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Synthesis of a Robust - Fuzzy Controller for
Uncertain Nonlinear Dynamical Systems

Wudhichai Assawinchaichote*
King Mongkut’s University of Technology Thonburi
Thailand

1. Introduction

Over the past two decades, there has been rapidly growing interest in application of fuzzy
logic to control problem. Researches have been focused on its application to industrial
processes and a number of successful results have been reported in the literature. In spite
of these successes, there are many basic issues remain to be addressed. One of them is
how to achieve a systematic design that guarantees closed-loop stability and performance.
Recently, a great amount of effort has been devoted to describing a nonlinear system using
a Takagi-Sugeno fuzzy model (see [1-28]). The Takagi-sugeno fuzzy model represents a
nonlinear system by a family of local linear models which smoothly blended together through
fuzzy membership functions. Unlike conventional modelling techniques which uses a single
model to describe the global behavior of a nonlinear system, fuzzy modelling is essentially
a multi-model approach in which simple sub-models (typically linear models) are fuzzily
combined to described the global behavior of a nonlinear system. Based on this fuzzy model, a
number of systematic model-based fuzzy control design methodologies have been developed.
The aim of this paper is to study the problem of designing robust He fuzzy controller for
a class of uncertain fuzzy systems. First, we approximate this class of uncertain nonlinear
systems by a Takagi-Sugeno fuzzy model. Then based on an LMI approach, we develop a
technique for designing robust H« fuzzy state-feedback and output feedback controllers such
that the £;-gain of the mapping from the exogenous input noise to the regulated output is less
than a prescribed value.

This paper is organized as follows. In Section 2, system descriptions and definition are
presented. In Section 3 and Section 4, based on an LMI approach, we respectively develop a
technique for designing robust H« fuzzy state-feedback and output-feedback controllers such
that the £;-gain of the mapping from the exogenous input noise to the regulated output is less
than a prescribed value for the system described in Section 2. The validity of this approach is
demonstrated by an example from a literature in Section 5. Finally, conclusions are given in
Section 6.

2. System descriptions and definitions

In this chapter, we generalize the TS fuzzy system to represent a TS fuzzy system with
parametric uncertainties as follows:

*W. Assawinchaichote is with the Department of Electronic and Telecommnunication Engineering,
King Mongkut’s University of Technology Thonburi, 126 Prachautits Rd., Bangkok 10140, Thailand.
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112 Fuzzy Controllers, Theory and Applications

6(t) = Ty u(v(t) [[Ai + AAJx() + [By, + ABy Jw(t)
+[Bzi+ABzi]_u(t)], x(0) =0 "

2(t) = iy wi(v() [[Cr, + ACyx(t) + [Dra, + ADp Ju(t)]

y(t) = Thapiv()[[Co+ ACyIx(6) + [Dy, + ADy Juo(1)]

where v(f) = [v1(t) - -- v4(t)] is the premise variable vector that may depend on states in many
cases, y;(v(t)) denotes the normalized time-varying fuzzy weighting functions for each rule
(ie., ui(v(t)) > 0and Y, ui(v(t)) = 1), 8 is the number of fuzzy sets, x(t) € R" is the state
vector, u(t) € R is the input, w(t) € R? is the disturbance which belongs to £,[0,00), y(t) € R’
is the measurement, z(t) € R is the controlled output, the matrices A;, By, By,,C1,,Co,, D1y,
and Dy, are of appropriate dimensions, and r is the number of IF-THEN rules. The matrices
AA;,ABy,ABy,ACy,ACy,AD1y, and ADjj, represent the uncertainties in the system and
satisfy the following assumption.

Assumption 1
AA; = F(x(t),t)Hy,,

ABy = F(x(t),t)Hy, ABy, = F(x(t),t)Hs,
ACL. = F(X(t),t)H4i, AC2I. = F(x(t),t)H5l.,
ADlZi = P(x(t),t)H()i and ADZL = F(X(t),t)HZ,

where H]-l., j=1,2,---,7 are known matrix functions which characterize the structure of the
uncertainties. Furthermore, the following inequality holds:

[E(x(8), )]l < p 2)
for any known positive constant p.

Next, let us recall the following definition.

Definition 1 Suppose 7y is a given positive number. A system (1) is said to have an Ly-gain less than
or equal to vy if

/0 YT (B)2(t)dt < o2 { /0 Tf wT(t)w(t)dt} ,x(0) =0 3)

forall Tr > 0 and w(t) € Lo[0, T¢].

Note that for the symmetric block matrices, we use () as an ellipsis for terms that are induced
by symmetry.

3. Robust ., state-feedback control design

The aim of this section is to design a robust He fuzzy state-feedback controller of the form

u(t) = i?‘jKjx(t) (4)
=1
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Synthesis of a Robust H_ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems 113

where K; is the controller gain, such that the inequality (3) holds. The state space form of the
fuzzy system model (1) with the controller (4) is given by

x(t) = §:1Z§:1Pliﬂj[[(Ai+Bzin>

+(AA; + AByK))]x(t) + [By, + ABli]w(t)}, x(0) =0. ©

The following theorem provides sufficient conditions for the existence of a robust Heo
fuzzy state-feedback controller. These sufficient conditions can be derived by the Lyapunov
approach.

Theorem 1 Consider the system (1). Given a prescribed Heo performance <y > 0 and a positive
constant 0, if there exist a matrix P = PT and matrices Y]-, j=1,2,---,r, satisfying the following
linear matrix inequalities:

P > 0 (6)
Q; < 0, i=12--,r 7)
Qij+jS < 0, i<j§7’ (8)
where
A;P + PAT T T
( +BY;+YIBT | () ()
Q= SR A . )
By —I (%)
CL,P + DlZ,'Yj 0 —')/I
with

A= (szii[HgH”)z,

i=1j=1

then the inequality (3) holds. Furthermore, a suitable choice of the fuzzy controller is

u(t) = Zy]-Kjx(t) (10)
j=1
where
Kj=Y;P~!. (11)

Proof: Using Assumption 1, the closed-loop fuzzy system (5) can be expressed as follows:

x(t) = Yia i1 Ml ([Ai + Bo,Kjlx(t) + Blﬁ(ﬂ) (12)
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114 Fuzzy Controllers, Theory and Applications

where

and the disturbance @(t) is
(13)

Let consider a Lyapunov function

V(x(t)) = ya" (£)Qx(t)
where Q = P~!. Differentiate V(x(t)) along the closed-loop system (12) yields

V(x(t) = i (H)Qx(t) +yx" (H)Qx(t)
= ZZVZV](’WC )(A; +BZK) Qx(t)

i=1j=1
+yx’ (H)Q(A; + By, Kj)x(1)
+9@T (1)B] Qx(t) + 72" (1) QB0 (1) ). (14)

Adding and subtracting —27 (#)2(t) + 9* Y1, Y1 Yon—1Xn—1 Miptipmpn [@T (£)@(t)] to and
from (14), we get

V) = XY Y Y w0 0T ] x

i=1j=1m=1n=1
(Ai+ BaK; >TQ
(C1,+Dpy K; ) (C1m+D12m K) )
Y
Bl Q —91

ﬂzililili“’”f”’””” T (1)) (15)
i=1j=1m

n=1

_I_

where

2(t) =YY winilCi, + DigKjlx(t) (16)
i=1j=1

with .
Ci,=| %®H] 0 V2AH] v2ACT |

~ T
and Dpp, = | 0 %HI V2ApH V2ADE, |
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Synthesis of a Robust H_ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems 115
Q 0 0
Pre and post multiply (7)-8)by | 0 I 0 | yields
0 0 I
(A;i +Bo,K)TQ T T
( ra Bk ) <0 (17)
e =L (%)7 ’
Cq, + D1p,K; 0 —l
i=1,2,---,r,and
(A; + By,K ) Q T T
-I-QA +B2K) SO
O
C1 + D12 K 0 —vl
(A] By, K;) T T
. +Q(A +le<) SO o )
Bl Q I (%)7 '
C1 + D12 K 0 —’)’I

i <j <r, respectively. Applying the Schur complement on (17)-(18) and rearranging them,

then we have

(Ai + B,K)TQ
+Q(A;i + By K))
+ (C1i+D12iKi)T(Cli+D12iKi) < O/
T
Bl Q —I

—~
*
~—
~

i=1,2,---,r,and

(Ai + B2,-Kj)TQ
FQ(A; + By K)) ()T
(C1i+D12in)T(C1i+D12iK/) +
o
B{_Q —vI
(Aj+By,Ki)TQ
+Q(A —}—BZK) ()T
(C1 +D12 K) (C1 +D12 K;) <0,

NT,)/

—+

i < j <r,respectively. Using (19)-(20) and the fact that

ror r r
Y Y Y pibtjpmpnME N < 5 Z ZW] [ MM + NNy ,
i=1j=1m=1n=1 z 1j=1
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it is obvious that we have

(Ai+B2,K))TQ

+Q(Ai + By Ky) O
n (C1,;4 D12, K)T(Cy,+ D1 K;) <0 (22)
Bl Q —l

wherei,j=1,2,---,r. Since (22) is less than zero and the fact that y1; > 0and Y;_; #; =1, then
(15) becomes

V(x(t) < ) + ’)/2 il i il i Vz]/‘]]/‘m}”n ( )w(t)]. (23)

j=1 n=1

Integrate both sides of (23) yields

/OTf V(x(t)>dt = /()Tf [ +7222 Z Z.uz,”jymﬂn ( Yao(t )]]dt
i=1lj=1m=1n=
VT Vi) < [T [0+ 2L T w000

i=1j=1m=1n=

Using the fact that x(0) = 0and V(x(Ty)) > 0 for all T; # 0, we get

/on Dzt < o7 / Y Yy Zﬂzﬂmmﬂn f(hw(t)dt| . (24)

i=lj=1m=1n=

Putting Z(t) and @(t) respectively given in (16) and (13) into (24) and using the fact that
IECe(t), 1)) < p, A% = (1+ 0% Ly Ty [ HE Hy,|]) and (21), we have

[ Zzwj( 2027 (1)[Cy, + Dz, K] T[C, + Dia Kl (t)

i=1j=

+202p%x" (1) [Hy, + He K| [Hy, + He Kjlx(t) ) dt

(]
< 9?A? Uo "ol (Hw() dt]. (25)
Adding and subtracting
2.T 2 T
A22T(Hz() = A ZZW]( 1) [C1, + F(x(t),t) Hy, + Dio K; + F(x(t), ) Hs K|
i=1j=

[C1, + F(x(t),t)Ha, + Dao K + F(x(t), ) He Ky | x(1))

www.intechopen.com
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to and from (25), one obtains

[ (e + R

i=1j=

(2A2xT<t> [C1, + D1z Kj][Cy, + Dag Kix(t)

+2A20%x T (t)[Hy, + He, K] [Hy, + He, K] x(t)
—A2xT(£)[Cy, + F(x(t),t)Hy, + D1p,K; + F(x(t),t)He, K;]"
[Cy, + F(x(t),t)Hy, + D1, K + F(x(t),t)H@Kj]x(t)) } dt

T
< 4222 [ /O T (Dw(t) dt]. 26)
Using the triangular inequality and the fact that ||F(x(t),t)|| < p, we have

ZZW]( 1) |Gy, + Fx(t), )H4,+D121,1<j+P(x(t),t)H6i1<jf
i=1j=1

[Cl + F(x(t),t)Hy, + D12, K; + F(x(t),t )H6in] x(t)>

< Zl éuw ({2227 (1) |1, + Dio K| ! (C1,+ Do K| x(1)}
i=1j=

+2020%xT (1) [H4,, + H61.1<]} ! [H4i + H6,,1<]} x(t)). 27)

Using (27) on (26), we obtain
/0 YT (0)2(t) < 2 /0 YT (Byw() dt. (28)
Hence, the inequality (3) holds. [ |

4. Robust 7, output feedback control design

The nature of the information of the state available to the controller has a major effect on
the complexity of the designing problem and of the resulting controller. The state-feedback
control design problem is an easier problem in which all information are available. However,
in most real physical systems, the state is not perfectly known, and so we must estimate it.
The process of estimating the system state from the measurement output that are available is
called the estimator design. By utilizing the state estimator, the output feedback problem is
converted to the state-feedback problem for a new problem. This new problem employs the
estimated state as its own state variable and the solution of the new state-feedback problem
leads to the solution of the dynamic output feedback control problem. Basically, the dynamic
output feedback is a coupling of control and estimation.

This section aims at designing a full order dynamic He fuzzy output feedback controller of
the form

0= Tiy T il At (1) + Biy(1) 29)
u(t) = Y piCia(t)
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118 Fuzzy Controllers, Theory and Applications

where £(t) € R" is the controller’s state vector, A,-j, B; and C; are parameters of the controller
which are to be determined, and fi; denotes the normalized time-varying fuzzy weighting
functions for each rule (i.e., /i; > 0 and }_;_ fI; = 1), such that the inequality (3) holds.

In this section, we consider the designing of the robust H« output feedback control into two
cases as follows. In Subsection A, we consider the case where the premise variable of the fuzzy
model y; is measurable, while in Subsection B, the premise variable which is assumed to be
unmeasurable is considered.

4.1 Case |-v(t) is available for feedback
The premise variable of the fuzzy model v(t) is available for feedback which implies that y; is
available for feedback. Thus, we can select our controller that depends on y; as follows:

A

() = YL, P‘il/‘j[ A2 (t) + Biy(t)} (30)
u(t) = LiqmGE(t).
Before presenting our next results, the following lemma is recalled.

Lemma 1 Consider the system (1). Given a prescribed Heo performance vy and a positive constant 6,
if there exists a matrix P = PT satisfying the following linear matrix inequalities:

1

P > 0 (31)
ij
( 4€T)<M ()"
+P(.Acl) 2
\T 2 T < 0 (32)
(Bgy) -7l (%)
g)
wherei,j=1,2,---,r
W= G ] o h ]
c BiCy,  Ajj cl BiD»;,
and C::]l = [Cl DlZié']

with
BL:[(SI I 6 0 By, O],

T
0 T i T T T
| ®HT o ®HIL v2apH vaAcT |,

S)z
I

- T
Dlz,:[o WHT 0 V2ApH] ﬁADlTZi} )
Dy, =[0 0 0 &I Dy, 1]

1
2

T r
and A= (1402 Y |IH] Holl + | HF Hr | |
i=1j=1

then the inequality (3) is guaranteed.

www.intechopen.com



119

Synthesis of a Robust H_ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems

Proof: The state space form of the fuzzy system model (1) with the controller (30) is given by

) = T r 1;41#](. G0 + B (1)) (33)

= Zr 121 1 Hilj Clx(t)
(xT(t) 2T(t)] T and the matrix functions Aié, BZJI and Cé]l are defined in Lemma

where ¥(t) =
1 and the disturbance is
[ SF(x(t),t)Hyx(t)
O Gt
oo | sF(x(t),t)Hs C;2(t
PO = ) Fs 2 (1) (34)
w(t)
| F(x(t),t)Hyw(t) |

Let choose a Lyapunov function
V(x(t)) = 2" (£)Qx(1), (35)
where Q = P~ 1. Differentiate V (¥(t)) along the closed-loop system (33) yields
V(x(t) = 2T (HQx(£) + X" (1) Q¥(1)
g;;;yﬁg(ﬂkwoﬁbTqu> T(HQA (1
(36)

TQx(t) + T (1 QBB ()).
Add and subtract — 2T (#)2(t) + 42 Y- 12;:1 Yom—1 =1 MitjHm pn [®( )T (t)] to and from (36)

yields

QB —?I

2Ly Y Z Wil jpm pin @

i=lj=1m=1n=

(37)

Now suppose there exits a matrix P > 0 such that (32) holds, i.e.,

AgP+P(AYT ()T ()]
(BT ()T | <o. (38)
1]
C,iP

www.intechopen.com
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(B)H)TQ —2T (x <0. (39)
c) 0 -I
The Schur complement of (39) is
(ATQ+Qal +(chTeh T ) _, w0
(BT —2I '

Using (40) and the fact in (21) together with the fact that y; > 0 and Y} ; y; = 1, then (37)
becomes

VEE) < —zT(ﬂzU)wﬁQ ililwmmun o7 (1) (1)) (1)
i=1j=1m=1n=
Integrate both sides of (41) yields
Ty . 5 Ty ror r )
| veEea < [T (=m0 +q g}zlmzlguzu]ymyn T(a()))at
V) ~vao) < [T (=T0H0 LY 1 Y el (0]
1 ] m n

Using the fact that ¥(0) = 0 and V(%(Ty)) > 0 for all T¢ # 0, we have

/()Tf ZT(t)Z(t)dt < ’)/ /Tf i Z i i Vz.”],um,un ( Ya(t)] | dt.

i=1j=1m=1n=1
(42)
Putting Z(t) and @(t) respectively given in (33) and (34) into (42) and using the fact that
IFGe(), )l < p, A% = (14 02 Tiy iy [ | HE Ho || + | HE Hy ||| ) and (21), we have

/ ZZW](ZA”()[Q D12,¢]7[Cy, D1a,Cl%(t)

i=1j=1
+2020257 () [y, He,Cj]T[Hy, Ho CjJ(1) ) dt

< 2272 [ /0 T (Byw(t) dt] . 43)
Adding and subtracting
A AT
A2l (z(t) = AZZZWJ( )| C1, + F(x()), ) Hy, D1 G+ F(x(t), 1) He G

i=1j=1
{cli + F(x(t),)Hy, Dis,Cj+ F(x(t),t)Hg, c}

=<

1)

www.intechopen.com
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to and from (43), one obtains

[ (e + Lo

i=1j=1
(2A232T(t)[c1,. D12, Ci1T[Cy, Do, CjlE(t) + 222022 (£) x
[H4i H6iéj]T[H4i H61CA]']%(t)
—A2%T(#)[Cy, + F(x(t),t)Hy, D1p,C; + F(x(t),t)He,Cj]"
(Cy, + F(x(£),))Hs, D1p,Cj+ P(x(t),t)H@Cj]aE(t)) } dt

< 42)2 [ /0 YT (By(t) dt] . (44)

Using the triangular inequality and the fact that ||F(x(t),t)|| < p, we have

A2212w]( ) [C1, + F(x(t), ) Hy, Dlzié]-+F(x(t),t)H6iCj]T
i=1j

[cl + F(x(t), 1) Hy, Dlziéj+F(x(t),t)H6jCj}i(t))
r r T

SZZ zﬂ]( 2A%%T( ){Cli Dlzié]} [Cli DIZij] X(t)
=1 :

+2A202%7 (1) [H4i Hg, éj] ! [H41. Hg, éj] az(t)>. (45)

Using (45) on (44), we obtain

/0 YT (0)2(t) < 2 /0 YT (Byw() dt. (46)

Hence, the inequality (3) is guaranteed. |
Knowing that the controller’s premise variable is the same as the plant’s premise variable, the
left hand of (32) can be re-expressed as follows:

AP 4 (AT +42B (BT + P(CI)TCP. (47)

Before providing LMI-based sufficient conditions for the system (1) to have an He
performance, let us partition the matrix P as follows:

X y-1-X
y1l-x x-vy1

where X € R"*" and Y € R"*". Utilizing the partition above, we define the new controller’s
input and output matrices as

pP— (48)

B [Y_l - X] Bi
C; GY.

Using these changes of variable, we have the following theorem.

3
N (49)
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Theorem 2 Consider the system (1). Given a prescribed Heo performance <y > 0 and a positive
constant J, if there exist matrices X = XT, y=vT, Biand C;, i =1,2,---,r, satisfying the following
linear matrix inequalities:

“{ i} > 0 (50)
X > 0 (51)
Y > 0 (52)
Y, < 0, i=12--,r (53)
Yoo, < 0, i=1,2,---,r (54)
Y, +¥1, < 0, i<j<r (55)
Yo, +¥m, < 0, i<j<r (56)
where
A;Y +YAT
+B2iC]-+CiTlB2Tj ()T
Y, = +7—21§17_ij (57)
[vcl +cl'Dl, ] T
ATX + XA
+BiCy, + QB | ()]
Yo, = eyl (58)
[XBy, + B;Dy1] ! -7’1
with

By=[6l I &I 0 By, 0],
~ T
C,=| "HT o HI V2ApHL V2ACT |,
~ T
Dp,=| 0 HI o V2apH! V2ADL, |,
Dy, =[0 0 0 &I Dy, 1]

2
r r
and A = (1 +o2 Y Y [|]H§szy| +H7T,H7]}) ;

i=1j=1
then the prescribed Hoo performance <y > 0 is quaranteed. Furthermore, a suitable controller is of the
form (30) with

Ai]' = [Y_l — X} _1./\/1in_1
B, = [y1-x]'B (59)
éi = CZ'Y_l
where
M = —A] —XA)Y - XB,CjY

S XBCY - CLC Y+ DY

www.intechopen.com



Synthesis of a Robust H_ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems 123

Proof: Suppose there exist X and Y such that the inequalities (50) and (51)-(52) hold. The
inequality (50) implies that the matrix P defined in (47) is a positive definite matrix. Using the

partition (48), the controller (49) and multiplying (47) to the left by [ 1; é } and to the right

by [ Yoy ],Wehave

I 0
{ o, <I>(2)z,.j ] (61)
where
@y, = AY+YAT +BCi+Cf BZTj + 7—231,,1?{],
+[YCf + CiTDszj] [YC + CiTDszJ ! (62)
D, = AlX+ XA+ B,Cy +C B +CCy,
+972[XBy, + BiDyy ] [XBy, + BiDy, ] (63)

Note that @111.], and Oy, are the Schur complements of ‘Pll,-j and ¥, Using (53)-(56), we
have (61) less than zero. Hence, by Theorem 2, we learn that the inequality (3) holds. [ |

4.2 Case ll-v(t) is unavailable for feedback

The output feedback fuzzy controller is assumed to be the same as the premise variables of the
fuzzy system model. This actually means that the premise variables of fuzzy system model
are assumed to be measurable. However, in general, it is extremely difficult to derive an
accurate fuzzy system model by imposing that all premise variables are measurable. In this
subsection, we do not impose that condition, we choose the premise variables of the controller
to be different from the premise variables of fuzzy system model of the plant. In here, the
premise variables of the controller are selected to be the estimated premise variables of the
plant. In the other words, the premise variable of the fuzzy model v(f) is unavailable for
feedback which implies y; is unavailable for feedback. Hence, we cannot select our controller
which depends on y;. Thus, we select our controller as follows:

£ = XD | Ayt(6) + By )] ”
u(t) = Y MG (t).
where fI; depends on the premise variable of the controller which is different from y;.
Let us re-express the system (1) in terms of fi;, thus the plant’s premise variable becomes the
same as the controller’s premise variable. By doing so, the result given in the previous case
can then be applied here. First, let us rewrite (1) as follows:
B0 = Tlypi[[Ar+ AALX(E) + By, + AByJw(t) + By, + AByJu()]
+ Yo P [[Ai + AA;]x(t) + [By, + ABy Jw(t) + [By, + ABzi]”(t)}
—Yiz1fi [[Ai + AA;]x(t) + [By, + ABy Jw(t) + [By, + ABzi]u(t)}
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124 Fuzzy Controllers, Theory and Applications

z(t) = Yig Vi[[(;h + ACy,]x(t) + [D1g, + AD1y, ]u(t)}
+ Y i :[Cli + ACy,x(t) + [D1g, + AD1, ]M(t)}
— ¥y ] [C1, + ACy Jx(t) + [Dpa, + ADy Ju(h) |
- (65)
y(t) = Yig Vi[[c_zi + ACy,]x(t) + [Da1, + ADa, ]w(t)]
+ X1 4] [Co, + ACy]x(E) + [Dan, + ADy,Juo(1)]
— Xy 1] [Co, + ACa Jx(t) + [Day, + ADyy Juo(1) .
Rearranging (65) together with employing Assumption 1, we obtain
£() = Xy i ([As + F(x(8), ), + (31— ) Ax + -+ (e = i) Ar
+F(x(t),t) (1 — fin)Hy, + -+ + F(x(8),£) (ur — fir)Hy, ]x(t)
[31 + F(x(t),t)Hy, + (l/‘l f)By, + -+ (pr — fir) By,
+F(x(t),t) (1 — fin)Ha, + -+ + F(x(8),t) (ur — fir)H,]w(t)
+[By, + F(x(t),t)Hs, + (Pll f1)Ba, + -+ + (ur — fir) By,
+F(x(t),t) (1 — 1) Ha, + -+ + F(x(8),£) (pr — ﬁr)H:sr]M(f))
z(t) = i fli ¥ ([Cl, + F(x(t),t)Hy, + (p1 — 11)Cr, + -+ (ur — 1) Cy, »
FE(x(8),8) (1 — fin) Hy, + -+ F(x(0),8) (uy — fir) Ha, J2(1) (69
+[D1g, + F(x(t),t)Hs, + (p1 — 1) D12, + -+ + (pr — fir) D1,
+F(x(t),t)(p1 — 1) Hs, + -+ + F(x(8),£) (pr — ﬁr)HS,]M(f)>
y(f) i 1ﬁi([c2,- + F(x(t),t)He, + (1 — fi1)Coy + -+ (pr — fir)Ca
+F(x(t),t)(p1 — fi1)He, + -+ + F(x(t),t) (ur — fir)He, ] x(t)
+[D21 + F(x(t),t)Hy, + (1 — fi1) D1, + -+ + (ur — 1) D1,
+F(x(t), ) (u1 — 1) Hy, + -+ + F(x(£),) (r — ﬁr)Hn]w(t))
Then, from (66), we get
£(0) = iy fi|[As+ AAx(E) + [By, + ABy Jw(t)
+1Ba, + ABy Ju()], x(0) =0
2(t) = YO fu|[Cr, + ACyIx(t) )
+[D1z, +AD12] (f)}
y(t) = Yiif [Cz + ACy,|x(t)
+[D21i+AD21i] ()}
where
AA; =F(x(t),%(t),t)Hy,,
ABy = F(x(t),2(),t)H, ABy = F(x(t),%(t),)Hs
ACy, = F(x(t),2(t),t)Hy, ACy, = F(x(t),%(t),t)Hs

www.intechopen.com



Synthesis of a Robust H_ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems

125

with

A, = [H{, AT ..
Fy, = |HJ B --
A, = [H] B], -
Ay, = [H] T, -
As, = [HL c] -

H7i: [H%Dgl] D2Ter7Tl"‘

and F(x(t),2(8),1) = [F(x(t),) (11 =) -
ﬁr)] Note that ||F(x(t),£(t),t)|| < § where § = {302 +2}3. p is derived by utilizing the

concept of vector norm in basic system control theory and the fact that ; >0, 71, >0, Y7 p; =

land Y7 47 =1.

'C1T,H4T1"'

T 14T
CT HE -

T
Hﬂ ,

T
T T T
'D12r He - .Hd

(r — fir) F(x(8),8) (41 — fi1) -+

F(x(t),t) (pr =

Note that the above technique is basically employed in order to obtain the plant’s premise
variable to be the same as the controller’s premise variable; e.g. (22). Now, the premise
variable of the system is the same as the premise variable of the controller, thus we can apply
the result given in Case I.

Theorem 3 Consider the system (1). Given a prescribed Heo performance -y > 0 and a positive
constant 9, if there exist matrices X, Y, B; and C;, i =1,2,-- - ,r, satisfying the following linear matrix

inequalities:

where

www.intechopen.com

{ x ! } >~ 0
X > 0
Y > 0
Y, < 0 i=12---,r
Yo, < 0, i=12---,r
Y, +%¥n, < 0 i<j<r
Yo, +%2, < 0 i<j<r
A;Y +YAT
—I—BgiCj—l—Ci ng (*)T
‘1’11,7 = +’Y_2]§1,-1§£
YCl +cIDL]T -1

(68)

(69)
(70)
(71)
(72)
(73)
(74)

(75)
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ATX + XA;
+B; C2 +C2TBT ()T
Y. = 3T (76)
Kl C Cl
[XBl + B D21 ]T —’)/21

with 3
Bli:[é‘l I 6 0 By, O},

. & o ) T
= %a] o WAL v2AsH] V2ACT |,
~ = _ -\ A T

Dy = [ o YAI o V2ApA! V2AD], } ,
Dy =[0 0 0 6 Dy, I]

1
2
r r
and A = (1 +p2 Z Z [”H’ZIZH%H + H;:H7]:|) ’

i=1j=1

then the prescribed Heo performance v > 0 is guaranteed. Furthermore, a suitable controller is of the
form (64) with

A Y - X Imy !
B, = [y1-Xx]'B (77)
G = oYyt
where
M = —A] —XA)Y - XB,CjY

—[y™' = X]B;Cy, Y — CT [Cy,Y + D1y, CjY]
42 {xéli + [y 1= X]B;Dy }E{ (78)

Proof: Since (67) is of the form of (1), it can be shown by employing the proof for Theorem 2.
]

5. Example

Consider the following problem of the chaotic Lorenz system which is described by the
following equations (see [29]).

X(t) = —oxp(t) +oxp(t) + u(t) + 01wy (¢)

X(t) = rag(t) —xo(t) —x1(t)xs(t) + 0.1wp(t)

x3(t) = x1(t)xp(t) — bxs(t) +0. 1wj3(t) (79)
z(t) = [ xf@) O xI(t) ]

y(t) = Jx(t) + 01wy ()

where x1 (), x2(t), x3(t) denote the state vectors, u(t) is the control input, w1 (t), wa(t), w3 (t)
are the disturbance noise inputs, y(t) is the measurement output, z(t) is the controlled output,
J is the sensor matrix and the bounded uncertain parameters o, r and b are given by 10 & 30%,
28 4+ 30% and 8/3 £ 30%, respectively. Note that the variables x1 (t), xp () and x3(t) are treated
as the deviation variables (variables deviate from the desired trajectories).
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Fig. 1. Membership functions for the two fuzzy set.

Since the nonlinear terms in (79) can be viewed as a function of x1 (), we can re-expressed (79)
as

X(t) = —oxi(t) +oxa(t) +u(t) +0.1w ()

X(t) = ra(t )—xz( ) (x1(t)) - x3(t) + 0.1wa(t)

X3(t) = (x1(t)) - xa(t) — bxs(t) + 01w3(t) (80)
2t) = [AT() L) L) ]

y(t) = Jx(t)+0. 1w1( ).

The control objective is to control the state variable x1 (¢) for the range x1 (t) € [N; Np|. For the
sake of simplicity, we will use as few rules as possible. Note that Figure 1 shows the plot of
the membership functions represented by

—x1(t) + N2
Ny — Np

x1(t) — Nq

and My (xq(t)) = Ny - N;

My (x1(t)) =
Knowing that x1 (¢) € [N7 Ny], the nonlinear system (80) can be approximated by the following
two rules TS model:
Plant Rule 1: IF xq(¢) is M1 (x1(¢)) THEN

X(t) = [A1+AAq]x(t) + By w(t) + By u(t), x(0) =0,
z(t) = Cyx(t),
y(t) = Cyx(t)+ Dy w(t).

Plant Rule 2: IF xq(t) is My (x1(t)) THEN

X(t) = [Ax+ AAy]x(t) + By,w(t) + Bo,u(t), x(0) =0,
2(t) = Cyx(t),
y(t) = Cox(t) + Da,w(t)
where
—-10 10 0 -10 10 0
Aj=| 28 -1 —N; |, Ap=]| 28 -1 -—-N, |,
0 N -8/3 0 N -8/3
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1
C11C12|:0 ],Czlczzf,
0

D211 = D212 = [ 01 0 O ], AAl = F(x(t),t)Hll, AAZ = F(X(t),t)le,
x(t) = [x] (t) 23 (1) x5 ()] and w(t) = [w] (t) w; () w3 (1)]".

Let us choose the value of [N] N, | in the membership function as [—20 30]. Now, by assuming
that in (2), ||F(x(t),t)|| < p =1 and since the values of o, r, b are uncertain but bounded within
30% of their nominal values given in (79), we have

Hl] = le = 0.3r 0 0

0 0 —03b

—0.3c 03¢0 0 ]

State-feedback controller design
Using the LMI optimization algorithm and Theorem 1 with v =1 and § = 1, we obtain

P=| —-81629 5.1783 0.9345

104.7498 —8.1629 —1.1823
—1.1823  0.9345 6.7383

Ki=[ —388875 —816.1115 —3.9273 |, Kp=[ —37.4290 —815.5695 4.1287 ].

The resulting fuzzy controller is

2
u(t) = ZyjKjx(t)
j=1
where

p1=My(x1(t)) and py = My (x1(t)).
Output feedback controller design
Case I: v(t) are available for feedback
In this case, x1 () = v(t) is assumed to be available for feedback; for instance, ] = [1 0 0]. This
implies that y; is available for feedback. Using the LMI optimization algorithm and Theorem
2 with v =1 and § = 1, we obtain the following results:

40.9617 —0.3001  0.0003 64.0418 —6.6279 —0.0180
X=| —0.3001 0.0326 —0.0020 |, Y=| —6.6279 07784  0.0345 |,
0.0003  —0.0020  0.0529 —0.0180 0.0345  0.8385
—52.6459 913.0329  11.1683 —52.9740  909.6351  0.8313
A = 0.4211  —93.8119 —1.1292 |, App = 0.5070  —93.0535 —0.2157 |,
23239  —0.4233  0.0865 23414  —0.2540 0.1024 ]
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—54.8390 912.4579 —6.7553 —54.7676  913.4610 —17.1638
Ayy=| 14467 —93.6196 0.6829 |, Apy=| 13897 —94.0748 1.5985 |,
—3.5367 —0.1599  0.2080 —3.5229  —0.0374  0.1865
—110.4306 113.2188
B = 4.8589 , B,=| 61387 |,
[ 2.9909 ] [ —4.5464 }

Ci =] —36.1488 —710.9845 —3.2817 |, C,=[ —35.9847 —709.7215 5.1803 |.

The resulting fuzzy controller is

2 2 2
R(t) = Y ) wipiAyR(t) + Y uiBiy(t)
i=1i=1 =
2 A
u(t) = Y uiCix(t)
i=1

where
p1 = My(x1(t)) and pp = Ma(x1(t)).

Case II: v(t) are unavailable for feedback
In this case, x1 () = v(t) is assumed to be unavailable for feedback; for instance, ] = [0 0 1].
This implies that y; is unavailable for feedback. Using the LMI optimization algorithm and

Theorem 3 with v =1 and § = 1, we obtain the following results:

15.3866 —0.0454  0.0001
X=| —0.0454 0.0086 —0.0005 |,
0.0001  —0.0005 0.0121
[ —72.5111 1594.5334  6.34563 ]
Ajp=| 50232 —162.6656 —0.6001
| 1.2000 —0.7556  0.1000
[ —74.5456 15952543 —5.6743
Ay = 55411  —162.1785  0.5609
| —17009  —0.9421  0.2000
—166.7783
B, = 7.4682 |,
4.5048

195.0825 —19.8577 —0.0836
Y= —19.8577  2.3203 0.1018 |,
—0.0836  0.1018 2.5038
[ —72.9233 1603.7455 —9.7233 ]
VA = 5.1345  —162.8555 0.9974 |,
| 1.2000 —0.5689 0.1000 |
[ —745290 15952231 —5.6744 ]
A = 55411  —162.1323 05966 |,
| —1.7008  —0.9432  0.2000 |
—173.8473
B, = 9.1193 ,
—6.8346

C;=[ 141938 —410.5257 —0.3593 |,

The resulting fuzzy controller is

www.intechopen.com

Co=[ 142366 —412.9750 3.8984 |.



130 Fuzzy Controllers, Theory and Applications

>

2

£ 0.35

[0

S

C

S 03¢}

5

@

©

o 0.25

£

°

3 0.2}

(0]

C

(0] K

30458/

5

o

pe}

% 0.1

g - State feedback controller

1) : —— Output feedback controller (Case 1)

2 0-057 — — Output feedback controller (Case )

.6 ¥

2 0 : : : : :

&“u 0 0.5 1 1.5 2 25 3
Time (sec)

Fig. 2. The ratio of the regulated output energy to the disturbance noise energy:

S 2Bzt
fOTf wT (t)w(t)dt '

2 2
ﬁ(t) = Z Zﬁiﬁinjﬁ(t) + Zﬁszy(t)
i=1j=1 i=1
2 A
u(t) = Y mCiE(t)
i=1

where
fl1 = My (%(t)) and fl; = Mp(%1(t)).

Remark 1 Both robust fuzzy state and output controllers guarantee that the Ly-gain, vy, is less than
the prescribed value. The ratio of the regulated output energy to the disturbance input noise energy
which is obtained by using the Heo fuzzy controllers is depicted in Figure 2. The disturbance input
signals, w1 (t), wy(t) and ws(t), which were used during the simulation is given in Figure 3. After
3 seconds, the ratio of the regulated output energy to the disturbance input noise energy tends to a
constant value which is about 0.32 for the state-feedback controller, and 0.21 for the output feedback
controller in Case I and 0.14 in Case 1I. Thus, for the state-feedback controller where v = 1/0.32 =
0.566, for output feedback controller in Case I where v = +/0.21 = 0.458 and in Case 1I where 7y =
v 0.14 = 0.374, all are less than the prescribed value 1. ]

6. Conclusion

This chapter has investigated the problem of designing a robust fuzzy controller for a TS
fuzzy system with parametric uncertainties that guarantees the £;-gain from an exogenous
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input to a regulated output being less than or equal to the prescribed value. An LMI-based
approach has been employed to derive sufficient conditions for the existence of a robust Heo
fuzzy controller in terms of a family of LMIs. Finally, a numerical simulation example has
been presented to illustrate the effectiveness of the designs.
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Fig. 3. The disturbance input signals, w1 (t), wy(t) and w3(t).
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