Al-Lawama, 2008). The main 
challenge of a control designer is to find a formal way to convert the knowledge and 
experience of a system operator into a well-designed control algorithm (Kovacic & Bogdan, 
2006). From another point of view, a control design method should allow full flexibility in 
the adjustment of the control surface, as the systems involved in practice are, generally, 
complex, strongly nonlinear and often with poorly defined dynamics (Al-Odienat & Al-
Lawama, 2008). If a conventional control methodology, based on linear system theory, is to 
be used, a linearized model of the nonlinear system should have been developed 
beforehand. Because the validity of a linearized model is limited to a range around the 
operating point, no guarantee of good performance can be provided by the obtained 
controller. Therefore, to achieve satisfactory control of a complex nonlinear system, a 
nonlinear controller should be developed (Al-Odienat & Al-Lawama, 2008; Hampel et al., 
2000; Kovacic & Bogdan, 2006; Verbruggen & Bruijn, 1997). From another perspective, if it 
would be difficult to precisely describe the controlled system by conventional mathematical 
relations, the design of a controller using classical analytical methods would be totally 
impractical (Hampel et al., 2000; Kovacic & Bogdan, 2006). Such systems have been the 
motivation for developing a control system designed by a skilled operator, based on their 
multi-year experience and knowledge of the static and dynamic characteristics of a system; 
known as a Fuzzy Logic Controller (FLC) (Hampel et al., 2000). FLCs are based on fuzzy 
logic theory, developed by L. Zadeh (Zadeh, 1965). By using multivalent fuzzy logic, 
linguistic expressions in antecedent and consequent parts of IF-THEN rules describing the 
operator’s actions can be efficiently converted into a fully-structured control algorithm 
suitable for microcomputer implementation or implementation with specially-designed 
fuzzy processors (Kovacic & Bogdan, 2006). In contrast to traditional linear and nonlinear 
control theory, an FLC is not based on a mathematical model, and it does provide a certain 
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level of artificial intelligence compared to conventional PID controllers (Al-Odienat & Al-
Lawama, 2008). 
The objective of the research presented here is to develop a new morphing mechanism using 
smart materials such as Shape Memory Alloy (SMA) as actuators and fuzzy logic 
techniques. These smart actuators deform the upper wing surface, made of a flexible skin, so 
that the laminar-to-turbulent transition point moves closer to the wing trailing edge. The 
ultimate goal of this research project is to achieve drag reduction as a function of flow 
condition by changing the wing shape. The transition location detection is based on pressure 
signals measured by optical and Kulite sensors installed on the upper wing flexible surface. 
Depending on the project evolution phase, two architectures are considered for the 
morphing system: open loop and closed loop. The difference between these two 
architectures is their use of the transition point as a feedback signal. This research work was 
a part of a morphing wing project developed by the Ecole de Technologie Supérieure in 
Montréal, Canada, in collaboration with the Ecole Polytechnique in Montréal and the 
Institute for Aerospace Research at the National Research Council Canada (IAR-NRC) 
(Brailovski et al., 2008; Coutu et al., 2007; Coutu et al., 2009; Georges et al., 2009; Grigorie & 
Botez, 2009; Grigorie & Botez, 2010; Grigorie et al., 2010 a; Grigorie et al., 2010 b; Grigorie et 
al., 2010 c; Popov et al., 2008 a; Popov et al., 2008 b; Popov et al., 2009 a; Popov et al., 2009 b; 
Popov et al., 2010 a; Popov et al., 2010 b; Popov et al., 2010 c; Sainmont et. al., 2009), initiated 
and financially supported by the following government and industry associations: the 
Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ), the National 
Sciences and Engineering Research Council of Canada (NSERC), Bombardier Aerospace, 
Thales Avionics, and the National Research Council Canada Institute for Aerospace 
Research (NRC-IAR). 
Recently, morphing wing system studies have branched out into new research directions. 

Extremely complex and catalogued as inter- and multidisciplinary studies, morphing wing 

studies continue to ‘push’ the science to the extreme boundaries of mathematics and 

physics. These multidisciplinary studies therefore require knowledge of the following 

disciplines: aerodynamics and computational fluid dynamics, aeroelasticity, automatic 

control, intelligent materials, signal detection using the latest miniaturized sensors, high 

computer-time calculations, wind tunnel and flight testing, instruments, and signal 

acquisition -- these signals have such speed that they are raising serious problems for the 

existing calculus technology. Consequently, real-time system functioning is conditioned (in 

addition to other factors) by being able to obtain the best data processing algorithms and 

employing easy-to-implement software for the command and control unit. Fuzzy logic 

theories, which offer remarkable facilities, may therefore be used in these algortihms. They 

facilitate signal processing by allowing empirical models to be designed based on 

experimental data; thus avoiding the complex mathematical calculus currently in use. In 

addition, fuzzy logic can be used to model highly non-linear, multidimensional systems, 

including those with parameter variations, or where the sensors’ signals are not accurate 

enough for other models. This research project included the following: optical sensor 

selection and testing for laminar-to-turbulent flow transition validation (by use of XFoil 

code and Matlab), smart material actuator modeling, aeroelasticity wing studies using 

MSC/Nastran, open loop and closed loop transition delay controller design, and integration 

and validation on a wing equipped with SMAs and optical sensors (simulation versus 

experimental test results) (Fig. 1 (Grigorie et al., 2010 b)). 
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A first phase of this project involved the determination of optimized airfoils available for 35 
different flow conditions expressed in terms of five Mach numbers (0.2, 0.225, 0.25, 0.275, 
0.3) and seven angles of attack (-1˚, -0.5˚, 0˚, 0.5˚, 1˚, 1.5˚, 2˚) combinations. The optimized 
airfoils, derived from a laminar WTEA-TE1 reference airfoil, were calculated and used as a 
starting point in the actuation system design. Three steps were completed in the actuation 
system design phase: optimization of the number and positions of flexible skin actuation 
points, establishment of each actuation line’s architecture, and modeling of the smart 
materials actuators used in this application with fuzzy logic techniques. The next phase of 
the project was about the design of the actuation control, for which a fuzzy PD architecture 
was chosen. In this design, numerical simulations of the open loop morphing wing 
integrated system, based on an SMA non-linear model, were performed. As subsequent 
validation methods, a bench test and a wind tunnel test were conducted. 
 

Actuation
lines

Cavities for
instrumentation

Flexible skin
(morphed extrados)

Rigid
intrados

Rigid part of
the extrados

Support plate for
actuation system

Leading
edge

Trailing
edge

 

Fig. 1. General architecture of the mechanical model 

The shape memory actuator wires were made of nickel-titanium, known as Nitinol, and they 
contract as muscles do when electrically driven. This ability to flex or shorten is a 
characteristic of certain alloys that dynamically change their internal structure at certain 
temperatures. These alloys have the properties of exhibiting martensitic transformation 
when they deform at a low temperature phase, and may recover their original shape after 
heating (Popov et al., 2008 a). This phase change, from martensite to austenite, is shown in 
Fig. 2 (Baron et al., 2003; Thill et al., 2008). The load changes the internal forces between the 
atoms, forcing them to change their positions in the crystals and consequently forcing the 
wires to lengthen, which is called the SMA activation or the initial phase. When the wire is 
heated using a current, the heat generated by the current resistivity causes the atoms in the 
crystalline structure to realign and force the alloy to recover its original shape. Therefore, 
any change in the alloy’s internal temperature would modify the crystalline structure 
accordingly and thus the wire’s exterior shape. This property of changing the wire length as 
a function of the electrical current passing through the wire is used for actuation purposes 
(Popov et al., 2008 a). Another major reason for using Nitinol is that it is the most effective 
material at withstanding repeated cycles of heating and cooling without exhibiting a fatigue 
phenomenon (Gonzalez, 2005). 
SMA wires can process the deflections obtained using the applied forces and they provide a 
variety of shapes and sizes that are extremely useful to achieve actuation system goals. For 
example, SMA wires can provide high forces corresponding to small strains to achieve the 
correct balance between the forces and the deformations, as required by the actuation 
system. To ensure a stable system, a compromise or balance must be established and 
maintained. The structural components of the actuation system should be designed to 
respect the actuators’ capabilities to accommodate the required deflections and forces. 
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Each of our actuation lines uses three shape memory alloys wires as actuators, and contains 
a cam, which moves in translation relative to the structure (on the x-axis in Fig. 3 (Georges et 
al., 2009). The cam causes the movement of a rod related on the roller and on the skin (on 
the z-axis). The recall employed here is a gas spring. So, when the SMA is heating the 
actuator contracts and the cam moves to the right, resulting in the rise of the roller and the 
displacement of the skin upwards. In contrast, the cooling of the SMA results in a movement 
of the cam to the left, and thus a movement of the skin downwards. The horizontal 
displacement of each actuator is converted into a vertical displacement at a fixed rate. 
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Fig. 2. SMA phase change 

SMA wires can execute the deflections resulting from contracting or expanding forces and 
can provide a variety of shapes and sizes that are extremely useful to achieve actuation 
system goals. To ensure a stable system, a compromise or balance must be established and 
maintained. The structural components of the actuation system should be designed to 
respect the actuators’ capabilities to accommodate the required deflections and forces. 
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Flexible skin
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actuation system

Rod
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spring

x

z

 

Fig. 3. The actuation mechanism concept 

The SMA actuator control can be achieved using any method for position control. However, 
the specific properties of SMA actuators such as hysteresis, the first cycle effect and the 
impact of long-term changes must be considered. The operating scheme of our open loop 
controller can be developed as illustrated in Fig. 4 (Grigorie et al., 2010 b; Grigorie et al., 
2010 c). 
Based on the 35 studied flight conditions, a database of the 35 optimized airfoils was built. 
For each flight condition, a pair of optimal vertical deflections (dY1opt, dY2opt) for the two 
actuation lines is apparent (Fig. 5). The SMA actuators morphed the airfoil until the vertical 
deflections of the two actuation lines (dY1real, dY2real) became equal to the required  
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Fig. 4. Operating scheme of the SMA actuators’ control 

deflections (dY1opt, dY2opt). The vertical deflections of the real airfoil at the actuation points 
were measured using two position transducers. The controller’s role is to send a command 
to supply an electrical current signal to the SMA actuators, based on the error signals (e) 
between the required vertical displacements and the obtained displacements. The designed 
controller was valid for both actuation lines, which are practically identical. 
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Fig. 5. dY1opt and dY1opt, dY2opt as functions of M for various angles of attack 

During the first phase of the controller design, numerical simulation of the controlled 
actuation system was performed; a step which required an SMA actuator model. In the 
literature, the modeling and control of smart material actuators can be categorized as recent 
research fields. Technical literature is available in three independent domains: modeling, 
control and smart materials. A smart actuator is formulated for a large range of smart 
materials and devices, and can be found in a variety of different configurations. It is 
common knowledge that all physical systems, including smart actuators, contain 
nonlinearities. As a consequence, linear modeling of smart material actuators may contain 
errors, while non-linear modeling  remains possible. 
In order to conceive such a model, a fuzzy set must be designed, which may be given by the 
original fuzzy logic theory conceived by Lotfi A. Zadeh (Zadeh, 1965). The most serious 
problem arises from the determination of a complete set of rules and the membership 
functions corresponding to each input. The multiple attempts required to reduce errors and to 
optimize the model are time-consuming and, very often, the results are far from what was 
expected. A modern design method allows fuzzy model design to be completed in a relatively 
short time interval. The Adaptive Neuro-Fuzzy Inference System (ANFIS) design technique 
allows the generation and the optimization of the set of rules and the membership functions’ 
parameters by use of Neural Networks. Moreover, the ANFIS design technique already 
implemented in Matlab’s Neuro-Fuzzy software tools should be relatively easy to use. 
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Considering the numerical values resulting from the SMA experimental testing (forces, 
currents, temperatures and elongations), an empirical model can be developed, based on a 
neuro-fuzzy network. The model can learn the process behavior based on the input-output 
process data by using a Fuzzy Inference System (FIS), which should model the experimental 
data. 

2. SMA actuator fuzzy model 

The general aim of the SMA model is to calculate the elongation of the actuator (Δδ) under 
the application of a thermo-electro-mechanical load for some time (Δt). The load is so-
qualified because the actuator can be operated by varying temperature (Tamb), by injection of 
electric current (i) or by applying a force (F). The geometry of the actuator is an SMA wire 
with constant section and perimeter over the length of the actuator. For these specific model 
objectives, in the first phase, the SMA actuators were experimentally tested in conditions 
close to those in which they will be used. 
The SMA testing was performed using at Tamb=24˚C, for six load cases with the forces of 700 N, 
850 N, 1000 N, 1100 N, 1250 N and 1500 N. The electrical currents following the increasing-
constant-decreasing-zero values evolution were applied to the SMA actuator for each of the six 
load cases. In each case, the following parameters were registered: time, the electrical current 
supplied to the SMA, the load force, the material temperature and the actuator elongation. 
To model the SMA we will built an integrated controller based on Adaptive Neuro-Fuzzy 
Inference Systems. The experimental elongation-current curves obtained from the six load 
cases are indicated in Fig. 6. One can observe that all six of the curves are characterized by 
four distinct zones: electrical current increase, constant electrical current, electrical current 
decrease and null electrical current in the cooling phase of the actuator. Therefore, four 
Fuzzy Inference Systems (FIS’s) are used to obtain four neuro-fuzzy controllers: one 
controller for the current increase, one for a constant current, one for the current decrease, 
and one controller for the null current (after its decrease). For the first and the third 
controllers, inputs such as the force and the current are used, while for the second and the 
fourth controller, inputs such as the force and the time values reflecting the SMA thermal 
inertia are used (for the four controllers the time values used are those required for the SMA 
to recover its initial temperature value (approximately 24˚C)). Finally, the four obtained 
controllers must be integrated into a single controller. 
The reasoning behind the design of the first and the third controllers is that from the 
available experimental data, two elongations for the same values of forces and currents are 
used (see Fig. 6). Due to the experimental data values, this data cannot be represented as 
algebraic functions, and therefore it is impossible to use the same FIS representation. An 
interpolation between the two elongation values obtained for the same values of forces and 
currents can be performed in Matlab, but it is not valid for our application. 
Also, the constant values, respectively the null values of the current before, respectively 
after the current decrease phase are not suggestive to be considered like inputs in the second 
and in the four controllers. Practically, with these phases the values of the actuator 
temperature could be used. The time values for these phases do prove very useful, because 
these values represent a measure of the thermal inertia of the actuator. We use the time 
value as the second input of the third controller, and therefore, as the second input of the 
second and of the fourth controllers – since force was considered as the first input (the time 
values must be considered from the moment when the current becomes constant, or null). 
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Fig. 6. Elongation versus the current values for different forces values for six load cases 

2.1 SMA model architecture based on fuzzy logic controllers 
A fuzzy inference system (FIS) can be easily generated using Matlab’s “genfis1” or “genfis2” 
functions. The “genfis1” function generates a single-output Sugeno-type fuzzy inference 
system (FIS) using a grid partition on the data (no clustering). The FIS thus obtained is used 
to provide the initial conditions for ANFIS training. The “genfis1” function uses generalized 
bell-type membership functions for each input. Each rule generated by a “genfis1” function 
has one output membership function, which is a linear type by default. It is also possible to 
create the FIS using the Matlab “genfis2” function, which first generates an initial Sugeno-
type FIS by decomposition of the operation domain into different regions using the fuzzy 
subtractive clustering method. For each region, a low order linear model can describe the 
local process parameters. The non-linear process can then be locally linearized around a 
functioning point by using the Least Squares method. The obtained model is considered 
valid in the entire region around this point. To limit the operating regions implies the 
existence of overlapping among these different regions, whose definition is given in a fuzzy 
manner. Thus, for each model input, several fuzzy sets are associated with their 
corresponding definitions of their membership functions. By combining these fuzzy inputs, 
the input space is divided into fuzzy regions. For each such region, a local linear model is 
used, while the global model is obtained by defuzzification with the center-of-gravity 
method (Sugeno), which interpolates the local models’ outputs (Sivanandam et al., 2007; 
MathWorks Inc., 2008). 
Based on the concept of finding regions with a high density of data points in the feature 

space, the subtractive clustering method divides space into a number of clusters. Centers of 

clusters are selected, starting with the points with the highest number of neighbours. The 

clusters are identified one by one; for each cluster the data points within a prespecified 

fuzzy radius are removed (subtracted). After each cluster identification, the algorithm looks 

for a new one until all of the data points have been examined. If a collection of M data 

points, specified by l-dimensional vectors uk, k = 1, 2..., M, is considered, a density measure 

at data point uk can be defined as follows: 
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where rm is a positive constant that defines the radius within the fuzzy neighborhood and 
contributes to the density measure. The point with the highest density is selected as the first 
cluster center. Let uc1 be the point selected and ǒc1 its density measure. Next, the density 
measure for each data point uk is revised by the formula: 

 .
)2/(

exp
2

1

1 ⎟
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⎠

⎞
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−ρ−ρ=ρ′

n

ck
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in which rn is a positive constant, larger than rm, and defines a neighborhood to be reduced 
in its density measure to prevent closely-spaced cluster centers. In this way, the data points 
near the first cluster center uc1 will have significantly reduced density measures, and these 
points cannot be selected as centers for the next clusters. After the density measure for each 
point has been revised, the next cluster center uc2 is selected and all the density measures are 
revised again. The process is repeated until all of the data points have been examined and a 
sufficient number of cluster centers generated. When the subtractive clustering method is 
applied to an input-output data set, each of the cluster centers are used as the centers for the 
premise sets in a singleton type of rule base (Khezri & Jahed, 2007). 
The Matlab “genfis1” function generates membership functions of a generalized bell type, 
defined as follows (Kosko, 1992; Kung & Su, 2007): 

 ,)|/)(|1()( 12 −−+= bi

q

i

q acxxA  (3) 

where i

qc  is the cluster center defining the position of the membership function, a, b are two 

parameters which define the shape of the membership function, and ),1( NiA i

q =  are 

associated individual antecedent fuzzy sets of each input variable (N - number of rules).  
The Matlab “genfis2” function generates membership functions of the Gaussian type, 
described by the following expression (Kosko, 1992; Kung & Su, 2007): 
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where i

qc  is the cluster center, and i

qσ  is the dispersion of the cluster. 
The Sugeno fuzzy model was proposed by Takagi, Sugeno and Kang to generate the fuzzy 
rules from a given input-output data set (Mahfouf et al., 1999). For our system, for all four of 
the FIS’s (two inputs and one output) a first-order model is considered, and for N rules is 
given by (Kung & Su, 2007; Mahfouf et al., 1999): 
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where )2,1( =qxq  are individual input variables, and ),1( Niy i =  is the first-order 

polynomial function in the consequent. ),1,2,1( Nikai
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optimized by Least Square method. 
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For any input vector, Txx ],[
21

=x , if the singleton fuzzifier, the product fuzzy inference and 

the center-average defuzzifier are applied, the output of the fuzzy model y is inferred as 
follows (weighted average): 
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where 
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)(xiw  represents the degree of fulfillment of the antecedent, that is, the level of firing of the 

ith rule. 
The adaptive neuro-fuzzy inference system adapts the parameters of Sugeno-type fuzzy 
inference systems using the neural networks. A very simple way to realize the FIS’s training 
is by using  the Matlab “ANFIS” function, which use a learning algorithm for the 
identification of the membership functions’ parameters of a Sugeno-type fuzzy inference 
system with two outputs and one input. As a starting point, the input-output data and the 
FIS models generated with the “genfis1” or “genfis2” functions are considered. The 
“ANFIS” optimizes the membership functions’ parameters for a number of training epochs; 
this number is set by the user. The optimization is realized for a better process 
approximation performed by the neuro-fuzzy model by means of a quality parameter 
present in the training algorithm (MathWorks Inc., 2008). Following the training phase, the 
models may be used for elongation value generation corresponding to the parameters at the 
input. 
For training the fuzzy system, ANFIS employs a back-propagation algorithm for the 
parameters associated with the input membership functions, and a least mean square 
estimation for the parameters associated with the output membership functions. For the FISs 
generated using the “genfis1” or “genfis2” functions, the membership functions are of the 
generalized bell type and gaussian type, respectively. In accordance with equations (3) and 
(4), in these kinds of membership functions, a, b and c, and σ and c, respectively, are 
considered variables and must be adjusted. Therefore, the back-propagation algorithm may 
be used to train these parameters. In this way, we can achieve our goal to minimize a cost 
function of the form 

 ( ) ,2/
2yydes −=ε  (8) 

where ydes is desired output. The output of each rule ),(
21

xxy i  is defined by: 
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in which ky is the step size. 
Starting from the Sugeno system’s output (eq. (6)), we find: 
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Therefore, the following equation for the output of each rule is 
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If a generalized bell-type membership function is used, for the jth membership function of 
the ith fuzzy rule the parameters are determined with the relations: 

 .)()1(,)()1(,)()1(
i

j

c

i

j

i

ji

j

b

i

j

i

ji

j

a

i

j

i

j c
ktctc

b
ktbtb

a
ktata

∂
ε∂

−=+
∂
ε∂

−=+
∂
ε∂

−=+  (13) 

For a Gaussian-type membership function, the parameters of the jth membership function of 
the ith fuzzy rule are calculated with the relations: 
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After the four controllers (Controller 1 for increasing current, Controller 2 for constant 
current, Controller 3 for decreasing current and Controller 4 for null current) have been 
determined, they must be integrated, resulting in the  logical scheme in Fig. 7. 
The decision to use one of the four controllers depends on the current vector type 
(increasing, decreasing, constant or zero) and on the value of variable “k”. Depending on 
the “k” variable value, we may decide if a constant current value is a part of an increasing 
vector or a part of a decreasing vector. The initial “k” value is equal to 1 when Controller 1 
is used, and is equal to 0 when Controllers 2, 3 or 4 are used. 
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Fig. 7. The logical scheme for the four controller’s integration 
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2.2 The SMA model design and evaluation 
In a first phase, the “genfis2” Matlab function (MathWorks Inc., 2008) was used to generate 

and train the FISs associated with the four controllers in Fig. 7: “Controller1Fis” (for the 

increasing current phase), “Controller2Fis” (for the constant current phase), 

“Controller3Fis” (for the decreasing current  phase) and “Controller4Fis” (for the null values 

of the current obtained after the decreasing phase). 

The first FIS, with force and electrical current as its inputs, was trained for 5000 epochs 

using the “ANFIS” Matlab function. The rules were of the type: if (in1 is in1cluster„k”) and 

(in2 is in2cluster„k”) then (out1 is out1cluster„k”). For both of these inputs, nine Gaussian-

type membership functions (mf) were generated; within the set of rules they are noted by: 

in„j”cluster„k”; where j is the input number (1÷2), and k is the number of the membership 

function (1-9). “Controller1Fis” fuzzy inference system thus has the structure shown in Fig. 

8, while Controller 1 has the structure indicated in Fig. 9. 

The rules of “Controller1Fis” fuzzy inference system, before and after training, are 

presented in Fig. 10, and Fig. 11 displays the deviation between the neuro-fuzzy models and 

the experimentally obtained data, defining the quality parameter from the training 

algorithm, for different training epochs. 

Figure 11 shows a rapid decrease in the deviation between the experimental data and the 

neuro-fuzzy model for the quality parameter within the training algorithm over the first 100 

training epochs, from a value of 0.062 to 0.03. Evaluating the FIS before and after training for 

the experimental data, using the “evalfis” command, the characteristics in Fig. 12 were 

obtained. The mean of the relative absolute values of the errors decreased from 0.3063% 

before training to 0.119% after training, while its maximum value decreased from 0.9339% to 

0.4342%. Since the error determined for “Controller1Fis” was very small, this FIS was 

selected to be implemented in the Simulink integrated controller. 

 
 

 
 

Fig. 8. Structure of the “Controller1Fis” fuzzy inference system 
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Fig. 9. The structure of Controller 1 

 

 

Fig. 10. The “Controller1Fis” rules, before and after training 

From Fig. 12 one observes a good overlapping of the FIS model with the elongation 

experimental data. This superposition is dependent upon the training epochs’ number, and 

improves as the number of training epochs increases. Because the training errors take 

constant values, an improved approximation of the real model can be achieved with neuro-

fuzzy methods only in the case when a larger amount of experimental data is used. 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

"Controller1Fis"

Number of training epochs

D
ev

ia
ti

o
n

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

 

Fig. 11. The training error for “Controller1Fis” 
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Fig. 12. “Controller1Fis” evaluation, before and after training 

The parameters of the input’s membership functions for “Controller1Fis”, before and after 

training, are shown in Table 1, while the membership functions’ shapes are depicted in Fig. 

13. For the Gaussian-type membership functions generated with “genfis2”, the parameters 

are half of the dispersion (σ/2) and the center for the membership function (c). 

 

Status Input Param. mf1 mf2 mf3 mf4 mf5 mf6 mf7 mf8 mf9 

σ/2 142.7 142.7 142.7 142.7 142.7 142.7 142.7 142.7 142.7 Force 
[N] c 1003 701.6 1248 851.8 1096 1493 1094 849.3 1498 

σ/2 1.867 1.867 1.867 1.867 1.867 1.867 1.867 1.867 1.867 

Before 
training Current 

[A] c 6 4.95 7.7 9.45 2.08 5.1 10.4 2.1 9.18 

σ/2 142.8 142.8 142.7 142.7 142.7 142.7 142.7 142.7 142.8 Force 
[N] c 1003 701.6 1248 851.8 1096 1493 1094 849.4 1498 

σ/2 2.598 3.321 2.328 4.208 2.271 2.252 3.671 2.965 1.885 

After 
training Current 

[A] c 6.998 4.795 6.942 8.627 0.7952 6.609 10.35 3.194 10.21 

Table 1. Parameters of the “Controller1FIS” input’s mf, before and after training 
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Fig. 13. Membership functions of “Controller1Fis”, before and after training 

Comparison of the FIS characteristics and the membership function parameters in Table 1, 

before and after training, indicates a redistribution of the membership functions in the 

working domain (modification of the c parameter) and a change in their shapes by the 

modification of the σ parameter. 

According to the parameter values from Table 1, the FIS’s generated with the “genfis2” 

function give, as a first result, the choice of the same values for the σ/2 parameter, for all 

membership functions which characterize an input. A second result is the separation of the 

working space for the respective input, using the fuzzy subtractive clustering method. 

Surfaces that reproduce the experimental data before and after the “Controller1Fis” training 

are presented in Fig. 14. 

The second FIS, “Controller2Fis”, with inputs of force and time, was trained for the 100000 

epochs using the “ANFIS” Matlab function. The rules here were also of the type: if (in1 is 

in1cluster„k”) and (in2 is in2cluster„k”) then (out1 is out1cluster„k”). For both of this FIS’s 

inputs, eight Gaussian-type membership functions (mf) were generated. Therefore, 

“Controller2Fis” fuzzy inference system has the structure shown in Fig. 15, while Controller 

2 has the structure given in Fig. 16. 
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Fig. 14. Control surfaces resulted for “Controller1Fis”, before and after training 

 

 

Fig. 15. Structure of the “Controller2Fis” fuzzy inference system 

 

in1
Force

in2

out1

Elongation

Sugeno

FIS

Time  

Fig. 16. The structure of Controller 2 

The rules of the “Controller2Fis” fuzzy inference system, before and after training, are 

presented in Fig. 17, while Fig. 18 displays the deviation between the neuro-fuzzy models 

and the experimentally obtained data, defining the quality parameter from the training 

algorithm, for different training epochs. 
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Fig. 17. The “Controller2Fis” rules, before and after training 
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Fig. 18. The training error for “Controller2Fis” 

Figure 18 shows a rapid decrease in the deviation between the experimental data and the 
neuro-fuzzy model for the quality parameter within the training algorithm over the first 
5000 training epochs, from 0.31 until a value of 0.09. Evaluating the FIS before and after 
training for the experimental data, the characteristics in Fig. 19 were obtained. The mean of 
the relative absolute values of the errors decreased by 3.76 times -- from 3.3503% before 
training to 0.8902% after training. Considering that the error for the “Controller2Fis” is in 
the desired limits after 100000 training epochs, this FIS was selected to be implemented in 
the Simulink integrated controller. 
In Fig. 19, a good overlapping of the FIS models’ data with the elongation experimental data 
is clearly visible. As in the previous FIS case, this superposition is dependent on the training 
epochs’ number, and improves as the number of training epochs increases. 
The parameters of the input’s membership functions for the “Controller2Fis”, before and 
after training, are shown in Table 2, while the membership functions’ shapes are depicted in 
Fig. 20. 
Comparison of the FIS characteristics and the membership functions parameters, before and 
after training, indicates a redistribution of the membership functions in the working domain 
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(modification of the c parameter) and a change in their shapes by modification of the σ 
parameter (Table 2). 
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Fig. 19. “Controller2Fis” evaluation, before and after training 

 

Status Input Param. mf1 mf2 mf3 mf4 mf5 mf6 mf7 mf8 

σ/2 143 143 143 143 143 143 143 143 
Force [N]

c 1002 1254 700.9 1096 1503 1002 1492 699.5 

σ/2 4.757 4.757 4.757 4.757 4.757 4.757 4.757 4.757 

Before 
training 

Time [s]
c 11.86 8.412 10.46 21.75 13.06 2.355 2.968 1.562 

σ/2 159.8 134.6 142.2 137.4 142.1 133.1 150.1 144.6 
Force [N]

c 1007 1254 702.7 1099 1498 997.4 1487 700.3 

σ/2 2.624 4.197 3.393 2.768 5.349 5.261 1.835 3.346 

After 
training 

Time [s]
c 8.244 0.9308 8.639 11.89 6.099 -5.344 1.777 -3.61 

Table 2. Parameters of the “Controller2FIS” input’s mf before and after training 
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Fig. 20. Membership functions of “Controller2Fis”, before and after training 

Surfaces which reproduce the experimental data, before and after the “Controller2Fis” 
training, are represented in Fig. 21. 
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Fig. 21. Control surface resulted for “Controller2Fis”, before and after training 
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The third FIS, “Controller3Fis”, which has the force and the current as its inputs, was 

trained for 20.000 epochs. The rules were also of the type: if (in1 is in1cluster„k”) and (in2 is 

in2cluster„k”) then (out1 is out1cluster„k”). For both of this FIS’s inputs, seven Gaussian-

type membership functions (mf) were generated. Therefore, “Controller3Fis” fuzzy 

inference system has the structure presented in Fig. 22, while Controller 3 has the same 

structure as Controller 1, represented in Fig. 9. 

The rules of the “Controller3Fis” fuzzy inference system, before and after training, are 

presented in Fig. 23, and Fig. 24 displays the deviation between the neuro-fuzzy models and 

the experimentally obtained data for different training epochs, defining the quality 

parameter from the training algorithm. 

 

 

Fig. 22. Structure of the “Controller3Fis” fuzzy inference system 

 

 
 
Fig. 23. The “Controller3Fis” rules, before and after training 
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Figure 24 shows a decrease in the deviation between the experimental data and the neuro-

fuzzy model for the quality parameter (with some oscillations) within the training algorithm 

over the first 3500 training epochs, from the value of 2.52·10-4 to that of 2.05·10-4. Evaluating 

the FIS before and after training for the experimental data, the characteristics in Fig. 25 were 

obtained. The mean of the relative absolute values of the errors decreased from 1.5154·10-3 % 

before training, to 2.3106·10-13 % after training. “Controller3Fis” was selected to be 

implemented in the Simulink integrated controller because its obtained error was within the 

desired limits after 20000 training epochs. 

From Fig. 25 one observes a good overlapping of the FIS models with the elongation 

experimental data. As in the previous FISs cases, this superposition is dependent upon the 

training epochs’ number, and is better as the number of training epochs is higher. 
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Fig. 24. The training error for “Controller3Fis” 

The parameters of the input’s membership functions for “Controller3Fis”, before and after 
training, are shown in Table 3, while the membership functions’ shapes are depicted in  
Fig. 26. 
 

Status Input Param. mf1 mf2 mf3 mf4 mf5 mf6 mf7 

σ/2 141.8 141.8 141.8 141.8 141.8 141.8 141.8 
Force [N]

c 1003 847.3 1102 701 1250 1497 1500 

σ/2 2.042 2.042 2.042 2.042 2.042 2.042 2.042 

Before 
training Current 

[A] c 0 11.55 11.44 0 0 10.2 0 

σ/2 141.7 141.8 141.8 141.7 141.6 141.8 141.8 
Force [N]

c 1003 847.3 1102 701 1250 1497 1500 

σ/2 2.042 2.165 1.838 2.042 2.042 2.058 2.042 

After 
training Current 

[A] c 8.184·10-5 11.3 11.73 -1.398·10-6 -4.591·10-6 10.25 -1.582·10-7 

 
Table 3. Parameters of the “Controller3FIS” input’s mf before and after training 
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Fig. 25. “Controller3Fis” evaluation, before and after training 

Comparison of the FIS characteristics and the membership functions’ parameters, before and 
after training, indicates a redistribution of the membership functions in the working domain 
(modification of the c parameter) and a change in their shapes by modification of the σ 
parameter (Table 3). 
The surfaces reproducing the experimental data, before and after training of the 
“Controller3Fis”, are presented in Fig. 27. 
The fourth and last controller FIS, “Controller4Fis”, with inputs of force and time, was 
trained for 250000 epochs. As with the others, the rules were of the type: if (in1 is 
in1cluster„k”) and (in2 is in2cluster„k”) then (out1 is out1cluster„k”). Seven Gaussian-type 
membership functions (mf) were generated for each of the two inputs. Therefore, the 
“Controller4Fis” fuzzy inference system has the structure given in Fig. 28, while Controller 4 
has the same structure as Controller 2, shown in Fig. 16. 
The rules of the “Controller4Fis” fuzzy inference system, before and after training, are 
presented in Fig. 29, while Fig. 30 displays the deviation between the neuro-fuzzy models 
and the experimentally obtained data, defining the quality parameter from the training 
algorithm, for different training epochs. 
Figure 30 shows a rapid decrease in the deviation between the experimental data and the 
neuro-fuzzy model for the quality parameter within the training algorithm over the first 
50000 training epochs, from the value of 0.67 to that of 0.13. By evaluating the FIS before and 
after training for the experimental data, the characteristics shown in Fig. 31 were obtained. 
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The mean of the relative absolute values of the errors decreased from 5.1855% before 
training, to 1.0316% after training. Since the error found for the “Controller4Fis” was within 
the desired limits after 250000 training epochs, this FIS was chosen to be implemented in the 
Simulink integrated controller. 
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Fig. 26. Membership functions of “Controller3Fis”, before and after training 
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Fig. 27. Control surface resulted for “Controller3Fis”, before and after training 
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Fig. 28. Structure of the “Controller4Fis” fuzzy inference system 

 

 

Fig. 29. Rules of the “Controller4Fis” before and after training 
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Fig. 31. “Controller4Fis” evaluation, before and after training 

From Fig. 31, a good overlapping of the FIS model’s output with the elongation experimental 
data can be observed. As in the previous FIS cases, this superposition is dependent upon the 
training epochs’ number, and is better as the number of training epochs is higher. 
The parameters of the input’s membership functions for the “Controller4Fis”, before and after 
training, are shown in Table 4, while the membership functions’ shapes are depicted in Fig. 32. 
 

Status Input Param. mf1 mf2 mf3 mf4 mf5 mf6 mf7 

σ/2 143.4 143.4 143.4 143.4 143.4 143.4 143.4 
Force [N] 

c 1003 847 1255 703 1103 1505 1497 

σ/2 24.86 24.86 24.86 24.86 24.86 24.86 24.86 

Before 
training 

Time [s] 
c 26.03 92.38 53.75 33.43 112.2 54.45 12.09 

σ/2 131.2 154.4 119 107.7 148.2 142.7 216.1 
Force [N] 

c 975.6 862 1309 747.9 1077 1493 1462 

σ/2 15.24 13.58 11.41 13.16 13.71 10.4 16.79 

After 
training 

Time [s] 
c 59.28 64.99 51.19 54.08 76.06 50.11 44.6 

Table 4. Parameters of the“Controller4FIS” input’s mf before and after training 
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Fig. 32. Membership functions of “Controller4Fis”, before and after training 

Comparison of the FIS characteristics and the membership functions parameters, before and 
after training, indicates a redistribution of the membership functions in the working domain 
(modification of the c parameter) and a change in their shapes by the modification of the σ 
parameter (Table 4). 
The surfaces reproducing the experimental data, before and after training of the 
“Controller4Fis”, are presented in Fig. 33. 
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Fig. 33. Control surface resulted for “Controller4Fis”, before and after training 
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Each of the four obtained FISs was imported at the fuzzy controller level, resulting in four 
controllers: Controller 1 (“Controller1Fis”), Controller 2 (“Controller2Fis”), Controller 3 
(“Controller3Fis”), and Controller 4 (“Controller4Fis”). The integration of these four 
controllers is carried out using the logical scheme given in Fig. 7; resulting in the 
Matlab/Simulink model below, in Fig. 34. 
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Fig. 34. The integration model schema in Matlab/Simulink 

In the Matlab/Simulink model shown in Fig. 34, the second input for Controller 2 and for 
Controller 4 (Time) is generated by using an integrator, and starts from the moment that 
either of these controllers is used (the input of the Gain block is 0 if the schema decides not 
to work with either Controller 2 or 4). Because is possible that the simulation sample time 
may be different than the sample time used in the experimental data acquisition process, we 
use the “Gain” block that gives their rapport; “Te” is the sample time in the experimental 
data and “T” is the simulation sample time. In the scheme, the constant “C” represents the 
maximum time that it takes for the actuator to recover its initial temperature (approximately 
24˚C) when the current becomes null. 
Evaluating the integrated model for controller (Fig. 34) in all six cases of experimental data, 
the results in Fig. 35 and Fig. 36 are obtained. These results represent the elongations versus 
the number of experimental data points and versus the applied electrical current, 
respectively, using the experimental data and the integrated neuro-fuzzy controller model 
for the SMA. A good overlapping of the outputs of the integrated neurro-fuzzy controller 
with the experimental data can be easily observed. 
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Fig. 35. Elongations versus the number of experimental data points 

The same conclusion can be devolved from the 3D characteristics for the experimental data, 
and for neuro-fuzzy modeled data in terms of temperature, elongation and force, as 
depicted in Fig. 37 a., and in terms of current, elongation and force, depicted in Fig. 37 b. 
The mean values of the relative absolute errors of the obtained model for the six load cases 
of the SMA actuator, based on adaptive neuro-fuzzy inference systems, are: 1.7538% for 
700N, 1.2738% for 850N, 1.0964% for 1000N, 0.5228% for 1100N, 0.7179% for 1250N and 
0.2532 for 1250N. Therefore, the mean value of the relative absolute error between the 
experimental data and the outputs of the obtained model is 0.9363%. 
A very important advantage of this new model is its rapid generation due to the “genfis2” 
and “ANFIS” functions already implemented in Matlab. The user only need assume the four 
FIS’s training performances using the “anfisedit” interface generated with Matlab. 
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Fig. 36. Elongations versus the applied electrical current 
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Fig. 37. 3D evaluation of the integrated neuro-fuzzy controller 
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Another alternative to design the SMA model, necessitating some supplementary work, but 
also with very good results, uses the “genfis1” Matlab function. In this case, generalized 
bell-type membership functions are generated for the FISs; within the sets of rules they are 
noted by: in„j”mf„n”; j is the input number (1÷2), and n is the number of membership 
functions. The rules are of the type: if (in1 is in1mf„k”) and (in2 is in2mf„p”) then (out1 is 
out1mf„r”). The number of the output membership functions (mf) is k×p (r=1÷(k×p)) and is 
equal to the number of rules; k and p are the number of mf of the two FIS’s inputs. The 
“genfis1” function allows the membership function number to be chosen for each FIS input 
(k and p) , while “genfis2” automatically generates the membership function’s number. 
For example, if k=6 and p=12 are chosen, the structure of the “Controller1Fis” generated 
with the “genfis1” function can be organized as in Fig. 38, while Controller 1 has the same 
structure as that presented in Fig. 9. 
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Fig. 38. Structure of „Controller1Fis” if the “genfis1” function is used for k=6 and p=12 

By using the “genfis1” function, generalized bell-type membership functions are generated; 
their parameters are the membership function center (c) defining their position, and a, b 
which define their shape (see eq. (3)). Generating FIS’s with the “genfis1” function has as a 
primary result the choice of the same values for the a and b parameters for all of the 
membership functions that characterize an input, and as a secondary result the separation of 
the working space for the respective input using a grid partition on the data (no clustering). 
FIS training with the “ANFIS” function produces an optimized redistribution of the 
membership functions in the working domain (modification of the c parameter) and a 
change in their shapes by modification of the a and b parameters. 
Usually, for an experimental data set modeling, the “genfis2” function is first used for FIS 
generation, followed by FIS training with the “ANFIS” function over a different number of 
training epochs. If the obtained results are not the ones desired, the “genfis1” function will 
be used to generate the FIS in order to improve the accuracy of the obtained model. 

3. Actuation lines’ control 

3.1 Controller design 
Starting from the developed SMA actuators model and based on the operating scheme of the 
SMA actuators control in Fig. 4, a controller must be designed in order to control the SMA 
actuators by means of the electrical current supply, in order to cancel the deviation e 
between the required values for vertical displacements (corresponding to the optimized 
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airfoils) and the real values, obtained from two position transducers. The design of such a 
controller is difficult due to the strong nonlinearities of the SMA actuators’ characteristics. In 
these conditions, and considering our research team experience in fuzzy logic control 
systems design, we decided that one variant of control would be developed with fuzzy 
logic. 
The simplest fuzzy logic controller is the Fuzzy Proportional (FP) controller, being relevant 
for state or output feedback in a state space controller. Its input is the error and the output is 
the control signal. From another perspective, derivative action helps to predict the error, and 
the Proportional-Derivative (PD) controller uses further the derivative action to improve 
closed-loop stability (Jantzen, 1998). The equation of a PD controller can be expressed as 
follows: 

 ,
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where i(t) is the command variable (electrical current in our case), that is time dependent; e 
is the operating error (see Fig. 4),  KP is the proportional gain and KD is the derivative gain. 
In discrete form, the equation (15) becomes (Kumar et al., 2008): 
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where k  is the discrete step, ST  is the sample period, and )(keΔ  is the change in error. 

Therefore, the inputs to the Fuzzy Proportional-Derivative (FPD) controller are the error and 

its derivative (called change in error in fuzzy control language), while the output is the 

control signal. We have chosen the structure shown in Fig. 39 for our FLC, where KD is the 

change in the output gain. 
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Change
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Fig. 39. Fuzzy PD controller architecture 

To realize the input-output mapping of the designed controller, we must consider that in the 
SMA cooling phase the actuators would not be powered or the supplying current would be 
very small. This cooling phase may occur not only when controlling a long-term phase, 
when a switch between two values of the actuator displacements is ordered, but also in a 
short-lived phase, which occurs when the real value of the deformation exceeds its desired 
value and the actuator wires need to be cooled. 
Each of the FLC input or output signals have the real line as the universe of discourse. In 
practice, the universe of discourse is restricted to a comparatively small interval, many 
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authors and several commercial controllers using standard universes such as [-1, 1], or [-100, 
100] corresponding to percentages of full scale. For our system, the [-1, 1] interval was 
chosen as the universe for inputs signals, and [0, 2.5] interval was chosen as the universe for 
output signal. Also, following numerical simulations, we have chosen a number of three 
membership functions for each of the two inputs, and three membership functions for the 
output. The shapes chosen for inputs membership functions were s-functions, Ǒ-functions, 
and z-functions. Generally, an s-function shaped membership function can be implemented 
using a cosine function: 
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a z-function shaped membership function is a reflection of a shaped s-function: 
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and a Ǒ -function shaped membership function is a combination of both functions: 
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with the peak flat over the [xm1, xm2] middle interval. x is the independent variable on the 

universe, xleft is the left breakpoint, and xright is the right breakpoint (Jantzen, 1998). 

To define the rules, a Sugeno fuzzy model was chosen, which for a two input - single output 

system with N rules is given by eq. (5): 
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In the [-1, 1] universe interval, a three range partition, Negative (N), Zero (Z) and Positive 

(P), were chosen for the inputs e and Δe while in the [0, 2.5] universe interval three-range 

partition, Zero (Z), Positive-Small (PS) and Positive-Big (PB) were used for the output. 

According to the values in the Table 5, the membership functions for the inputs are by the 

form depicted in Fig. 40, and are given by the eq. (18), (19) or (20): 
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mf parameters 
Input mf mf type 

xleft xm1 xm2 xright 
mf1 )( 1

1A  z - function -0.5 - - 0 

mf2 )( 2

1A  Ǒ -function -1 0 0 1 e  

mf3 )( 3

1A  s - function 0 - - 1 

mf1 )( 1

2A  z - function -1 - - 0 

mf2 )( 2

2A  Ǒ - function -1 -0.1 -0.1 1 eΔ  

mf3 )( 3

2A  s - function 0 - - 1 

Table 5. Parameters of the input’s membership functions 

For the output membership functions constant values were chosen (Z=0, PS=1.25, PB=2.5), 

so the values of ),1,2,1( Nikai

k ==  parameters in eq. (21) were zero. Starting from the 

inputs’ and output’s membership functions, a set of 5 inference rules were obtained (N=5): 
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Fig. 40. Membership functions for the fuzzy logic controller inputs 

The rule-based inference chosen for each consequent is presented in Table 6. With the 

previous considerations, the fuzzy control surface results by the form presented in Fig. 41 

(two views for different angles). 

 

Δe/e N Z P 

N - PS(1.25) - 

Z PB(2.5) - Z(0) 

P Z(0) Z(0) - 

Table 6. Rule-based inference for the fuzzy logic controller 
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Fig. 41. The fuzzy control surface (two views for different angles) 

3.2 Actuation lines’ controller implementation and numerical simulation 
Implementing the operating scheme of the SMA actuators control (Fig. 4) in Matlab-

Simulink, the model shown in Fig. 42 was obtained. The input variable of the scheme is the 

desired skin deflection, while the output is the real skin deflection. 
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Fig. 42. The simulation model for the controlled SMA actuator with the neuro-fuzzy model 

The “FPD controller” block contains the implementation of the controller presented in Fig. 
39; the detailed Simulink scheme of this block is shown in Fig. 43. The block has as input the 
control error (the difference between the desired and the obtained displacements), and the 
controlled electrical current applied on the SMA actuators as output. The “SMA Fuzzy 
Model” block has the schema presented in Fig. 34; its inputs are the SMA loading force and 
the electrical current, while its output is the SMA elongation. The “Mechanical System” 
block in Fig. 43 models the SMA loading force starting from the aerodynamic force, skin 
elastic force, gas spring elastic force and gas spring pretension force. 
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Fig. 43. “FPD controller” block in Simulink 

To obtain an automatic control system, the preloaded forces on the gas springs in the two 
actuation lines must be valid for all 35 studied cases. By estimating the aerodynamic forces 
for all 35 studied flight conditions and optimized airfoils, a compromise should be done to 
balance the aerodynamic forces with the preloaded forces of the gas spring. Following 
estimation calculations, the pretension force of the gas springs in “Mechanical system” 
Simulink block (see Fig. 42) was considered with the value of 1250 N. In this situation, if the 
simulated model in Fig. 42 was loaded with an aerodynamic force Faero=1150 N, for a 
successive steps input signal applied to the controlled actuator, the characteristics shown in 
Fig. 44 are obtained. 
The results shown in Fig. 44 confirm that the obtained FPD controller works very well in 
both phases (heating and cooling) of the SMA actuators. To see the manner in which the 
controller works, screenshots were taken at different times of the numerical simulation 
presented in Fig. 44. The screenshots (Fig. 45) highlighted the fuzzy model input-output 
mapping of the eight analyzed points (P1÷P8). The chosen time values, shown on Fig. 44, 
are: 11.67 s (P1), 27.03 s (P2), 29.40 s (P3), 55.32 s (P4), 62.75 s (P5), 108.42 s (P6), 119.12 s (P7) 
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Fig. 44. Response for a successive steps input when Faero=1150 N and Fpretension=1250 N 

127.71 s (P8). Fig. 45 shows that the correspondence between the membership functions of 

the inputs and the membership functions of the output through the inference engine of the 

designed fuzzy model was correctly established. The same observation can be found by 

correlating Fig. 45 with the positions of the analyzed points in Fig. 44 and with the error e 

and change in error Δe signs and trends. 

3.3 Bench test and wind tunnel experimental validation 
From the SMA theory and based on the numerical simulations of the morphing wing 

system, the limits for the electrical current used to drive the actuators, correlated with the 

SMA temperature and SMA loading force, were estimated. As a consequence, two 

Programmable Switching Power Supplies AMREL SPS100-33 (Brailovski et al., 2008; Coutu 

et al., 2007; Coutu et al., 2009), controlled by Matlab/Simulink through a Quanser Q8 data 

acquisition card (Fig. 46) were chosen to implement the controller model (Austerlitz, 2002; 

Kirianaki et al., 2002; Park & Mackay, 2003). The AMREL SPS100-33 Power Supplies have 

RS-232 and GPIB IEEE-488 as standard features, and their technical characteristics include: 

Power 3.3kW, Voltage (dc) 0-100 V, Current (dc) 0-33 A. The Quanser data acquisition card 

has 8 single-ended analog inputs with 14-bit resolution, which can be sampled 

simultaneously at 100 kHz, with A/D conversion times of 2.4 µs/channel, and is equipped 

with 8 analog outputs, software programmable voltage ranges, that allow the control of the 

SMA actuators. 

The Q8 data acquisition card was connected to a PC and programmed via Matlab/Simulink 

R2006b and WinCon 5.2 (Fig. 47). 

As observed on Fig. 47, all data acquisition card single-ended analog inputs were used: two 

signals indicating the vertical displacements dY1 and dY2 of the SMA actuators are provided 

by two Linear Variable Differential Transformer (LVDT) potentiometers, and six signals are 

provided by six thermocouples installed on each of the SMA wires’ components. Two of the 

card output channels were used to control each power supply through analog/external 

control by means of a DB-15 I/O connector, and other two card output channels were used 

to start the power supplies with a 5V analog signal. The “SMA1” block had the scheme 

presented in Fig. 48. 
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Fig. 45. Fuzzy model input-output mapping of the analyzed points 

As seen in Fig. 48, the “SMA1” block, controlling the first actuation line, contains the 

implementation of the controller presented in Fig. 43 and the observations related to the 

SMA actuators’ physical limitations in terms of temperature and supplying currents. The 

current supplied to the actuator was limited at 10A, and the control signal was set to be 0-

0.606V (maximum voltage for the power supply is 2V for a 33A current supply). The upper 

limit of the SMA wires temperature in the “Temperature limiter” block was established at 

P1 (11.67 s) P2 (27.03 s)

P3 (29.40 s) P4 (55.32 s)

P5 (62.75 s) P6 (108.42 s)

P7 (119.12 s) P8 (127.71 s)
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130˚C. The control scheme in Fig. 43 was improved with conditioners related to physical 

model protection. In this way, a software protection of the actuation lines was realized. 
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Fig. 46. Bench test physical model operating schema 
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Fig. 47. Q8 data acquisition card using to control the actuators 

After some tests with the experimental model, the preloaded force of the gas springs that 

maintains the SMA wires in tension was chosen to be 1000 N, since in the laboratory the 

existence of aerodynamic forces could not be considered. 

The Matlab/Simulink implemented controller was used in the same way for both actuation 

lines of the morphing wing system, so the “SMA2” block had a similar scheme to the 

“SMA1” block, with the exception of the numerical values of the thermocouples calibration 

gains and constants. 
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Fig. 48. “SMA1” block, controlling the first actuation line 

The validation of the designed controller during bench test runs consisted in two main 
steps, followed by a secondary one. Firstly, each of the two actuation lines of the morphing 
system were tested independently, the control prescribed values (the desired displacements 
dY1 and dY2) being presented under the form of successive steps. In this way, the actuation 
lines responses were obtained in Fig. 49; the characteristics confirmed that the control works 
very well for both actuation lines. After this first step, the challenge was to test the actuation 
lines working simultaneously (synchronized commands), for desired displacements (dY1 
and dY2) under the form of successive steps signals applied at their inputs. A situation 
acquired during this test is presented in Fig. 50, and validates the good functioning of the 
designed controller. The obtained results presented in Figs. 49 and 50 show that the 
controllers, in the two actuation lines, work even at zero values of the desired signal because 
of the pre-tensioned gas springs. Small oscillations of the obtained displacements are 
observed around their desired values. The amplitude of the oscillations in this phase is due 
to the LVDT potentiometers’ mechanical link (were not finally fixed because the model was 
not equipped with the flexible skin in this test – Fig. 51) and to the SMA wires thermal 
inertia; the smallest amplitude is less than 0.1 mm. In the secondary step of the bench test all 
pairs of the desired displacements characterizing the 35 optimized airfoil cases were 
imposed simultaneously as input signals on the two actuation lines, while the skin was 
provisionally mounted on the model. In this step, we could see if the skin supports both 
strains simultaneously; the recorded results for all 35 tested cases confirmed the good 
working of the integrated morphing wing system. 
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Fig. 49. Actuation lines independent bench test 

This secondary step of the bench test was considered in wind tunnel, and get together with 
the transition point real time position detection and visualization, in order to validate 
experimentally all of the 35 optimized airfoils theoretically obtained. A typical test for one of 
the 35 flight conditions consisted in a wind tunnel tare run, followed by a run for the 
reference (un-morphed) airfoil, and finally by a run for morphed airfoil, reproducing the 
corresponding optimized airfoil. The morphing wing system during wind tunnel tests is 
shown in Fig. 52. 
 

act #1 desired

act #1 obtained

-1

0

1

2

3

4

5

6

7

D
is

p
la

ce
m

en
t 

d
Y

1 
[m

m
]

0 100 200 300 400 500 600 700 800 900
Time [s]

-1

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900

D
is

p
la

ce
m

en
t 

d
Y

2 
[m

m
]

Time [s]

act #2 desired

act #2 obtained

 

Fig. 50. Actuation lines simultaneously bench test 

 

 

Fig. 51. Morphing wing system in the bench test 
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Fig. 52. Morphing wing system in the wind tunnel test runs 

Because of the presence of the aerodynamic forces on the flexible skin of the wing for the 
wind tunnel tests, the preloaded forces of the gas springs were reconsidered at 1500 N. The 
control results for test run 42, characterized by the angle of attack α=2° and Mach number 
Mach=0.2 (deflections of both actuators are dY1=5.73 mm and dY2=7.45 mm), are shown in 
Fig 53.  
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Fig. 53. Wind Tunnel Test for α=2°, Mach=0.2 (dY1=5.73 mm, dY2=7.45 mm) 

From the experimental results, it can still be observed a high frequency noise influencing the 
LVDT sensors and thermocouple’s instrumentation amplifiers, but with small amplitudes 
with respect to those for the bench tested cases. A positive impact on the noise amplitude 
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reduction is the completion of mechanical model by final fixing of the skin on the model; 
this time, the noise sources are the wind tunnel vibrations, the instrumentation electrical 
fields and the wind tunnel supplying and monitoring equipments electrical fields. 
Fig. 53 and all the tested situations results confirmed that the designed controller works 
very well in the wind tunnel, being positively influenced by the aerodynamic forces 
presence. 

4. Conclusions 

The approaches for the design and to the validation of a morphing wing fuzzy logic 
application were presented. The developed morphing mechanism used smart materials such 
as Shape Memory Alloy (SMA) in the actuation control concept. 
Two important applications of the fuzzy logic technique were highlighted in this work: the 
identification of a model for a system starting from some experimental input-output data, 
and the automatic control of a system. In this way, in our morphing application two 
directions were developed: smart material actuator modeling and actuation lines’ control. 
Based on a neuro-fuzzy network and using numerical values resulted from the SMA 
experimental testing (forces, currents, temperatures and elongations), an empirical model 
was developed for the SMA actuators that could be used in the design phase of the actuation 
lines’ control. The SMA testing was performed at Tamb=24˚C for six load cases with the forces 
of 700 N, 850 N, 1000 N, 1100 N, 1250 N and 1500 N. The electrical currents following the 
increasing-constant-decreasing-zero values evolution were applied on the SMA actuator in 
each of the six cases considered. Four Fuzzy Inference Systems (FIS’s) were used to obtain 
four neuro-fuzzy controllers: one controller for the current increase, one for a constant 
current, one for the current decrease, and one controller for the null current (after its 
decrease). For the first and for the third controllers, inputs such as the force and the current 
were used, while for the second and the fourth controllers, inputs such as the force and the 
time values reflecting the SMA thermal inertia were used. Finally, the four obtained 
controllers were integrated into a single controller. 
The “genfis2” Matlab function was used to generate and train the fuzzy inference systems 
associated with the four controllers. The four initially obtained fuzzy inference systems were 
trained for 5000, 100000, 20000, and 250000 training epochs. For the four FISs, the mean of 
the relative absolute values of the errors decreased from 0.3063%, 3.3503%, 1.5154·10-3 %, 
and 5.1855%, respectively, before training, to 0.119%, 0.8902%, 2.3106·10-13 %, and 1.0316%, 
respectively, after training.  
Evaluating the model obtained for the SMA actuators (the final, integrated controller) in all 
six cases of experimental data, the mean values of the relative absolute errors were: 1.7538% 
for 700N, 1.2738% for 850N, 1.0964% for 1000N, 0.5228% for 1100N, 0.7179% for 1250N, and 
0.2532 for 1250N. Therefore, the mean value of the relative absolute error between the 
experimental data and the outputs of the obtained model was 0.9363%. 
A very important advantage of this new model is its rapid generation, since the “genfis2” 
and “ANFIS” functions are already implemented in Matlab. The user only needs to assume 
the four FIS’s training performances using the “anfisedit” interface generated with Matlab. 
The second application of fuzzy-logic techniques in our project (actuation lines’ control) 
supposed the design of an SMA actuators’ controller starting from the developed SMA 
actuators’ model. The controller was designed to control the SMA actuators by means of the 
electrical current supply, in order to cancel the deviation e between the required values for 
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vertical displacements (corresponding to the optimized airfoils) and the real values, 
obtained from two position transducers. Finally, a fuzzy PD architecture was chosen for the 
controller. In its design, numerical simulations of the open loop morphing wing integrated 
system, based on a SMA neuro-fuzzy model, were performed. A bench test and a wind 
tunnel test were conducted as subsequent validation methods. 
A [-1, 1] interval was chosen as the universe for the inputs’ signals, and a [0, 2.5] interval 
was chosen as the universe for the output signal. Also, following numerical simulations, 
three membership functions for each of the two inputs, and three membership functions for 
the output were chosen. The experimental validation tests (bench tests and wind tunnel test) 
confirmed that the designed controller works very well. The wind tunnel tests were quite 
positive, with their transition point real time position detection and visualization, which 
experimentally validated all of the 35 theoretically-obtained optimized airfoils. 
As a general conclusion, the work presented here has proved the feasibility of using fuzzy 
logic methodologies in multidisciplinary research studies in the aerospace field, especially 
for morphing wing or morphing aircraft studies. 
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