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1. Introduction     

This chapter is aimed at improving the local and global approximation and modelling 
capability of Takagi-Sugeno (T-S) fuzzy model and the design of an optimal fuzzy 
controller. The main aim is obtaining high function approximation accuracy and fast 
convergence.  The approach developed here can be considered as a generalized version of T-
S fuzzy identification method with optimized performance in estimating nonlinear 
functions. We propose an iterative method by applying the extended Kalman filter. We 
show that the Kalman filter is an effective tool in the estimation of T-S fuzzy model. It is a 
powerful mathematical tool for stochastic estimation from noisy environment. It has various 
applications in optimizing fuzzy systems. For example, it has been used to extract fuzzy 
rules from a given rule base (Wang, L. & Yen, J. (1998)) and to optimize the output function 
parameters of T-S fuzzy systems (Ramaswamy, P.; Edwards, R. R. & Lee, K. (1993)). For 
linear systems with white noise and measurement noise, the Kalman filter is known to be an 
optimal estimator. For nonlinear dynamic systems with coloured noise, the Kalman filter 
can be extended by linearizing the system around the current parameter estimates. This 
algorithm updates parameters in a way that is consistent with all previously measured data 
and generally converges in a few iterations. In this chapter, we describe how the extended 
Kalman filter can be applied to fuzzy system optimization. Fuzzy logic has been used to 
compute the gains of a bank of parallel Kalman filters in order to combine their outputs 
(Hsiao, C. (1999)). Fuzzy logic has also been used to tune the parameters of a Kalman filter (  
Kobayashi, K.; Cheok, K. & Watanabe, K.(1995). ). 
A fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is then proposed in order 
to show the effectiveness of the estimation method developed here in control applications. 
An Illustrative example of a highly nonlinear system is chosen to evaluate the robustness 
and remarkable performance of the proposed method. The main idea is to design a 
supervisory fuzzy controller capable to adjust the controller parameters in order to obtain 
the desired response. The reason behind this scheme is to combine the best features of fuzzy 
control and those of the optimal LQR. 
In control design, it is often of interest to design a controller to fulfil, in an optimal form, 
certain performance criteria and constraints in addition to stability. The theme of optimal 
control addresses this aspect of control system design. For linear systems, the problem of 
designing optimal controllers reduces to solving algebraic Riccati equations, which are 
usually easy to solve and detailed literature of their solutions can be found in many 
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references. Nevertheless, for nonlinear systems, the optimization problem reduces to the so-
called Hamilton-Jacobi (HJ) equations, which are nonlinear partial differential equations. 
Different from their counterparts for linear systems, HJ equations are usually difficult to 
solve both numerically and analytically. Improvements have also been carried out on the 
numerical solution of the approximated solution of HJ equations. But few results so far can 
provide an effective way of designing optimal controllers for general nonlinear systems.  
In the past, the design of controllers based on a linearized model of real control systems. In 
many cases a good response of complex and highly non-linear real process is difficult to 
obtain by applying conventional control techniques which often employ linear mathematical 
models of the process. One reason for this lack of a satisfactory performance is the fact that 
linearization of a non-linear system might be valid only as an approximation to the real 
system around a determined operating point.  
However, fuzzy controllers are basically non-linear, and effective enough to provide the 
desired non-linear control actions by carefully adjusting their parameters. 
In this chapter, we propose an effective method to nonlinear optimal control based on fuzzy 
control. The optimal fuzzy control methodology presented in this chapter is based on a 
quadratic performance index. The optimal fuzzy controller is designed by solving a 
minimization problem that minimizes a given quadratic performance function.  
Both the controlled system and the fuzzy controller are represented by the affine T-S fuzzy 
model taking into consideration the effect of the constant term. Most of the research works 
analyzed the T-S model assuming that the non-linear system is linearized with respect to the 
origin in each IF-THEN rule, which means that the consequent part of each rule is a linear 
function with zero constant term. This will in turn reduce the accuracy of approximating 
non-linear systems. Moreover, in linear control theory, the independent term does not affect 
the dynamics of the system rather the input to it. In the case of fuzzy control, the blending of 
the independent term of each rule will no longer be a constant but a function of the variables 
of the system and thus affects the dynamics of the resultant system. A necessary condition 
has been added to deal with the independent term. The control is carried out based on the 
fuzzy model via the so-called parallel distributed compensation scheme. The idea is that for 
each local affine model, an affine linear feedback control is designed. The resulting overall 
controller, which is also a non-linear one, is again a blending of each individual affine linear 
controller. 
LQR is used to determine best values for parameters in fuzzy control rules in which the 
robustness is inherent in the LQR thereby robustness in fuzzy control can be improved. 
With the aid of LQR, it provides an effective design method of fuzzy control to achieve 
rapid, robust and accurate tracking control of a class of nonlinear systems. 
In this chapter, we will also show how the LQR, the structure of which is based on 
mathematical analysis, can be made more appropriate for actual implementation by 
introduction of fuzzy rules.  
The results obtained show a robust and stable behaviour when the system is subjected to 
various initial conditions, moment of inertia and to disturbances. 
The content of this chapter is organized as follows. In section 2, an overview of Kalman 
Filter’s Estimation and Optimal Control Techniques for Fuzzy Systems are presented. 
Section 3 presents the identification of T-S model. Section 4 demonstrates the iterative 
parameters’ identification using extended Kalman filter. In section 5, a design of a fuzzy 
optimal controller is developed.  Section 6 entails the application of the proposed FC-LQR 
on nonlinear model to demonstrate the validity of the proposed approach. This example 
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shows that the proposed approach gives a stable and well damped response in front of 
various initial conditions, moment of inertia and a robust behaviour in the presence of 
disturbances. The conclusion of the effectiveness and validity of the proposed approach is 
explained in section 7. 

2. Overview of identification and estimation of fuzzy systems 

Nonlinear control systems based on the T–S fuzzy model (Sugeno, M. & Tanaka, K. (1991). ), 
(Sugeno, M. & Kang, G. (1988)) and (Takagi T. & Sugeno, M. (1985)) have attracted lots of  
attention during the last twenty years (e.g., see  (Baranyi, P. (2003), (Tanaka, K.; Wang, H. O. 
(2001). ), (Hou, Y.; Zurada, J. M.; Karwowski, W.; Marras, W. S. & Davis, K. (2007)), (Xian-
Tu, P. (1990)), (Gang, F. (2006)), (Lian, K.-Y.; Su, C.-H. & Huang, C.-S. (2006)), (Hseng, T.; Li, 
S. & Tsai, S.-H. (2007)) and (Kim, J.-H.; Hyun, C.-H.; Kim, E. & Park, M. (2007).). It provides 
a powerful solution for development of function approximation, systematic techniques to 
stability analysis and controller design of fuzzy control systems in view of fruitful 
conventional control theory and techniques. They also allow relatively easy application of 
powerful learning techniques for their identification from data. 
This model is formed by using a set of fuzzy rules to represent a nonlinear system as a set of 
local affine models which are connected by fuzzy membership functions  (Cao, S. G.; Rees, 
N. W. & and Feng, G. (1996). ). 
This fuzzy modelling method presents an alternative technique to represent complex 
nonlinear systems  (Fantuzzi, C. & Rovatti, R. (1996). ), (Ying, H. (1998)) and  (Zeng, K.; 
Zhang, N. Y. & Xu, W. L. (2000)) and reduces the number of rules in modelling higher order 
nonlinear systems  (Takagi T. & Sugeno, M. (1985))  and (Gang, F. (2006)).  
T–S fuzzy models are proved to be universal function approximators as they are able to 
approximate any smooth nonlinear functions to any degree of accuracy in any convex 
compact region ( Fantuzzi, C. & Rovatti, R. (1996). ), (Johansen, T. A.; Shorten, R. & Murray-
Smith, R. (2000) ), (Ying, H. (1998)) and (Zeng, K.; Zhang, N. Y. & Xu, W. L. (2000)). This 
result provides a theoretical foundation for applying T–S fuzzy models to represent complex 
nonlinear systems approximately.  
Great attention has been paid to the identification of T–S fuzzy models and several results 
have been obtained (Cao, S. G.; Rees, N. W. & and Feng, G. (1997)), (Teixeira, M. C. M.; 
Assunção, E. & Avellar, R. G. (2003)) and (Yu, W. & Li, X. O. (2004). They are based upon 
two kinds of approaches, one is to linearize the original nonlinear system in various 
operating points when the model of the system is known, and the other is based on the 
input-output data collected from the original nonlinear system when its model is unknown. 
The authors in  (Cao, S. G.; Rees, N. W. & and Feng, G. (1997) use a fuzzy clustering method 
to identify T–S fuzzy models, including identification of the number of fuzzy rules and 
parameters of fuzzy membership functions, and identification of parameters of local linear 
models by using a least squares method (Skrjanc, I.; Blazic, S. & Agamennoni, O. (2005)) and  
(Wang, L. X. & Mendel, J. M. (1992). ). The goal is to minimize the error between T–S fuzzy 
models and the corresponding original nonlinear systems. In (Klawonn, F. & Kruse, R. 
(1997)), Klawonn et al. explained how fuzzy clustering techniques could be applied to design 
a fuzzy controller from the training data. In (Hong T. P. & Lee, C. Y. (1996)), Hong and Lee 
have analyzed that the disadvantages of most fuzzy systems are that the membership 
functions and fuzzy rules should be predefined to map numerical data into linguistic terms 
and to make fuzzy reasoning work. They suggested a method based on the fuzzy clustering 
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technique and the decision tables to derive membership functions and fuzzy rules from 
numerical data. However, Hong and Lee’s algorithm presented in  (Hong T. P. & Lee, C. Y. 
(1996)) needs to predefine the membership functions of the input linguistic variables and it 
simplifies fuzzy rules by a series of merge operations. As the number of variables becomes 
larger, the decision table will grow tremendously and the process of the rule simplification 
based on the decision tables becomes more complicated. 
In (Matía, F.; Jiménez, A. & Al-Hadithi, B. M. (2008)), the authors proposed to obtain the best 
features of Mamdani and Takagi-Sugeno models by using an affine global model with 
function approximation capabilities which maintains local interpretation. The suggested 
model is composed of variant coefficients which are independently governed by a zeroth 
order fuzzy inference system. This model may be interpreted as a generalization of T-S 
model in which dynamics coefficients have been decoupled. They have shown that 
Mamdani and Takagi-Sugeno models can be combined so that local and global 
interpretations are preserved.  
The authors in (Johansen, T. A.; Shorten, R. & Murray-Smith, R. (2000) ) suggest a method to 
identify T–S fuzzy models. Their method aims at improving the local and global 
approximation of T-S model. However, this complicates the approximation in order to 
obtain both targets. It has been shown that constrained and regularized identification 
methods may improve interpretability of constituent local models as local linearizations, 
and locally weighted least squares method may explicitly address the trade-off between the 
local and global accuracy of T–S fuzzy models. 
In (Skrjanc, I.; Blazic, S. & Agamennoni, O. (2005)) a new method of interval fuzzy model 
identification was developed. The method combines a fuzzy identification methodology 
with some ideas from linear programming theory. The idea is then extended to modelling 
the optimal lower and upper bound functions that define the band which contains all the 
measurement values. This results in lower and upper fuzzy models or a fuzzy model with a 
set of lower and upper parameters. This approach can also be used to compress information 
in the case of large amount of data and in the case of robust system identification. The 
method can be efficiently used in the case of the approximation of the nonlinear functions 

family. The paper focuses on the development of an interval L∞-norm function 
approximation methodology problem using the LP technique and the TS fuzzy logic 
approach. This results in lower and upper fuzzy models or a fuzzy model with lower and 
upper parameters. 
In  (Mencattini, A.; Salmeri M. & Salsano, A. (2005)) a constructive method to synthesize a 
MISO TS fuzzy logic system imposing the requested derivative constraints on the function 
representing its behaviour is presented. The values of that function and its partial 
derivatives on the grid points of the input space permit to define a suitable interpolator of 
the function itself.  
In  (Kim, J.; Suga, Y. & Won, S. (2006). ), a new approach to fuzzy modelling using the 
relevance vector learning mechanism (RVM) based on a kernel-based Bayesian estimation is 
introduced. The main concern is to find the best structure of the T-S fuzzy model for 
modelling nonlinear dynamic systems with measurement error. The number of rules and 
the parameter values of membership functions can be found as optimizing the marginal 
likelihood of the RVM in the proposed FIS. Because the RVM is not necessary to satisfy 
Mercer’s condition, selection of kernel function is beyond the limit of the positive definite 
continuous symmetric function of SVM. The relaxed condition of kernel function can satisfy 
various types of membership functions in fuzzy model. The RVM which was compared 
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with support vector learning mechanism in examples had the small model capacity and 
described good generalization. Simulated results showed the effectiveness of the proposed 
FIS for modelling of nonlinear dynamic systems with noise. 
In  (Takagi T. & Sugeno, M. (1985)), the authors develop an interesting method to identify 
nonlinear systems using input-output data. They divide the identification process in three 
steps; premise variables, membership functions and consequent parameters. With respect to 
membership functions, they apply nonlinear programming technique using the complex 
method for the minimization of the performance index.  
In 1991, Wang and Mendel developed a method for generating fuzzy rules by learning from 
examples  (Wang, L. X. & Mendel, J. M. (1992). ) and proved that a fuzzy inference system is 
a universal approximator by the Stone–Weierstrass theorem  (Wang, L. (1994)). 
In 1995, Wang proposed a new state-space analytical approach to fuzzy identification of 
nonlinear dynamical systems (Wang, L. X. & Mendel, J. M. (1995)). In 1996, Langari and 
Wang proposed achieving structure identification of a T-S fuzzy model by using a 
combination of fuzzy c-means clustering technique and a fuzzy discretization technique  
(Langari R. & Wang, L. (1996). 
In (Nozaki, K.; Ishibuchi, H. & Tanaka, H. (1997), Nozaki et al. presented a heuristic method 
for generating T-S fuzzy rules from numerical data, and then converted the consequent 
parts of T-S fuzzy rules into linguistic representation. 
In (Kumar et al., 2006), a study has outlined a new min–max approach to the fuzzy 
clustering, estimation, and identification with uncertain data. The proposed approach 
minimizes the worst-case effect of data uncertainties and modelling errors on estimation 
performance without making any statistical assumption and requiring a priori knowledge of 
uncertainties. Simulation studies have been provided to show the better performance of the 
proposed method in comparison to the standard techniques. The developed fuzzy 
estimation theory was applied to a real world application of physical fitness classification 
and modelling. 
A new fuzzy system containing a dynamic rule base is proposed in (Chen, W. & Saif, M. 

(2005). ). The characteristic of the proposed system is in the dynamic nature of its rule base 

which has a fixed number of rules and allows the fuzzy sets to dynamically change or move 

with the inputs. The number of the rules in the proposed system can be small, and chosen 

by the designer. The focus of article is mainly on the approximation capability of this fuzzy 

system. The proposed system is capable of approximating any continuous function on an 

arbitrarily large compact domain. Moreover, it can even approximate any uniformly 

continuous function on infinite domains. This paper addresses existence conditions, and as 

well provides constructive sufficient conditions so that the new fuzzy system can 

approximate any continuous function with bounded partial derivatives.  

Fuzzy system optimization problem is studied in several works. Some articles focused on 

choosing proper rules in the inference engine (Cordon, O.; Herrera; Magdalena; F. L. & 

Villar P. (2001)) and  (Xian-Tu, P. (1990)). Also tuning of the input and output scale factors 

are proposed (Cordon, O.; Herrera; Magdalena; F. L. & Villar P. (2001)), (Gudwin, R.; 

Gomide, F. & Pedrycz, W. (1998)) and (Pedrycz, W.; Gudwin, R. & Gomide, F. (1997)). 

Because of the importance of selecting proper MF’s for fuzzy systems (Cordon, O.; Herrera. 

& Villar P. (2000)), several methods are used to deal with the problem of optimizing 

membership functions, which are either derivative-based or derivative-free methods. The 

derivative free approaches do not use the derivative of the performance of the system with 

www.intechopen.com



 Fuzzy Controllers, Theory and Applications 

 

96 

respect to the MF’s parameters, and they are desirable because they are more robust than 

derivative-based methods with respect to finding global minimum and with respect to a 

wide range of objective function and MFs types. The main drawback is that they converge 

more slowly than derivative-based techniques (Tao, C. & and Taur, J. (1999). 

On the other hand, derivative-based methods have the advantage of fast convergence and 

fine tuning in finding the optimum functions, but they tend to converge to local minimums. 

In addition, due to their dependence on analytical derivatives, they are limited to specific 

objective functions and types of inference and MFs. The most common approaches are: 

gradient descent (Simon, D. (2000). ), least squares (Skrjanc, I.; Blazic, S. & Agamennoni, O. 

(2005)), back propagation  (Wang, L. & Mendel, J. (1992). ) and Kalman filtering  (Simon, D. 

(2002). ), (Simon, 2002). 

The use of Kalman filter training to optimize the MFs of a fuzzy system was introduced by 
Simon (Simon, D. (2002). ) for motor winding current estimation. The used MFs were 
assumed as symmetric triangular forms. The Kalman filter training was extended to 
asymmetric triangles in (Simon, 2002), and a matrix was defined relating the parameters of 
the MFs together based on the sum-normality conditions, then projecting this matrix in each 
iteration of optimization to constrain the MFs to sum normal types. 
Since the derivatives of the functions are used in Kalman filtering, it is limited to special 
type of MFs because of complicated and time consuming calculations. So far only triangular 
types are optimized for both inputs and outputs of a FLC  Simon, D. (2002). ), (Simon, 2002). 

3. Identification of T-S model 

An interesting method of identification is presented in (Takagi T. & Sugeno, M. (1985)). The 
idea is based on estimating the nonlinear system parameters minimizing a quadratic 
performance index. The method is based on the identification of functions of the following 
form: 

 
n

1 2 n

f:

y f(x ,x , ,x )

ℜ →ℜ
= …

 (1) 

Each IF-THEN rule Ri1 …in, for an nth order system can be rewritten as follows: 

  
( )

( ) ( ) ( ) ( )

1 1 2

1 1 1 1

1 21 2

1 20 1 2

:

ˆ

n n

n n n n

i i i i i
n n

i i i i i i i i
n n

S if x is M and x is M and x is M then

y p p x p x p x= + + + +

…

… … … …

…

…
 (2) 
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Let m be a set of input/output system samples { }1 2, , , ,k k nk kx x x y… . The parameters of the 

fuzzy system can be calculated as a result of minimizing a quadratic performance index:  
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If X is a matrix of complete rank, the solution is obtained as follows:  
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4. Iterative parameters’ identification 

The inconvenient feature of the non iterative methods is the amplification of the matrix X 
throughout the time, so that they become inappropriate to be used in real time application as 
adaptive control for example (Jiménez, A.; Al-Hadithi, B. M. & Matía, F. (2008)). The solution is 
finding an iterative method so that the dimension of the calculation will not be augmented for 
each sample. In this work, we use an iterative method based on the extended Kalman.                

4.1 Kalman filter 
Kalman filter is widely used for state estimation. It was developed by Rudolph E. Kalman  
(Kalman, R. E. (1960). Kalman filter is known to be optimum for linear systems (Maybeck, P. 
S. (1979)) with white process and measurement noises. It is assumed that the system is 
described by the following sampled model: 

 

( 1) ( ) ( ) ( )

( ) ( ) ( )

( ), ( 1), ( ) ( ) ( ), ( ) pn m

x k x k u k v k

y k Cx k e k

x k x k v k u k y k e k

+ = Φ + Γ +
= +

+ ∈ℜ ∈ℜ ∈ℜ

 (9) 

where ( )x k  represents the state of the dynamic system, ( )u k is the input vector and ( )y k is 

the output vector. The vector ( )v k  represents the Gaussian-white noise of the system and 
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( )e k  is Gaussian-white noise of the output measure. Both of them are independent from 

each other with zero mean. The objective of the Kalman filter is to obtain an optimum 

estimation ˆ( )x k  of the state ( )x k  from measurements of the input / output vectors. The 

covariance matrices are supposed to be known and are given as: 
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2
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where E(.) is the expectation operator. It is also assumed that the initial condition (0)x  is 

Gaussian distributed with 

 ( ) ( )( )
0

0 0 0

( (0))

(0) (0)
t

m E x

R E x m x m

=

= − ⋅ −
 (11) 

It is supposed that ˆ( / 1), ( ) and ( )x k k u k y k− are known and the objective is to estimate 
ˆ( 1 / )x k k+ . The prediction problem can be improved by introducing the difference between 

the measured and estimated outputs,  ( )ˆ( ) ( / 1)y k Cx k k− −  as a feedback gain: 

 ( )ˆ ˆ ˆ( 1 / ) ( / 1) ( ) ( ) ( ) ( / 1)x k k x k k u k K k y k Cx k k+ = Φ − + Γ + − −  (12)  

The resultant prediction error is the difference between the state of the true system and the 
estimated one: 

 ˆ( 1) ( 1) ( 1 / )k x k x k kε + = + − +  (13) 

It should be observed that as above mentioned Gaussian errors   ( )v k  and ( )e k  are with 

zero mean, it can be verified that: 

 ( )( 1) ( ) ( )k K k C kε + = Φ − ε  (14) 

Thus, 

 If  0
ˆ ˆ(0) 0 ( (0) ) 0 ( ) 0 ( ( ) )kx m k k x k mε = ⇒ = ⇒∀ > ε = =  (15)  

And if the dynamics of (3) is stable, then:  

  ˆ(0) lim ( ) 0 lim ( ) k
k k

x e k x k m
→∞ →∞

∀ = ⇒ =  (16)  

The secondary objective is to minimize the covariance matrix which denoted as ( )P k , 

   ( ) (( ) ( ) )tP k E= ε − ε ⋅ ε − ε  (17)  

in the sense that it approaches its minimum for:  

  min( ( ) )t nP kα α ∀α∈ℜ  (18)  
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The algorithm of Kalman filter can be summarized by the following iterative process:  
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( )
( )

1

12 2

1 12
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 (19)  

This process is initialized with 0
ˆ(0)x m=  and 0(0)P R=  which have been initially estimated. 

The classic formulation of Kalman filter can be complemented with an additional useful 

filtering process for certain applications. 

4.2 Extended Kalman filter 

Kalman filter can also be used for state estimation of nonlinear systems. For nonlinear 

systems, e.g. fuzzy systems, the Kalman filter can not be applied directly; but if the 

nonlinearity of the system be sufficiently smooth, then we can linearize it about the current 

mean and covariance of the state estimation. This is called Extended Kalman Filter (EKF) 

with white process and measurement noises. Derivations of the extended Kalman filter are 

widely available in the literature (Gelb, A. (1974)). In this section, we briefly outline the 

algorithm and show how it can be applied to fuzzy system optimization. 

Consider a nonlinear discrete time system of the form:  
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In this case, Jacobian matrices are those which represent the nonlinear systems:  
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= =

=

∂
Φ =

∂

∂
Γ =

∂

∂
=
∂

 (21)  

Moreover, the prediction formula for the nonlinear case is the following:  

   ( )( )ˆ ˆ ˆ( 1 / ) ( / 1) ( ) ( ) ( ) ( / 1), ( )x k k x k k u k K k y k g x k k u k+ = Φ − + Γ + − −  (22)  

It must be noted that in this case, the system matrices in this depend on both the state and 
input of the system in each instant. Thus, it becomes necessary the calculation of these 
matrices in each iteration of the algorithm. 

4.3 Kalman filter for parameters’ identification 

One of the applications of Kalman filter is the identification of parameters. Let us suppose 

that a function depends on q parameters 1 2, , , qp p p…  
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1 2 1 2

:

( , , , , , , , ) ( , )

n m

n q

f

y f x x x p p p f x p

ℜ →ℜ
= =… …

 (23) 

The problem of identification of parameters can be explained as a problem of estimation of 
systems´ states.  

  
( 1) ( )

( ) ( ( )) ( )

p k p k

y k f p k e k

+ =
= +

 (24) 

Then, if we have a set of m samples  { }1 2, , , ,k k nk kx x x y…  of the function to be identified, 

Kalman filter can be used with the following particularities. The matrix Φ  will be an 

identity matrix in this case. It is assumed a free system without an external input so the 

matrix Γ  is null and the matrix C can be calculated as follows:  

  ( )
ˆ( )

( )
p p k

f
C p k

p
=

∂
=
∂

 (25) 

The matrices 1R  y 12R  become null, while 2R  is selected based on trial and error. If y∈ℜ  

and we suppose that 2R I= , which would correspond to Gaussians error functions N(0,1), 

and the function is a linear one, the algorithm becomes equivalent to the recursive minimum 

square one.  

The initial covariance state matrix is supposed to be (0)P cI=  where C is a number 

relatively large with respect to the data of the problem. The algorithm becomes:    

 

( )( )
( )

1

2

1 2

ˆ( ) ( / 1) ( / 1) ( 1 / )

ˆ ˆ( / 1) ( ) ( , , , , ( / 1))

( 1 / ) ( / 1) ( ) ( / 1)

t t

k k k nk

K k P k k C CP k k C R p k k

p k k K k y f x x x p k k

P k k P k k K k CP k k

−
= − − + + =

− + + − −

+ = − − −

…  (26)  

4.4 Application of Kalman filter for T-S fuzzy model 

Motivated by the successful use of the Kalman filter for training neural networks  
(Puskorius, G. & Feldkamp, L. (1994). ) and for defuzzfication strategies, we can apply a 
similar method to the training of fuzzy systems. In general, we can view the identification of 
fuzzy systems a weighted least-squares minimization problem, where the error vector is the 
difference between the fuzzy model outputs and the target values for those outputs. The 
proposed solution for its application is to combine it with a minimization of a weighting of 
the norm of the vector of parameters p. Let a function be represented as: 

  

1 2

:

( , , , )

n

n

f

y f x x x

ℜ →ℜ
= …

 (27)  

The optimum approximation of the function is searched by describing the function as a 
fuzzy system represented in the following form:   

 
( )

( ) ( ) ( ) ( )

1 1 2

1 1 1 1

1 21 2

1 20 1 2

:

ˆ

n n

n n n n

i i i i i
n n

i i i i i i i i
n n

S if x is M and x is M and x is M

then y p p x p x p x= + + + +

…

… … … …

…

…
 (28) 

www.intechopen.com



Extended Kalman Filter for the Estimation and Fuzzy Optimal Control of Takagi-Sugeno Model   

 

101 

In order to cast the fuzzy system identification problem in a form suitable for Kalman 
filtering, we let the parameters of the rules constitute the state of a nonlinear system, and we 
consider the output of the fuzzy system as the output of the nonlinear system to which the 
Kalman filter is applied.  

 
1 2

( 1) ( )

( , , , , ( )) ( )k k k nk

p k p k

y f x x x p k e k

+ =
= +…

 (29) 

It should be noticed that the function f is a linear one with respect to the parameters and 
therefore it can be calculated in a direct form as follows:  

 
( )

( )

1

1 1
1

1

( ... )
0 ˆ( )

1 1

n

n n
n

n

i i
k

i i rr
i ip p k

k
i i

f w (x )

p
w (x )=

= =

∂
=

∂ ∑ ∑

…

……
 (30)  

and 

  

( )

( )

1

1 1
1

1

( ... )

ˆ( )

1 1

for  1...
n

n n
n

n

i i
k

jki i rr
i ij

p p k k
i i

f w (x )
x j n

p
w (x )=

= =

∂
= =

∂ ∑ ∑

…

……
 (31) 

 Therefore, the Jacobian coincides with the row  k  of the matrix X defined in section II.  

 ( ) ( ) ( ) ( ) ( )1 11 1 1 1 1 1
1

ˆ( )

( ( )) n nr r r r
k k nk nkk k k k k

p p k

f
C p k X x x x

p
=

∂ ⎡ ⎤= = = β β β β β⎢ ⎥⎣ ⎦∂
… …… … …… A …  (32) 

And thus, the problem can be formulated as an estimation of the state of the linear system  

 
( 1) ( )

ˆ( ( )) ( ) ( )k

p k p k

y C p k p k e k

+ =
= ⋅ +

 (33) 

The prediction formula in this case becomes:  

 ( )ˆ ˆ( 1 / ) ( / 1) ( ) ( ( )) ( )kp k k p k k K k y C p k p k+ = − + − ⋅   (34  

5. Design of optimal fuzzy controller  

In order to show the effectiveness of the proposed estimation methods, a design of an 
optimal controller is carried out for a dynamic system whose model is of the following form:  

 ( ( 1( , , , , )n nx f x x x u−′= …  (35) 

Applying the proposed estimation method, the T-S model can be adjusted as follows:  

  

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2

1 1 1
1 1

1
1 2

( 1
1 20

:n n

i i i i i in n n
n n

i i ni i i
n

i i i in (n-
n

S if x is M and x is M and x is M then

x a a x a x a x b u

−′

′= + + + + +
… … …

…

… …

…

…
 (36)  
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The controller fuzzy rule is represented in a similar form:  

  

( )

( ) ( ) ( ) ( )( )
1 1 2

1 1 1 1

( 1
1 2

( 1
0 1 1 1

n n

n n n n

i i i i in
n

i i i i i i i i n-

C : if x is M and x is M and x is M then

u r - k k x k x k x

−′

′= + + + +

…

… … … …

…

…
 (37) 

5.1 Calculation of the affine term 
The proposed methodology of design is based on the possibility of formulate the feedback 
system as shown previously 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1 1 2

1 1
1 1 1 11

1
1 2

( ( 11
10 0 1 1

:n n

i i i in n
n n n nn

i i ni i i
n

i i i i i i i ii in n-(n-
n

SC if x is M and x is M and x is M then

x a a x a x b r - k k x k x

−′

⎡ ⎤= + + + + + + +⎢ ⎥⎣ ⎦

… …

…

… … … ……

…

… …
 (38)  

Firstly, the affine term of the control action is used to eliminate the affine term of the system:  

 ( ) ( ) ( ) ( )
( )

( )

1

1 1 11

1

0
0 0 00

n

n n nn

n

i i
i i i i i ii i

i i

a
a b k k

b
+ = ⇒ = −

…
… … ……

…
 (39) 

and the feedback system is rewritten as follows:  

 

( ) ( )

( ) ( ) ( )
( ) ( )( )

1 1 2

1
1 1

1 1

1
1 2

( ( 11
1 1 1

:n n

ni i i in n
n n

i i ni i i
n

i i
i i i in n-(n-

n

SC if x is M and x is M and x is M then

x a x a x b r - k x k x

−′

⎡ ⎤= + + + + +⎢ ⎥⎣ ⎦

… …

…

…
… …

…

… …
 (40) 

5.2 State space feedback control based on the proposed estimation approach 

Any control methodology by state feedback design can be applied to calculate the rest of 

control coefficients. Together with the proposed estimation method, the well known LQR 

method might be an appropriate choice (Aström, K. J.; Wittenmark, B1985). The system can 

be represented in state space form:  

 , , , ,n m nxn nxmx Ax Bu x u A B′ = + ∈ℜ ∈ℜ ∈ℜ ∈ℜ  (41) 

The objective is to find the control action u(t) to transfer the system from any initial state 

0( )x t to some final state ( ) 0x ∞ = in an infinite time interval, minimizing a quadratic 

performance index of the form:  

 ( )
0

t t

t

J x Qx u Ru dt
∞

= +∫  (42) 

where nxnQ∈ℜ  is a symmetric matrix, at least positive a semidefinite one and mxmR∈ℜ  is 

also a symmetric positive definite matrix. The optimal control law is computed as follows:  

 1( ) ( ) ( )tu t Kx t R B Lx t−= − = −  (43) 
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 where the matrix nxnL∈ℜ is a solution of the Riccati equation:  

 10 t tQ LBR B L LA A L−= − + − −  (44) 

The design algorithm includes firstly the cancellation of the affine term in each subsystem of 
the form:  

 ( ) ( ) ( ) ( ) ( )1 1 1
1 1( 1)

1 20

i i i i i in n n
n ni i i in (n-

nx a a x a x a x b u′= + + + + +
… … …… ……  (45) 

The system is then represented in state space form as:  

 ( 1
t

nx x x x −⎡ ⎤′= ⎣ ⎦A  (46) 

 ( )

( ) ( ) ( ) ( )

( )

( )

1 1

11 1 1 1
1 2 3

00 1 0 0

00 0 1 0

,

00 0 0 1

n n

nn n n n

i i i i

i ii i i i i i i i
n

A B

ba a a a

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

… …

…… … … …

A
A

BB B B D B
A

A

 (47) 

Secondly, the LQR methodology is applied for each subsystem using a common state 

weighting matrix Q and input matrix R for all the rules. Thus, Riccati equation is solved for 

each subsystem as follows:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 110 n n n n n n n ni i i i i i i i i i i i i i i it tQ L B R B L L A A L−= − + − −… … … … … … … …
 (48) 

Then the state feedback gain vector can be obtained as follows:  

 ( ) ( ) ( ) ( ) ( ) ( )1 11 1 1 11
1 2

n nn n n ni i i ii i i i i i i it
nK k k k R B L−⎡ ⎤= =⎢ ⎥⎣ ⎦

… …… … … ……  (49) 

6. Example  

In this section the proposed estimation method and its application to control design of FC-

LQR is illustrated by an example of an inverted pendulum. 

Consider the problem of stabilizing and balancing of swing up of an inverted pendulum 

(see figure 1). The control of this system is a widely used performance measure of a 

controller, since this system is unstable and highly nonlinear. The objective is to maintain 

the inverted pendulum upright with θ despite small disturbances due to wind or system 

noises. The inverted pendulum can be represented as follows:  

 

2

2

sen
sen cos

4 cos

3

u ml
g

M m

m
l

M m

⎛ ⎞+
− ⎜ ⎟⎜ ⎟+⎝ ⎠=
⎛ ⎞

−⎜ ⎟⎜ ⎟+⎝ ⎠

$

$$

ϕ ϕϕ ϕ
ϕ

ϕ
 (50) 
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Fig. 1. Inverted pendulum 

where θ denotes the angular position (in radians) deviated from the equilibrium position 

(vertical axis) of the pendulum and θ$  is the angular velocity, g(gravity  acceleration)=9.8 

m/sec2, M(mass) of the cart=1 kg, m(mass) of the pole=0.1 kg, l is the  distance from the 

center of the mass (m) of the pole to the cart=0.5 m. Assuming that x1=θ and x2= θ$ , then the 

inverted pendulum model can be rewritten in state space form as follows:  

 

1

1 2

2

2
2 1

1 1

2 2
1

sen
sen cos

4 cos

3

x

x x

x

u ml x x
g x x

M m
x

m x
l

M m

=
′ =
=

⎛ ⎞+
− ⎜ ⎟⎜ ⎟+⎝ ⎠′ =
⎛ ⎞

−⎜ ⎟⎜ ⎟+⎝ ⎠

$

ϕ

ϕ

 (51) 

The aim is to move the pendulum to its instable equilibrium position, i.e., 1 2 0x x u= = = . 

The membership functions are as shown in figures 2 and 3: 
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Fig. 2. Membership functions for the angle position  
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Fig. 3. Membership functions for the angular velocity 

Using the iterative method mentioned above, the inverted pendulum fuzzy model can be 
represented as follows:  

 

11 1 1
1 1 2 2 2 1 2

12 1 2
1 1 2 2 2 1 2

13 1 3
1 1 2 2 2 1 2

21

2 9699 10 3602 0 2535 1 0001

2 4941 10 4319 0 0000 1 0001

2 9699 10 3602 0 2535 1 0001

S : if x is M and x is M then x . . x . x . u

S : if x is M and x is M then x . . x . x . u

S : if x is M and x is M then x . . x . x . u

S : i

′ = − + − −

′ = − + − −

′ = − + + −
2 1

1 1 2 2 2 1 2

22 2 2
1 1 2 2 2 1 2

23 2 3
1 1 2 2 2 1 2

31 3
1 1 2

0 0066 12 7376 0 0079 1 5883

13 9336 0 0000 1 5883

0 0066 12 7376 0 0079 1 5883

f x is M and x is M then x . . x . x . u

S : if x is M and x is M then x . x . x . u

S : if x is M and x is M then x . . x . x . u

S : if x is M and x

′ = − + − −

′ = − −

′ = − + + −
1
2 2 1 2

32 3 2
1 1 2 2 2 1 2

33 3 3
1 1 2 2 2 1 2

2 8833 10 7086 0 2823 1 0567

2 1717 10 9258 0 0000 1 0567

2 8833 10 7086 0 2823 1 0567

is M then x . . x . x . u

S : if x is M and x is M then x . . x . x . u

S : if x is M and x is M then x . . x . x . u

′ = + + −

′ = + + −

′ = + − −

 (52) 
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The resultant mean square error from this approximation is 0.0014.  For each one of these 

subsystems, a feedback state LQR controller has been designed with the affine term.     

Firstly, the affine term of the controller is used to eliminate the affine term of the system. 

The other terms are calculated by the LQR minimizing the following performance index:  

 ( )
0

2 2 2
1 2100 10

t

J x x u dt
∞

= + +∫  (53) 

Thus, the resultant fuzzy optimal LQR is:  

 

11 1 1
1 1 2 2 1 2

12 1 2
1 1 2 2 1 2

13 1 3
1 1 2 2 1 2

21 2 1
1 1 2 2

2 9695 24 7569 7 4648

2 4937 24 8803 7 7301

2 9695 24 7569 7 9717

0 004

R : if x is M and x is M then u . . x . x

R : if x is M and x is M then u . . x . x

R : if x is M and x is M then u . . x . x

R : if x is M and x is M then u .

= − + +

= − + +

= − + +

= − 1 2

22 2 2
1 1 2 2 1 2

23 2 3
1 1 2 2 1 2

31 3 1
1 1 2 2 1 2

32 3 2
1 1 2 2

2 20 8385 6 0150

22 0756 6 1480

0 0042 20 8385 6 0250

2 7286 24 3712 7 7638

. x . x

R : if x is M and x is M then u . x . x

R : if x is M and x is M then u . . x . x

R : if x is M and x is M then u . . x . x

R : if x is M and x is M t

+ +

= +

= − + +

= + +

1 2

33 3 3
1 1 2 2 1 2

2 0551 24 7239 7 5362

2 7286 24 3712 7 2294

hen u . . x . x

R : if x is M and x is M then u . . x . x

= + +

= + +

 (54) 
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Fig. 4. Several trajectories in state space form of the system for several initial conditions 
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7. Conclusions 

New efficient approach has been presented to improve the local and global estimation of T-S 

fuzzy model. The approach developed here can be considered as a generalized version of T-

S method with optimized performance in approximating nonlinear functions. A simple and 

less computational method, based on the extended Kalman filter has been developed. A FC 

based LQR has been proposed in order to show the effectiveness of the estimation method 

developed here in control applications. An Illustrative example of an inverted pendulum 

has been chosen to evaluate the robustness and remarkable performance of the proposed 

method and the high accuracy obtained in approximating nonlinear and unstable systems 

locally and globally in comparison with the original T-S model.  Simulation results have 

shown the potential, simplicity and generality of the algorithm.  
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