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1. Introduction 

The twin-roll strip casting process is a typical steel-strip production method which combines 
continuous casting and hot rolling process. The production line from molten liquid steel to 
the final steel-strip is shortened and the production cost is reduced significantly compared 
to the conventional continuous casting. The twin-roll strip casting process can produce 1-5 
mm thin steel strip directly from the molten steel. Furthermore, since the strip casting 
process has high cooling rate, it can improve the mechanical properties of steel (Liang et al. 
1997; Cook et al. 1995). Usually, the molten steel level is controlled at a preset desired level 
to monitor the normal strip casting operation. During the roll casting process, once the 
molten metal contacts with the rotating rolls, a thin solidification shell is formed on the 
surface of each roll. The shell thickness gradually grows from each roll surface, finally 
contacts with each other and weld together at a position around the roll exit, called the 
solidification final point. If the molten metal level is higher than the specified value, the 
solidification final point will occur at a point above the roll exit. That will result in heat 
cracking and damage to the cooling roll surface in addition to material structural 
abnormalities of the steel strip. If the molten metal level is lower than the desirable value, 
the solidification final point will occur at a point below the roll exit. The steel strip surface 
will have inferior quality due to the breakout and oxidation. Hence, the molten metal level is 
an important process control parameter to guarantee the solidification final point and 
rolling strip quality. The molten steel level must maintain within a specific range during the 
full casting process except the initial startup operating mode by filling the molten steel into 
the twin roll cylinders from the tundish. 
Since the strip casting process has nonlinear dynamics uncertainty and coupled behaviors, 
accurate molten steel level control problem is still an important research topic to guarantee 
the steel strip quality. Graebe et al. (1995) verified the dynamic model and various 
nonlinearities appearing in the continuous casting process and proposed different issues 
that had to be solved in controller design. Hesketh et al. (1993) applied an adaptive control 
strategy for the mold level control of a continuous steel slab casting. Hong et al. (2001) 
investigated the modeling and control problem of a twin-roll strip caster. They analyzed 
different critical dynamics, including molten steel pool leveling, and developed a two-level 
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control strategy to achieve a constant strip thickness and maintain a constant roll separating 
force. 
Since the dynamic characteristic of this strip casting process is very complicated, it is 
difficult to establish an appropriate dynamic model for a model-based controller design. 
Hence, a model-free fuzzy control strategy is considered to solve this problem (Dussud et al. 
1998; Joo et al. 2002; Park and Cho 2005). However, the design of a traditional fuzzy 
controller fully depends on an expert, or the experience of an operator, to establish the fuzzy 
rule bank. Generally, this knowledge is difficult to obtain. A time consuming adjusting 
process is required to achieve the specified control performance. These factors hinder its 
application and implementation. 
Herein, a self-learning fuzzy controller with learning ability is utilized without the process 
dynamic model requirement to control the molten steel level of strip casting process. This 
control strategy can establish the fuzzy control rule tables automatically from zero initial 
rules and adjust on line to tackle the system variation and disturbance for reducing the 
effort of trial-and-error process. Here, the self-learning fuzzy controller is designed for 
regulating the height of the stopper controlled by an electric servomotor to achieve the 
desired molten steel level during the strip casting process. The control performance of the 
designed controller is evaluated based on numerical simulation results. For approaching a 
real case implementation, the simulation cases are selected based on the semi-experimental 
system dynamic model and parameters (Joo et al. 2002). In addition, the performance of this 
intelligent controller is compared with that of a traditional PID technique to show the 
performance improvement. 
This article is organized as follows: Section 2 describes the twin-roll strip casting process 
dynamics and system model for simulation purpose. Section 3 presents the model-free self-
learning fuzzy control strategy. Section 4 describes the numerical results of this intelligent 
controller. Final conclusions are presented in Section 5. 

2. Process dynamics and system model for simulation purposes 

A process mathematical model, which describes the relationship between the command 

inputs and the measured outputs, is required for the numerical simulation to evaluate the 

dynamic performance of a model-free controller. The mathematical model for the molten 

steel leveling dynamics developed in (Joo et al. 2002) is adopted and described in this 

section. Fig. 1 shows a schematic drawing of a twin-roll strip casting process. For developing 

the mathematical model, it is assumed that the molten steel is incompressible and two rolls 

are identical. The continuity equation of the liquid steel can be described as: 

 in out

dV
Q Q

dt
= −  (1) 

where V  is the volume of the molten steel stored between the twin-roll cylinders, inQ  is the 

input flow rate into the space between roll cylinders and outQ  is the output flow rate from 

the roll cylinders. The volume V  can be calculated as: 

 rV AL=   (2) 

where rL  is the length of the roll cylinders and A  is the oblique area shown in Fig. 1. 
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Fig. 1. Schematic diagram of the twin-roll strip casting process 
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where gx (t)  is the roll gap, R  is the radius of the roll cylinder and y(t)  is the height of 

molten metal above the axis of rollers. By substituting equations (2) and (3) into equation (1), 

obtain: 

 ( )g 2 2
r r g

dx dydV dA
L L y x 2R 2 R y

dt dt dt dt

⎡ ⎤
= = + + − −⎢ ⎥

⎣ ⎦
 (4) 

If ( )2 2
gx 2R 2 R y+ − −  is defined as r gB (x ,y) , the following form can be derived from 

equation (1). 

 
g

in out r

r g r

dxdy 1
Q Q L y

dt B (x ,y)L dt

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 
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Here, the input flow rate inQ  can be derived from the stopper opening height h(t)  and a 

nonlinear time varying input flow rate parameters a(t)  depends on the shape of the nozzle 

and the stopper, clogging/unclogging dynamics and the height and the viscosity of the 

molten metal in the tundish. 

 inQ a(t) h(t)= ⋅  (6) 

where the orifice opening, h(t) , equal to the height of the stopper is controlled by an electric 

servomotor. Due to fast response of the electric servomotor, the stopper motion dynamics is 
assumed to be negligible. In addition, if the response of the stopper actuator is fast enough, 
the orifice opening can be derived as: 

 h(t) ku(t)=  (7) 

where u(t)  denotes the control input and k  is the servo gain. 

The output flow rate outQ  can be derived from the product of roll surface tangential velocity 

rv , roll gap gx  and the length of the roll cylinder rL . 

 out r g rQ L x v=    (8) 

The dynamic model will only be used in the numerical simulations for evaluating the 
dynamic performance of the model-free self-learning fuzzy controller. The designing 
process of this intelligent controller does not need this dynamic model. 

3. Self-learning fuzzy control strategy 

Generally, for a non-linear dynamic system with uncertainties, it is very difficult to establish 

an accurate mathematical model for designing the control laws. Although the linearized 

model or simplified model can be employed to design the controller, the control 

performance of these model-based controllers still depends on many factors, such as the 

working position and operating conditions. Hence, model-free fuzzy control strategy was 

proposed to solve this kind of problem. It does not need a mathematical model for 

designing a fuzzy logic control law. In addition, a fuzzy logic controller can compensate the 

environmental variation during operation processes. However, to establish the fuzzy rule 

tables of a traditional fuzzy controller still depends on an expert or the experience of an 

operator. Generally, this knowledge is not easy to obtain and a time-consuming adjusting 

process is required to achieve the specified control performance. 

A self-learning fuzzy controller with learning ability was utilized to establish the fuzzy rule 
tables on-line automatically for reducing the effort of trial-and-error process (Chen and 
Huang 2004). It facilitates the design process of a fuzzy controller and makes the 
implementation of a fuzzy controller easier. Usually, the output response error and the 
change of error are selected as the fuzzy input variables. Both of them stimulate two fuzzy 
subsets (E and CE) for each sampling instant. Then, maximum four fuzzy rules in the fuzzy 
rule table are fired instead of the entire rule table and only these four rules are modified in 
each sampling time. This method can significantly reduce the computing time, therefore 
increasing the sampling frequency. Since this approach has learning ability to establish and 
regulate the fuzzy rule tables continuously, its control implementation can begin with zero 
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initial fuzzy rules. The fuzzy rules were adjusted on-line by means of a simple modification 
equation for each rule instead of a performance decision table. 
Fig. 2 shows that the self-learning part is added into a traditional fuzzy controller to form a 

self-learning fuzzy controller. Among them, the traditional fuzzy controller carries out the 

mission of control and the self-learning part is responsible for real-time recognition of the 

system variation. The self-learning part contains three steps: performance measure, model 

estimation and rule modification. The system performance measure is to calculate the 

deviation between the system output and the specified values. The purpose of system 

performance measure is to establish a successful correcting basis for a learning controller. 

Usually, two physical features including system output error and the change of error are 

chosen as performance indices to establish a performance decision table, which is similar to 

establish a fuzzy rule table. 
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Fig. 2. The self-learning fuzzy control block diagram 

The purpose of model estimation is to find the relationship between the system output 

performance and the control input. Based on the estimation model, the performance 

measure can be used to calculate the correction value of each fuzzy rule. However, it’s 

difficult to establish an appropriate performance decision table for each control system. A 

real-time linguistic self-learning fuzzy control strategy with a modification equation is used 

instead of the performance decision table to eliminate this difficulty. During the rule 

modification period, the size of rule table is limited to that of the original fuzzy rule table, 

and the correction value of each fuzzy rule is introduced into the original fuzzy rules as a 

new control rule. This approach can both improve the database expansion shortcoming of 

the Procky scheme (Procky and Mamdani 1979) and increase the computing speed. In 

addition, the system output characteristic can be monitored by definite design parameters. 

An auto-regression and moving average (ARMA) model can be used to represent the system 

dynamic response feature: 
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1 1X(nT) A(z )X(nT T) Mu(nT mT) B(z )u(nT mT T)− −= − + − + − −  

 (r 1)1 1
0 1 r 1A(z ) a a z a z− −− −

−= + + +A  (9) 

(s m 1)1 1
0 1 s m 1B(z ) b b z b z− − −− −

− −= + + +A  

where mT is the time delay of the system and M  is the system direct forward gain of the 

control system. The values of r , s and m  depend on the dynamic characteristics of the 

control system. They are difficult to estimate for the given system due to the non-linearity 

and uncertainty. Fortunately, fuzzy control has model-free feature and it does not require a 

definite mathematical model and system parameters. If the system is excited with a different 

control input u (nT mT)′ −  at time step nT mT− , there will be a new output value X (nT)′  at 

time step nT . Substituting u (nT mT)′ −  into Equation (9) will generate: 

 1 1X (nT) A(z )X(nT T) Mu (nT mT) B(z )u(nT mT T)− −′ ′= − + − + − −  (10) 

Then, the output difference between Equation (9) and (10) can be obtained: 

X X (nT) X(nT)′Δ ≡ −  

 u u (nT mT) u(nT mT)′Δ ≡ − − −  (11) 

The relationship between control input difference and corresponding output deviations are 
established. 

 X (nT) X(nT) M[u (nT mT) u(nT mT)]′ ′− = − − −  (12) 

 X M uΔ = Δ      or     
X

M
u

Δ
=

Δ
 (13) 

If a system at time step nT  has an output error XΔ  and an error change XΔ $  needed be 

compensated, the theoretical correction values of the corresponding control input are euΔ  

and ceuΔ , respectively. Then 

 e

X
u

M

Δ
Δ =       and    ce

T X
u

M

Δ
Δ =

$
 (14) 

Since the system has one control input u only, the above two terms must be combined 
together appropriately into the control input correction. Generally, the following equation 
can be chosen: 

 e ceu (1 ) u uΔ = − ξ Δ + ξΔ ,     0 1≤ ξ <   (15) 

where ξ  is a design parameter representing the weighting distribution between euΔ  and 

ceuΔ . If there is a large deviation between the system output X(nT)  and the desired value 

dX , the suitable X (nT)′  value is chosen between X(nT)  and dX  with a weighting 

parameter γ . Then the system output response X  can approach dX  gradually. 
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 dX (nT) (1 )X(nT) X′ = − γ + γ ,   0 1< γ <   (16) 

Then the output and output change rate deviations become 

 dX(nT) [X X(nT)] e(nT)Δ = γ − = γ   (17) 

 X(nT) e(nT) ce(nT)
T

γ
Δ = γ =$ $  (18) 

From Equations (13) and (17), the correction value of the control input can be represented as: 

 u [(1 )e(nT) ce(nT)]
M

γ
Δ = − ξ + ξ  (19) 

In this study, the output error E and the change of error CE are normalized and divided into 
eleven equal span fuzzy subsets within [-1, +1]. The fuzzy input variables, i.e. the system 
output error and the change of error will stimulate two fuzzy subsets of the E and CE 
universe of discourse, respectively for each control step. Since the control input u is derived 
from the inference of fuzzy rules, four fuzzy rules will be influenced by the rule 
modification for each control step. The correction value of each fuzzy rule is proportional to 
its excitation strength w , which is designed as a triangular membership function and 
calculated with a linear interpolation algorithm. Then the control input correction equation 
of the ith rule is: 

                        i i iu (nT T) u (nT) u+ = + Δ  

  i ei ceiu (nT) w w [(1 )e(nT) ce(nT)]
M

γ
= + × − ξ + ξ  (20) 

The term /Mγ  in the above equation can be considered as a designing learning factor. 

Besides this intelligent has a rule modification equation as the above equation, its operating 
processes are the same as the fuzzy logic controller. The general form of a self-learning 
fuzzy control rule can be expressed as: 

 iRule : IF XΔ  is  A  AND XΔ $  is  B, THEN  U  is  C  (21) 

where iRule  is the ith rule, XΔ and XΔ $  are the states of the system output to be controlled, 

U is the control input and A, B and C are the corresponding fuzzy subsets of the input and 

output universe of discourse, respectively. The output importance of each rule is dependent 

on the membership functions of the linguistic input and output variables. An equal-span 

triangular membership function shown in Fig. 3 is employed in this article for fuzzifying the 

input and output variables. The membership function used in the present article for 

fuzzification is of a triangular type. The function can be expressed as: 

 
1

(x) ( x W)
W

μ = − − δ +  (22) 

where W  is the distribution span of the membership function, x  is the fuzzy input variable 

and δ  is the parameter defining the value 1 of the membership function. The height method 
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is employed to defuzzify the fuzzy variable in order to obtain the control input for each 
control step. The equation can be described as: 
 

0 0.2-0.2 0.4-0.4 0.6 0.8 1.0-0.6-0.8-1.0

ZE

PVS PMPS PB PVBNVSNSNMNBNVB

E  , CE

 

(a) 

0 0.60.2 0.4 1.00.30.1 0.5-0.6 -0.2-0.4-1.0 -0.3 -0.1-0.5

uΔ

 

(b) 

Fig. 3. The fuzzy membership functions for (a) the inputs control variables errors; (b) the 
control input 

 i i0

i

w y
y

w
= ∑
∑

,      
ij

0
i A j

j

w (x )= μ∏   (23) 

where
ij

0
A j(x )μ  is the linguistic value of the fuzzy set variable, iw  is the weight of the 

corresponding rules that have been activated, iy  is the resulting fuzzy control value of the 

ith fuzzy rule and 0y  is the net fuzzy control action. The two dimensional linear 

interpolation algorithm also can be used to calculate the inference of four fired fuzzy rules 

for obtaining the control value of each control step. 

4. Numerical results 

In order to verify the effectiveness of this intelligent controller, the following numerical 

simulations are performed in this study. The system parameters used in the simulation 

study are selected as: R 650= (mm), rL 1350= (mm). These values are chosen from the 

previous researches (Joo et al. 2002, Park and Cho 2005). The variation of the input flow rate, 

a(t) , to describe the slow nozzle clogging and sudden unclogging is shown in Fig. 4 from 

reference (Joo et al. 2002). The input flow rate is dependent upon the viscosity of the molten 

steel, the molten steel level in the tundish, clogging and unclogging. The initial molten steel 

level and desired molten steel level were set to be 200 and 250 mm, respectively. The 

sampling frequency was selected as 100 Hz. The fuzzy control parameters ge  and gce  are 

chosen as 35 and 150. The weighting parameter ξ  and the learning factor /Mγ  in Equation 
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(20) were chosen as 0.5 and 1/1.9, respectively. An equal-span triangular membership 

function shown in Fig. 3 is employed for fuzzifying the input and output variables. 
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Fig. 4. Variation of the input flow rate 

Case A: The parameters gx  and rv  are constants: 

The system parameters roll gap gx  and roll speed rv  used in this simulation are set as 

constants, rv 13= (mpm) and gx 2= (mm). In practice, they are important to reach the 

desired molten steel level dy  in short period of time without overshooting, and to 

guarantee the molten steel level within a bounded endurable region during the casting 

process. The dynamic responses of the controller based on numerical results are shown in 

Fig. 5 (transient response) and Fig. 6 (steady-state response). The variations of orifice 

opening is shown in Fig. 7. The dynamic responses and the variations of orifice opening of 

the traditional PID controller ( pk 25= , ik 0.15= , dk 1= ) is shown in Figs. 8 and 9, 

respectively. Since the variation of the input flow rate has a sudden change from 0.16 to 0.2 
2m /s  at the moment of 100, 200 and 300 sec. The small change in times 100 and 200 sec in 

Fig. 6 is due to the sudden variation of the input flow. It takes about 10 steps (0.1 sec) for the 

height of molten steel, y , converges to the desired molten steel level, dy  by using this 

intelligent controller. The converging time of the molten steel level is faster than the result, 

0.15 sec of the PID controller. It can be observed that the steady-state error can be kept 

within 0.02 mm to the end of the control process even at the instants with the input flow rate 

variations due to the sudden unclogging shown in Fig. 4. The steady-state error is smaller 

than the result, 0.5 mm of the PID controller. 
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Case B: The parameters gx  and rv  are not constants: 

Since the system roll gap gx  and roll speed rv  parameters may have some perturbations in 

the real strip casting process, the values of gx  and rv  with certain variation instead of 

constants are chosen in this simulation. These parameter perturbations are set as random 

variations with the maximum amplitude of 25% system nominal parameter values. The 

disturbances are added for the entire control process to represent the parameter 

perturbations. The dynamic responses of this intelligent controller based on numerical 

results are shown in Fig. 10 (transient response) and Fig. 11 (steady-state response). The 

variations of orifice opening is shown in Fig. 12. The dynamic responses and the variations 

of orifice opening of the traditional PID controller ( pk 25= , ik 0.15= , dk 1= ) is shown in 

Figs. 13 and 14, respectively. It takes about 10 steps (0.1 sec) for the height of molten steel, 

y , to converge to the desired molten steel level, dy , with 0.3± mm steady-state error by 

using this intelligent controller. The converging time of the molten steel level is faster than 

the result, 015 sec of the PID controller and the steady-state error is smaller than the result, 

1± mm of the PID controller even at the instants with the input flow rate variations due to 

the sudden unclogging. 
Based on the simulation results, it can be observed that the self-learning fuzzy controller can 
regulate the molten steel level at the preset desired level without overshooting effectively. 
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Fig. 5. Case A: Molten steel level (transient response) 
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Fig. 6. Case A: Molten steel level (steady-state response) 
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Fig. 7. Case A: Variations of orifice opening 
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Fig. 8. Case A: Molten steel level (PID controller: pk 25= , ik 0.15= , dk 1= ) 
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Fig. 9. Case A: Variations of orifice opening (PID controller: pk 25= , ik 0.15= , dk 1= ) 
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Fig. 10. Case B: Molten steel level (transient response) 
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Fig. 11. Case B: Molten steel level (steady-state response) 
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Fig. 12. Case B: Variations of orifice opening 
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(b) Enlarged view of molten steel level

 

Fig. 13. Case B: Molten steel level (PID controller: pk 25= , ik 0.15= , dk 1= ) 
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Fig. 14. Case B: Variations of orifice opening (PID controller: pk 25= , ik 0.15= , dk 1= ) 

5. Conclusion 

The twin-roll strip casting process dynamics has the properties of nonlinear uncertainty and 
time-varying characteristics. It is difficult to establish an accurate process model for 
designing a model-based controller to monitor the strip quality. A model-free self-learning 
fuzzy controller is employed to control the molten steel level of the strip casting process. 
This intelligent control strategy has online learning ability for responding to the system’s 
nonlinear and time-varying behaviors during the molten steel level control. From the 
simulation results, it can be observed that the converging time of the molten steel level is 
less than 0.1 sec and the steady-state error is less than 0.3 mm for both simulation cases. In 
addition, this control strategy can monitor the molten steel at the preset desired level 
without overshooting effectively to guarantee the steel strip casting quality. Furthermore, 
from the control results, it can be concluded that the performance of this self-learning fuzzy 
controller is better than that of a traditional PID controller. This has reduced significantly 
the trial-and-error efforts of implementing a PID control strategies. 
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