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1. Introduction

In the design of modern and classical control systems, the first step is establish a suitable
mathematical model to describe the behavior of the controlled plant (Takagi & Sugeno, 1985;
Ying et al., 1990). However, in practical situations, such a requirement is not feasible because
in practical control systems the plants are always nonlinear systems, which makes this task
analytically unfeasible for complex systems (Cetin & Demir, 2008; Dong et al., 2009; Park et al.,
2007; Pelladra et al., 2009). This fact has motivated the use of fuzzy logic in the development
of fuzzy model based control systems. In this context, The Fuzzy Systems have been widely
used due to flexibility of its structure to incorporate linguistic information (knowledge expert)
with numerical information (sensors and actuators measurements), as well as its functional
efficiency as universal approximator capable of treat adequately uncertainties, parametric
variations and nonlinearity of the plant to be controlled (Castro-Sitiriche et al., 2008; Cetin
& Demir, 2008; Cheng et al., 2009; Ibrahim, 2003; Mishra et al., 2000; Park et al., 2007; Wen-Xu
et al., 2009). Modeling is the task that simplifies a real system or complex reality with the
aim of easing its understanding. In this sense, an effective approach to the identification of
complex nonlinear systems is to partition the available data into subsets and approximate
each subset by simple model. Fuzzy Clustering can be used as a tool to obtain a partitioning
of experimental data where the transitions between the subsets are gradual rather than
abrupt. The potential of fuzzy clustering algorithms to reveal the underlying structures in
data can be exploited, not only for classification and pattern recognition in the available data,
but also for the reduction of complexity in modeling and identification. One of the major
applications of the model is the design of a controller for the true system. The ultimate goal
of a control-system is to build a system that will work in the real environment. Since the
real environment may change with time (parametric variations and nonlinearity) or operating
conditions may vary (noise and disturbance), the control system must be able to withstand
these variations (Petros & Sun, 1996). This fact has motivated, since 1980’s, the proposal of
new methodologies for design of robust controllers. In this context, fuzzy systems have been
widely used in robust controllers design (Barton, 2004; Serra & Boturra, 2006; Silva & Serra,
2009; Tanaka & Sugeno, 1993; Zhan, 2010). In this paper a robust fuzzy control design based on
gain and phase margins specifications for nonlinear systems, in the continuous time domain,
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is proposed. A mathematical formulation based on Takagi-Sugeno fuzzy model structure as
well as the PDC strategy is presented. Analytical formulas are deduced for the sub-controllers
parameters, in the robust fuzzy controller rules base, according to the fuzzy model parameters
of the fuzzy model plant to be controlled. Results for the necessary and sufficient conditions
for the fuzzy controller design, from the proposed robust methodology, with one axiom and
two theorems are presented. Simulation results, based on robust methodology, for a single
link robotic manipulator are presented. The paper is organized as follows: In section II, it
is introduced firstly the preliminary concepts fot the proposal methodology; secondly the
the robust fuzzy control design and tuning formulas, based on gain and phase margins
specifications, as well as the robust stability analysis of the fuzzy controller, are proposed
in section III. Finally, Simulation results and conclusions are drawn in sections IV and V,
repectively.

2. Preliminary concepts

In this section, some importants concepts to development the proposal methodology are
presented.

2.1 Takagi-Sugeno fuzzy inference systems

The TS fuzzy model, originally proposed by Takagi and Sugeno (Takagi & Sugeno, 1985), is
composed of a fuzzy IF-THEN rule base that partitions a space - usually called the universe
of discourse - into fuzzy regions described by the antecedents. The consequent of each rule i
is a simple functional expression of model inputs and that all fuzzy terms are monotonic
functions. In this case, specifically, the TS fuzzy model can be regarded as a mapping from the
antecedent (input) space to a convex region (polytope) in the local sub-models space into the
consequent, defined by the variants consequents parameters of the plant to be controlled. This
property simplifies the analysis of the TS fuzzy model in a context of robust time-variant and
linear system for design of controllers with desired characteristics of the closed loop control
system or stability analysis.

The i|[i=1,2,...,l]-th TS rule, without loss of generality, the following structure:

R(i) : IF x̃1 is Fi
j|x̃1

AND · · · AND x̃n is Fi
j|x̃n

THEN ỹi = fi (x̃) (1)

where

x̃T = [x̃1, x̃2, · · · , x̃n],
ỹT = [ỹ1, ỹ2, · · · , ỹn],

l is the number of fuzzy IF-THEN rules. The vector x̃ ∈ ℜn contains the antecedent linguistic
variables. Each linguistic variable has its own universe of discourse Ux̃1

, · · · , Ux̃n
partitioned

by fuzzy sets representing the linguistic terms. The variable x̃t|
[t=1,2,...,n] belongs to the fuzzy

set Fi
j|x̃t

with a value µi
Fj|x̃t

defined by a membership function µi
x̃t

: ℜ → [0, 1], with µi
F

j|x̃t

∈

µi
F

1|x̃t

,µi
F

2|x̃t

,µi
F

3|x̃t

,. . .,µi
F

px̃t
|x̃t

, where px̃t
is the number of partitions of the universe of discourse

associated to the linguistic variable x̃. The activation degree of hi for the rule i, is given by:

hi (x̃) = µi
Fj|x̃∗

1

⊗ µi
Fj|x̃∗2

⊗ · · · µi
Fj|x̃∗n

(2)

where x̃∗t is some point in Ux̃t
. The normalized activation degree for the rule i, is given by:
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γi (x̃) =
hi (x̃)

l

∑
λ=1

hλ (x̃)

(3)

where it is assumed that

l

∑
λ=1

hλ (x̃) > 0,

hλ (x̃) ≥ 0, i = 1, 2, · · · , l

And, this normalization implies that

l

∑
i=1

γi (x̃) = 1 (4)

The TS fuzzy model response is a weighted sum of the consequent parameters, i.e., a convex
linear combination of the local functions (models) fi, which reads

fi (x̃) =
l

∑
i=1

γi (x̃) fi (x̃) (5)

Each linear component fi (x̃) is called a subsystem. This model can be seen as a Linear
Parameters Varying (LPV) System (Balas et al., 1997; Shamma & Athans, 1991). This property
simplifies the analysis of the TS fuzzy model in a context of robust time-variant and linear
system for design of controllers with desired characteristics of the closed loop control system
or stability analysis.

2.2 Fuzzy model based control design steps

The design of a controller that can alter or modify the behavior and response of an unknown
plant to meet certain perfomance requirements can be a tedious and challenging problem in
many control applications. The plant inputs u are processed to produce several plant outputs y
that represent the measured output response of the plant. The control design task is to choose
the input u so that the output response y(t) satisfies certain given performance requirements.
Because the plant process is usually complex, i.e., it may consist of various mechanical,
electronic, hydraulic parts, etc., the appropriate choise of u is in general straightforward. The
control design steps often followed by most control engineers in choosing the input u are
explained below.

2.2.1 Modeling

The task os the control engineer in this step is to undestand the processing mechanism of
the plant, which takes a given input signal u(t) and produces the output response y(t), to
the point that he or she can describe it in the form of some mathematical equations. These
equations constitute the mathematical model of the plant. An exact plant model should
produce the same output response as the plant, provided the input to the model and initial
conditions are exactly the same as those of the plant. The complexity of most physical plants,
however, makes the development of such an exact model unwarranted or even impossible.
But even if the exact plant model becomes available, its dimension is likely to be infinite, and

47Takagi-Sugeno Fuzzy Control Based on Robust Stability Specifications 47Takagi-Sugeno Fuzzy Control Based on Robust Stability Specifications

www.intechopen.com



its description nonlinear or time time varying to the point that its usefulness from the control
design viewpoint is minimal or none. This makes the task of modeling even more difficult
and challenging, because the control engineer has to came up with a mathematical model that
describes accurately the input/output behavior of the plant and yet is simple enough to be
used for control design purposes. A simple model usually leads to a simple controller that is
easier to understand and implement, and often more reliable for practical purposes. A simple
model usually leads to a simple controller that is easier to understand and implement, and
often more reliable for practical purposes.
A plant model may be developed by using physical laws or by processing the plant
input/output (I/O) data obtained by performing various experiments. Such a model,
however, mat still be complicated enough from the control design viewpoint and further
simplifications may be necessary. Some of the approaches often used to obtain a simplified
model are:

(a) Linearization around operating points;

(b) Model order reduction techniques;

(c) Fuzzy Clustering.

In approach (a) the plant is approximated by a linear model that is valid around a given
operating point. Different operating points may lead to several different linear models that
are used as plant models. Linearization is achieved by using Taylor’s series expansion and
approximation, fitting of experimental data to a linear model, etc.
In approach (b) small effects and phenomena outside the frequency range of interest are
neglected leading to a lower order and simpler plant model.
In approach (c), used in this work, the fuzzy clustering algorithms are used to construct fuzzy
models from experimental data. Among the most popular methods are the following: Fuzzy
C - Means (FCM), Gustafson - Kessel (GK) and Fuzzy Maximum Likelihood Estimates (FLME)
algorithms. All these algorithms share the following definitions.
A cluster is a group of objects that are more similar to another than to members of other
clusters (Bezdek, 1981; Jain & Dubes, 1988). The term "similarity" should be understood as
mathematical similarity, measure in some well-define sense. In metric spaces, similarity is
often defined by means of a distance norm. Distance can be measure from a data vector
to some cluster prototypical (center). Data can reveal clusters of different geometric shapes,
sizes and densities. While clusters can be characterized as linear and nonlinear subspaces of
the data space.
The objective of clustering is to partition the data set Z into c clusters. Assume that c is known,
based on priori knowledge. The fuzzy partition de Z can be defined as a family of subsets
{Ai|1 ≤ i ≤ c} ⊂ P(Z), with the following properties:

c
⋃

i=1

Ai = Z (6)

Ai ∩ Aj = 0 (7)

0 ⊂ Ai ⊂ Zi (8)

Equation 6 means that the subsets Ai collectively contain all the data in Z. The subsets must
be disjoint, as stated by 7, and none off than is empty nor contains all the data in Z, as stated
by 8.
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In terms of membership functions, µAi
is the membership function of Ai. To simplifly the

notation, in this work we use µik instead µi (zk). The cxN matrix U = [µik] represents a
fuzzy partitioning space if and only if:

M f c =

{

U ∈ ℜcxN |µik ∈ [0, 1] , ∀i, k;
c

∑
i=1

µik = 1, ∀k; 0 <

N

∑
k=1

µik < N, ∀i

}

(9)

The i-th row of the fuzzy partition matrix U contains values of the i-th membership function
of the fuzzy subset Ai of Z.
The clustering algorithms optimizes an initial set of centroids by minimizing a cost function J
in an iterative process. Such function is usually formulated as:

J (Z; U, V, A) =
c

∑
i=1

N

∑
k=1

µm
ik D2

ikAi
(10)

where, Z = {z1, z2, · · · , zN} is a finite data set. U = [µik] ∈ M f c is a fuzzy partition of Z.
V = {v1, v2, · · · , vc} , vi ∈ ℜn, is a vector of cluster prototypes (centers). A denote a c-tuple of
the norm-induting matrices: A= (A1, A2, · · · , Ac). D2

ikAi
is a squared inner-product distance

norm. m ∈ [1, ∞) is a weighting exponent which determines the fuzziness of the resulting
clusters.
The clustering algorithms differ in the choice of the norm distance. The norm metric influences
the clustering criterion by changing the measure of dissimilarity. The Euclidean norm induces
hiperspherical clusters. It’s characterizes the FCM algorithm, where norm-inducing matrix
AiFCM

is equal to identity matrix (AiFCM
= I), this strictly imposes a circular shape to all

clusters. The Euclidean Norm is given by:

D2
ikFCM

= (zk − vi)
T AiFCM

(zk − vi) (11)

An adaptative distance norm, in order to detect clusters of different geometrical shapes in one
data set, characterizes the GK algorithm:

D2
ikGK

= (zk − vi)
T AiGK

(zk − vi) (12)

In this algorithm, each cluster has its own norm-inducing matrix AiGK
, where each cluster to

adapt the distance norm to the local topological structure of the data set. AiGK
is given by:

AiGK
= [ρidet (Fi)]

1/n F−1
i , (13)

where ρi is cluster volume, usually fixed in one. n is data dimension. Fi is the fuzzy covariance
matrix of the i-th cluster defined by:

Fi =
∑

N
k=1 (µik)

m (zk − vi) (zk − vi)
T

∑
N
k=1 (µik)

m (14)

The eigenstructure of the cluster covariance matrix provides information about the shape and
orientation cluster. The ratio of the hyperellipsoid axes is given by the ratio of the square
roots of the eigenvalues of Fi. The directions of the axes are given by the eigenvectores of
Fi. The eigenvector corresponding to the smallest eigenvalue determines the normal to the
hyperplane, and can be used to compute optimal local linear models from the covariance
matrix.
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The fuzzy maximum likelihood estimates (FLME) algorithms employs a distance norm based on
maximum lekelihood estimates:

DikFLME
=

[

detGiFLME

]1/2

Pi
exp

[

1

2
(zk − vi)

T F−1
iFLME

(zk − vi)

]

(15)

Note that, contrary to the GK algorithm, this distance norm involves an exponential term and
thus decreases faster than the inner-product norm. FiFLME

denotes the fuzzy covariance matrix
of the i-th cluster, given by equation 14. When m is equal 1, we have a strict algorithm FLME.
If m is greater than 1, we have a extended algorithm FLME, or Gath-Geva (GG) algorithm. Pi is
the prior probability of selecting cluster i, given by:

Pi =
1

N

N

∑
k=1

(µik)
m (16)

Gath and Geva (Gath & Geva, 1989) reported that the FLME algorithm is able to detect clusters
of varying shapes, sizes and densities. This is because the cluster covariance matrix is used in
conjuncion with an "exponential" distance, and the clusters are not constrained in volume.
The system identification procedure is illustrated in the Figure 1 below.

Experiment
Design

Experimental 
Data

Model 
Estructure

Fuzzy 
Clustering

Parameters
Estimation

Prior 
Knowledge

Calculate Model

Validate
Model

OK: Use it !

NOT OK: Revise

PDC Strategy

Fuzzy Controller Robust Stability Specificications

Fig. 1. The control system diagram

The fuzzy clustering algorithms can be used to approximate a set of experimental data by local
linear models. Each of these models is represented by a fuzzy subset in the data set available
for identification. In order to obtain a model useful for controller design, an additional step
must be applied to generate a model independent of the identification data. Such a model
can be represented either as a rule base. Each cluster obtained by clustering algorithms of
the identification data set can be regarded as a local linear approximation of the regression
hypersurface. The global model can be conveniently represented as a set affine Takagi-Sugeno
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(TS) rules, can decribed in equation 1. The antecedent fuzzy sets can be computed analitically
in the antecedent product space, or can be extracted from the fuzzy partition matriz by
projections.
The consequent parameters are estimated from the data using the weighted least-squares
method. Where, the identification data and the membership degrees of the fuzzy partition
are arranged in the following matrices:

X =

⎡

⎢

⎢

⎢

⎣

xT
1

xT
2
...

xT
N

⎤

⎥

⎥

⎥

⎦

, y =

⎡

⎢

⎢

⎢

⎣

y1

y2
...

yN

⎤

⎥

⎥

⎥

⎦

, Ωi =

⎡

⎢

⎢

⎢

⎣

µi1 0 · · · 0
0 µi1 · · · 0
...

...
. . .

...
0 0 · · · µiN

⎤

⎥

⎥

⎥

⎦

(17)

The consequent parameters of the rule belonging to the i-th cluster, depending of the model
identification structure, are concatenated into a single parameter vector, θi, for example:

θi =
[

aT
i , bT

i

]

(18)

Xreg gives the extended regressor matrix, depending too of the model identification structure.
Assuming that each cluster represents a local linear model of the system, the consequent
parameter vectors θi, i = 1, 2, · · · , c, can be estimated independently by the weighted
least-squares method. The membership degrees µik of the fuzzy partition serve as the weights
expressing the relevance of the data pair (xk, yk) to that local model. If the columns of Xreg are
linearly independent and µik > 0 for 1 ≤ k ≤ N, then

θi =
[

XT
regΩiXreg

]−1
XT

regΩiy (19)

Since that,

ỹk = fi (xk; θi) (20)

where the functions fi are parameterized by θi ∈ ℜpi . We have,

ỹ (x̃) =
∑

l
i=1 hi (x̃) ỹi

∑
l
i=1 hi (x̃)

(21)

2.2.2 Controller design

Once a model of the plant is available, one can proceed with the controller design. The
controller is designed to meet the performance requirements for the plant model. If the model
is a good approximation of the plant, one would hope that the controller performance for the
plant model to be close to that achieved when the same controller is applied to the plant. In
this sence, the robust stability control problem is to find a control law which maintains system
response and error signals within prescribed tolerances despite the effects of parametric
variations on the plant. In this paper a robust fuzzy control design based on gain and phase
margins specifications for nonlinear systems, in the continuous time domain, is proposed. A
mathematical formulation based on Takagi-Sugeno fuzzy model structure as well as the PDC
strategy is presented. Analytical formulas are deduced for the sub-controllers parameters, in
the robust fuzzy controller rules base, according to the fuzzy model parameters of the fuzzy
model plant to be controlled.
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2.2.3 Implementation

In this step, a controller designed in previous step, which is shown to meet performance
requirements for the plant model and is robust with respect possible plant model
disturbances, is ready to be applied to the unknow plant. The implementation can be done
using a digital computer, all though in some applications analog computers may be used
too. Issue such as the type of computer available, the type of inference devices between the
computer and the plant, software tools, etc., need to be considered priori. Computer speed
and accuracy limitations may put constraints complexity of the complexity of the controller
that may force the control engineer to go back to previous step or even first step to come up
with a simpler controller without violating the performance requirements.
Another important aspect of implementation is the final adjustment or as often called the
tuning, of the controller to improve performance be compensating for the plant model
disturbances that are not accounted for during the design process. Tuning is often done by
trial and error, and depends very much on the experience and intuition of control engineer. In
this work, the adjusts are done based on gain and phase margin especifications.

2.3 Gain and phase margins especifications

A successfully designed control system should be always able to maintain stability and
performance level in spite of disturbances in system dynamics and/or in the working
environment to a certain degree. Gain margin and phase margin have always served as
important measures of robustness. It is also known from classical control that phase margin is
related to the damping of the system, and can therefore also serve as a performance measure
(Franklin et al., 1986). Controller designs to satisfy gain margin and phase margin (GPM)
criteria are not new (Franklin et al., 1986; Ogata, 2002).
The Phase Margin is that amount of additional phase lag at the gain crossover frequency
required to bring the system to the verge of instability. The gain crossover frequency is the
frequency at which |G(jω)|, the magnitude of the open-loop transfer function, is unity. The
phase margin φm is 180◦ plus the phase angle ∠G(jω) of the open-loop transfer function at
the gain crossover frequency, or:

φm = ∠G(jω) + π (22)

The phase margin is positive for φm > 0 and negative for φm < 0. For a minimum-phase
system1 to be stable, the phase margin must be positive.
The Gain Margin is the reciprocal of the magnitude |G(jω)| at the frequency at which the
phase angle is −180◦. Defining the phase crossover frequency ωp, to be the frequency at
which the phase angle of the open-loop transfer function equals −180◦ gives the gain margin
Am:

Am =
1

∣

∣G(jωg)
∣

∣

(23)

The gain margin expressed in decibels is positive if Am, is greater than unity and negative if
Am is smaller than unity. Thus, a positive gain margin (in decibels) means that the system
is stable, and a negative gain margin (in decibels) means that the system is unstable. For a
stable minimum-phase system, the gain margin indicates how much the gain can be increased

1 Transfer functions having neither poles nor zeros in the right-half s plane are minimum-phase transfer
functions, whereas those having poles and/or zeros in the right-half s plane are nonminimum-phase
transfer functions
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before the system becomes unstable. For an unstable system, the gain margin is indicative
of how much the gain must be decreased to make the system stable. For a minimum-phase
system, both the phase and gain margins must be positive for the system to be stable. Negative
margins indicate instability. Proper phase and gain margins ensure us against variations in the
system components and are specified for definite positive values. The two values bound the
behavior of the closed-loop system near the resonant frequency. For satisfactory performance,
the phase margin should be between 30◦ and 60◦, and the gain margin should be greater than 6
dB. With these values, a minimum-phase system has guaranteed stability, even if the openloop
gain and time constants of the components vary to a certain extent. Although the phase
and gain margins give only rough estimates of the effective damping ratio of the closed-loop
system, they do offer a convenient means for designing control systems or adjusting the gain
constants of systems. the Figure 2 shows the gain and phase margins for two different systems.
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Fig. 2. The phase (9.54dB) and gain (25.4dB) margins of the system 10/s(s + 1)(s + 5) is
showed in (a). The phase (25.8dB) and gain (inf.) margins of the system 10/(s2 + s + 10) is
showed in (b). Note that the gain margin of a first or second-order system is infinite since the
polar plots for such systems do not cross the negative real axis.

For minimum-phase systems, the magnitude and phase characteristics of the openloop
transfer function are definitely related. The requirement that the phase margin be between
30◦ and 60◦ means that in a Bode diagram the slope of the log-magnitude curve at the gain
crossover frequency should be more gradual than -40 dB/decade. In most practical cases, a
slope of -20 dB/decade is desirable at the gain crossover frequency for stability. If it is -40
dB/decade, the systems could be either stable or unstable. (Even if the system is stable,
however, the phase margin is small.) If the slope at the gain crossover frequency is -60
dB/decade or steeper, the system is most likely unstable.
Denote the process and the controller transfer function by Gp(s) and Gc(s), and the specified
gain and phase margins by Am and φm, respectively. The formulas for gain margin and phase
margin are as follows:

arg
[

Gc(jωp)Gp(jωp)
]

= −π (24)

Am =
1

∣

∣Gc(jωp)Gp(jωp)
∣

∣

(25)
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∣

∣Gc(jωg)Gp(jωg)
∣

∣ = 1 (26)

φm = arg
[

Gc(jωg)Gp(jωg)
]

+ π (27)

where the gain margin is defined by Eqs. 24 and 25, and the phase margin by Eqs. 26 and
27. The frequency ωp at which the Nyquist curve has a phase of −π is known in classical
terminology as the phase crossover frequency, and the frequency ωg at which the Nyquist
curve has an amplitude of 1 as the gain crossover frequency.

2.4 Parallel Distributed Compesation (PDC) strategy

The history of the so-called parallel distributed compensation (PDC) began with a
model-based design procedure proposed by Wang (Wang et al., 1995). The PDC offers a
procedure to design a fuzzy controller from a given T-S fuzzy model. To realize the PDC, a
controlled plant is first represented by a T-S fuzzy model. In the PDC design, each control rule
is designed from the corresponding rule of a T-S fuzzy model. The designed fuzzy controller
shares the same fuzzy sets with the fuzzy model in the premise parts. The Figure 3 shows the
concept of PDC design.

Antecedent fuzzy sets

Rule 1

Rule 2

Rule n

Rule 1

Rule 2

Rule n

Fuzzy System Fuzzy Controller

Fig. 3. In the PDC strategy, the fuzzy controller shares the same fuzzy sets with the fuzzy
system.

In this paper is presented an fuzzy robust model based control scheme from the TS fuzzy
model structure, the PDC strategy and gain and phase margins robust specifications. In
the proposed methodology, the fuzzy controller parameters, with TS structure, are obtained
through analytical formulas from the definition of gain and phase margins specifications.
The robust fuzzy controller designed and the TS fuzzy model of the plant model to be
controlled shares the same fuzzy sets, in the antecedents. In the fuzzy inference engine
the sub-controller is selected based on the plant dynamic behavior and the gain and phase
margins robust specifications. The dynamic system class under analysis for the fuzzy control
design structure of the robust control is proposed with the objective to obtain the above
robustness characteristics, from generalized analytical formulas.
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3. Robust fuzzy control based on gain and phase margins especifications

In this section, the robust fuzzy control methodology based on gain and phase margins
especifications are presented.

3.1 TS fuzzy dynamic model

The TS fuzzy inference system for a second-order plant, Gp(s),presents in the i|[i=1,2,...,l]-th
rule, without loss of generality, the following structure:

R(i) : IF τ̃ is Fi
k|τ̃ AND τ̃′ is Gi

k|τ′ AND K̃p is Hi
k|K̃p

THEN Gi
p(s) =

Ki
p

(1 + sτi)(1 + sτ
′ i)

e−sL (28)

The time constants τ̃ and τ̃′, where τ̃ ≥ τ̃
′
, and the gain K̃p, represent the linguistic variables

of the antecedent. The activation degree of hi for the rule i, is given by:

hi

(

τ̃, τ̃′, K̃p
)

= µi
Fk|τ̃∗

⊗ µi
Gk|τ̃′∗

⊗ µi
Hk|K̃∗p

(29)

The normalized activation degree for the rule i, is given by:

γi

(

τ̃, τ̃′, K̃p
)

=
hi

(

τ̃, τ̃′, K̃p
)

l

∑
λ=1

hλ

(

τ̃, τ̃′, K̃p
)

(30)

And, this normalization implies

l

∑
i=1

γi

(

τ̃, τ̃′, K̃p
)

= 1 (31)

Therefore, the TS fuzzy model, Gi
p(s), of the plant is a weighted sum of second order linear

sub-models, as follow:

Gp
(

s, τ̃, τ̃′, K̃p
)

=
l

∑
i=1

γi

(

τ̃, τ̃′, K̃p
) Ki

p

(1 + sτi)(1 + sτ′i)
e−sL (32)

3.2 TS robust fuzzy controller

The TS fuzzy inference system proposed for the fuzzy controller, Gc (s), whereas the definition

of parallel distributed compensation, presents in the j|[j=1,2,...,l] -th rule, without loss of
generality, is given by:

R(j) : IF τ̃ is F
j

k|τ̃
AND τ̃

′
is G

j

k|τ′ AND K̃p is H
j

k|K̃p

THEN G
j
c(s) =

K
j
c

(

1 + sT
j
I

) (

1 + sT
j
D

)

sT
j
I

(33)
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The activation degree hj for the rule j, is given by:

hj

(

τ̃, τ̃′, K̃p
)

= µ
j
Fk|τ̃∗

⊗ µ
j
Gk|τ̃′∗

⊗ µ
j
Hk|K̃∗p

(34)

where τ̃∗, τ̃′∗ and K̃∗
p are some point in Uτ̃ , Uτ̃′ and UK̃p

, respectively. The normalized

activation degree for the rule j, is given by:

γj

(

τ̃, τ̃′, K̃p
)

=
hj

(

τ̃, τ̃′, K̃p
)

l

∑
λ=1

hλ

(

τ̃, τ̃′, K̃p
)

(35)

And, this normalization implies

l

∑
j=1

γj

(

τ̃, τ̃′, K̃p
)

= 1 (36)

Therefore, the TS fuzzy model for the fuzzy controller, Gc
(

τ̃, τ̃′, K̃p, s
)

, is a weighted sum of
the local fuzzy sub-controllers, as follows:

Gc
(

s, τ̃, τ̃′, K̃p
)

=
l

∑
i=1

γj

(

τ̃, τ̃′, K̃p
)

K
j
c

(

1 + sT
j
I

) (

1 + sT
j
D

)

sT
j
I

(37)

The compensated open-loop fuzzy model (Figure 4), according to the PDC strategy, with the
controller and the plant, from the equations 32 and 37, respectively, is

Gp(s)Gc(s) =
l

∑
j=1

l

∑
i=1

γj

(

τ̃, τ̃
′
, K̃p

)

γi

(

τ̃, τ̃
′
, K̃p

)

× (38)

×
K

j
cKi

p

(

1 + sT
j
I

) (

1 + sT
j
D

)

sT
j
I

(

1 + sτi
) (

1 + sτ
′ i
)

e−sL

3.3 Robust stability based on gain and phase margins

Denote the process and the controller transfer function by Gp (s) and Gc (s), and the specified
gain and phase margins by Am and φm, respectively, as defined previously in the Section 2.3.
The formulas for gain margin and phase margin, in the fuzzy context, are as follows::

arg
[

Gc(τ̃, τ̃′, K̃p, jωp)Gp(τ̃, K̃p, jωp)
]

= −π (39)

Am =
1

∣

∣Gc(τ̃, τ̃′, K̃p, jωp)Gp(τ̃, K̃p, jωp)
∣

∣

(40)

∣

∣Gc(τ̃, K̃p, jωg)Gp(τ̃, τ̃′, K̃p, jωg)
∣

∣ = 1 (41)
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Fig. 4. Controller and plant fuzzy model in open-loop share the same fuzzy sets in the
antecedent space.

φm = arg
[

Gc(τ̃, K̃p, jωg)Gp(τ̃, τ̃′, K̃p, jωg)
]

+ π (42)

Replacing the equation 38 in 39-42, it has:

l

[

l

∑
i=1

(

arctan
(

ωpTi
I

)

− arctan
(

ωpτi
))

−
π

2
− ωgL ] = −π (43)

Am =
1

l

∑
j=1

l

∑
i=1

γj

(

τ̃, τ̃
′
, K̃p

)

γi

(

τ̃, τ̃
′
, K̃p

)

⎛

⎝

K
j
cKi

p

ωpT
j
I

⎞

⎠

⎛

⎜

⎜

⎝

√

√

√

√

√

(

ωpT
j
I

)2
+ 1

(

ωpτi
)2

+ 1

⎞

⎟

⎟

⎠

(44)

l

∑
j=1

l

∑
i=1

γj

(

τ̃, τ̃
′
, K̃p

)

γi

(

τ̃, τ̃
′
, K̃p

)

⎛

⎝

K
j
cKi

p

ωgT
j
I

⎞

⎠

⎛

⎜

⎜

⎝

√

√

√

√

√

(

ωgT
j
I

)2
+ 1

(

ωgτi
)2

+ 1

⎞

⎟

⎟

⎠

= 1 (45)

φm = l

[

l

∑
i=1

(

arctan
(

ωgTi
I

)

− arctan
(

ωgτi
))

−
π

2
− ωpL

]

+ π (46)

For a given linear sub-model, Gi(s, K̃i
p, τ̃i, τ̃

′ i), and gain and phase margins specifications

(Am, φm), the Equations 43-46 can be used to determine the parameters of the PID

sub-controllers, G
j
c(s, K

j
c, T

j
I , T

j
D). Therefore, using the approximation of arctan function in

the case |x| > 1, the Equations 44 and 45 are given by:

l

∑
j=1

l

∑
i=1

γj

(

τ̃, τ̃
′
, K̃p

)

γi

(

τ̃, τ̃
′
, K̃p

) Am

ωp

⎛

⎝

K
j
cKi

p

τi

⎞

⎠ = 1 (47)

l

∑
j=1

l

∑
i=1

γj

(

τ̃, τ̃
′
, K̃p

)

γi

(

τ̃, τ̃
′
, K̃p

)

⎛

⎝

K
j
cKi

p

ωgτi

⎞

⎠ = 1 (48)
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respectively. Using the same approach, the Equations 43 and 46 are given by:

l

[

l

∑
i=1

(

π

4ωpτi
−

π

ωpTi
I

−
π

2
− ωpL

)]

= −π (49)

φm = l

[

l

∑
i=1

(

π

4ωgτi
−

π

ωgTi
I

−
π

2
− ωgL

)]

+ π (50)

respectively. Therefore, the analytical solution for the tuning of the PID sub-controllers

parameters, G
j
c(s)

∣

∣

∣

[i=1,2,...,l] , according to Equations 47-50, is given by

T
j
D = τ

′ i (51)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

l

∑
i=1

γi

(

τ̃, τ̃
′
, K̃p

)

(

Ki
p

τi

)

· · ·
l

∑
i=1

γi

(

τ̃, τ̃
′
, K̃p

)

(

Ki
p

τi

)

l

∑
i=1

γi

(

τ̃, τ̃
′
, K̃p

)

(

Ki
p

τi

)

· · ·
l

∑
i=1

γi

(

τ̃, τ̃
′
, K̃p

)

(

Ki
p

τi

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×

×

⎡

⎢

⎢

⎣

γ1

(

τ̃, τ̃
′
, K̃p

)

· · ·

...
. . .

0 · · ·

0
...

γl

(

τ̃, τ̃
′
, K̃p

)

⎤

⎥

⎥

⎦

⎡

⎢

⎣

K1
c
...

Kl
c

⎤

⎥

⎦
=

[ ωp

Am
ωg

]

(52)

and

⎡

⎢

⎢

⎢

⎣

l
π

ωp
· · · l

π

ωp

l
π

ωg
· · · l

π

ωg

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

(

T1
I

)−1

...
(

Tl
I

)−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

l

{

l

∑
i=1

(

π

4ωpτi

)

−
π

2
− ωpL

}

+ π

l

{

l

∑
i=1

(

π

4ωgτi

)

−
π

2
− ωgL

}

− φm + π

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(53)

where ωp is given by:

ωp =
Amφm +

1

2
πAm(Am − 1)

(A2
m − 1)L

(54)
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3.3.1 Robust stability analysis

For the design of robust fuzzy PID controller, from Equations 51-53, respectively, based on the
gain and phase margins specifications, the following Axiom and Theorems are proposed:

Axiom: The linear sub-models, Gi
p(s)

∣

∣

∣

[i=1,2,...,l] , of the plant, are necessarily of minimum phase, i.e.,

all poles of the characteristic equation are placed in the left half-plane of the complex plane.

Theorem 1: Each robust PID sub-controller, G
j
c(s)

∣

∣

∣

[j=1,2,...,l] , guarantee the gain and phase

margins specifications for the linear sub-model, Gi
p(s)

∣

∣

∣

[i=1,2,...,l] with i = j, of the plant to be

controlled.

Proof: The normalized activation degree, in a given operating point, on the rules base of the
robust PID fuzzy controller, satisfies the following condition:

l

∑
i=1

γj

(

τ̃, τ̃
′
, K̃p

)

= 1 (55)

The total normalized activation degree, for a simple p-th rule activated, as defined in the
equation 4, is given by

γp

(

τ̃, τ̃
′
, K̃p

)

= 1 (56)

Based on the Parallel Distributed Compensation strategy, it has

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

γp

(

τ̃, τ̃
′
, K̃p

)

(

K
p
p

τp

)

. . . γp

(

τ̃, τ̃
′
, K̃p

)

(

K
p
p

τp

)

γp

(

τ̃, τ̃
′
, K̃p

)

(

K
p
p

τp

)

. . . γp

(

τ̃, τ̃
′
, K̃p

)

(

K
p
p

τp

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 . . . 0

0 γ1

(

τ̃, τ̃
′
, K̃p

)

. . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

K
p
c

0
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎣

ωp

Am

ωg

⎤

⎥

⎦
(57)

Solving the Equation 57 for Kc, it has

γp

(

τ̃, τ̃
′
, K̃p

)

(

K
p
p

τp

)

γp

(

τ̃, τ̃
′
, K̃p

) (

K
p
c

)

=
ωp

Am
(58)

and

γp

(

τ̃, τ̃
′
, K̃p

)

(

K
p
p

τp

)

γp

(

τ̃, τ̃
′
, K̃p

) (

K
p
c

)

= ωg (59)

59Takagi-Sugeno Fuzzy Control Based on Robust Stability Specifications 59Takagi-Sugeno Fuzzy Control Based on Robust Stability Specifications

www.intechopen.com



Isolating K
p
c , the Equation 58, is given by:

K
p
c =

(

τp

K
p
p

)

(

ωp

Am

)

(

1

γp
(

τ̃, τ̃
′
, K̃p

)2

)

(60)

To obtain the parameter T
p
I , in a given time, as defined previously, it has:

⎡

⎢

⎢

⎢

⎣

l
π

ωp
. . . l

π

ωp

l
π

ωg
. . . l

π

ωg

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
(

T
p
I

)−1

...
0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

l

(

π

4ωpτp −
π

2
− ωpL

)

+ π

l

(

π

4ωgτp −
π

2
− ωgL

)

+ π − φm

⎤

⎥

⎥

⎥

⎥

⎦

(61)

which results in

(

π

4ωpτp −
π

2
− ωpL

)

+ π (62)

and

l
π

ωg

1

T
p
I

= l

(

π

4ωgτp −
π

2
− ωgL

)

+ π − φm (63)

Isolating φm, the Equation 63, is given by:

φm = l

(

π

4ωgτp −
π

ωg

1

T
p
I

−
π

2
− ωgL

)

+ π (64)

and,

γp

(

τ̃, τ̃
′
, K̃p

)

γp

(

τ̃, τ̃
′
, K̃p

)

(

K
p
p Am

τpωp

)

×

(

τpωp

K
p
p Am

)(

1

γp
(

τ̃, τ̃
′
, K̃p

)

γp
(

τ̃, τ̃
′
, K̃p

)

)

= 1 (65)

and

Am = Am (66)

Assuming, in a given time, the total activation of a simple rule p, as defined previously, in
Equation 35, we have:

φm = l

(

π

4ωgτp −
π

ωgT
p
I

−
π

2
− ωgL

)

+ π (67)
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Comparing the Equation 67 with 64, it has

φm = φm (68)

From those analysis, the robust fuzzy PID controller guarantee the gain and phase margins
specifications for the plant to be controlled.

Theorem 2: Each robust PID sub-controller, G
j
c(s)

∣

∣

∣

[j=1,2,...,l] , guarantee the stability for all

linear sub-models, Gi
p(s)

∣

∣

∣

[i=1,2,...,l] , of the non-linear plant to be controlled.

Proof: The closed-loop transfer function is given by:

GMF

(

s, τ̃, τ̃
′
, K̃p

)

=
l

∑
j=1

l

∑
i=1

γj

(

τ̃, τ̃
′
, K̃p

)

γi

(

τ̃, τ̃
′
, K̃p

) K
j
cKi

p

(

1 + sT
j
I

)

e−sL

[

sT
j
I

(

1 + sτi
)

+ K
j
cKi

p

(

1 + sT
j
I

)](69)

For the stability condition, the characteristic equation of the closed-loop transfer function,
given in Equation 69, must have roots (poles) in the left half-plane of the complex plane
(negative real part). Therefore, it has

l

∑
i=1

l

∑
j=1

γi

(

τ̃, τ̃
′
, K̃p

)

γj

(

τ̃, τ̃
′
, K̃p

) [

sT
j
I

(

1 + sτi
)

+ +Ki
pK

j
c

(

1 + sT
j
I

)]

= 0 (70)

l

∑
i=1

l

∑
j=1

γi

(

τ̃, τ̃
′
, K̃p

)

γj

(

τ̃, τ̃
′
, K̃p

) [

τiT
j
I s2+ +

(

T
j
I + Ki

pK
j
cT

j
I

)

s +
(

Ki
pK

j
c

)]

= 0

By application of the Routh Stability Criterion Franklin et al. (1986) in 69, it has

s2

s1

s0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

τiT
j
I Ki

pK
j
c

(T
j
I + Ki

pK
j
cT

j
I ) 0

Ki
pK

j
c

(71)

And, it is necessary that all terms of the first column are positive:

τiT
j
I > 0 (72)

(T
j
I + Ki

pK
j
cT

j
I ) > 0 (73)

Ki
pK

j
c > 0 (74)
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Since the parameters of the stable sub-models of the plant to be controlled (τi, τ
′ i e Ki

p),
according to Axiom, are positive as well as the gain and phase margins specifications (Am

e φm), from Equations 51-53, the values of the robust fuzzy PID controller parameters (K
j
c, T

j
I ,

T
j
D) are positive. Therefore, the inequalities, in Equations 72-74, are satisfied, and each robust

PID sub-controller guarantee the stability for all sub-models of the plant to be controlled.

4. Computational results

This section describes the experimental results of the robust fuzzy control method in this
paper.

4.1 Dynamic system description

To illustrate the proposed robust fuzzy control method in this paper, a simulation example is
carried out for a one-link robotic manipulator showed in Figure 5. The dinamic equation of
the one-link robotic manipulator is given by:

ml2 θ̈ + dθ̇ + mglsin(θ) = u (75)

with,
m = 1kg, payload,
l = 1m, length of link,
g = 9.81m/s2, gravitational constant,
d = 1kgm2/s, damping factor,
u =control variable (kgm2/s2).

2l

u

mg

0

- pi/2pi/2

0

Fig. 5. One-link robotic manipulator.

This process has as input the torque, and as output the robotic manipulator angular position,
denoted by θ.

4.2 Data collection

Several simulations were performed to collect suitable identification and validation data. The
input of the system were excited with chirp signal. The left plots in Figure 6 show the input
signal and the right plot shows the corresponding output.
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Fig. 6. Identification data set

4.3 Takagi-Sugeno fuzzy model

Based on the prior knowledge about the process, a second-order structure in transfer function
terms was selected, resulting in TS rules of the following form:

IF θ̃(t) is Ai
k|θ̃

THEN Gi
p(s) =

bi

s2 + ai
1s + ai

2

e−sL (76)

where θ̃(t) is the angular position at the time t. The membership functions of the antecedent
linguistic term Ai

k|θ̃
, as well as the consequent parameters bi, ai

1 and ai
2 were estimated from

the data by fuzzy clustering, as described in subsection 2.2.1.
First the data matrix Z is formed, which contains the regressors u(t), θ̇(t) and θ̈(t):

Z =

⎡

⎢

⎢

⎢

⎣

u(1) θ̇(1) θ̈(1)
u(2) θ̇(2) θ̈(2)

...
...

...
u(t − 1) θ̇(t − 1) θ̈(t − 1)

⎤

⎥

⎥

⎥

⎦

(77)

All the clustering algorithms, described in this paper, was applied to the data, but the GK
algorithm has selected. We choose the fuzzification factor m = 2 and the termination criterion
ǫ = 0.001. The clusters number varied from 2 to 5. Due the lower mean square error or MSE
obtained for five clusters, as show in Figure 8, the following data classification and clustering,
as show in Figure 7, is obtained.
Each obtained cluster corresponds to one rule of the TS fuzzy model. The antecedent
membership degrees are directly obtained in the product space of the antecedent variable,
and the consequent parameters are estimated by weighted least-squares method. Using the
identification method based on fuzzy clustering, the following five TS rules, to plant model,
were extracted from identification data:

Rule 1 : IF θ̃(t) is A1
k|θ̃

THEN G1
p(s) =

1.001

s2 + 1.014s + 9.464
e−0.1s

Rule 2 : IF θ̃(t) is A2
k|θ̃

THEN G2
p(s) =

0.998

s2 + 1.002s + 9.125
e−0.1s

63Takagi-Sugeno Fuzzy Control Based on Robust Stability Specifications 63Takagi-Sugeno Fuzzy Control Based on Robust Stability Specifications

www.intechopen.com



Rule 3 : IF θ̃(t) is A3
k|θ̃

THEN G3
p(s) =

0.892

s2 + 0.706s + 7.828
e−0.1s

Rule 4 : IF θ̃(t) is A4
k|θ̃

THEN G4
p(s) =

0.999

s2 + 1.023s + 9.389
e−0.1s

Rule 5 : IF θ̃(t) is A5
k|θ̃

THEN G5
p(s) =

0.998

s2 + 0.991s + 9.342
e−0.1s
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Fig. 7. The dark dots represents the obtained clusters and data classification. Each cluster
represents the estimated local sub-models.
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Validation was performed on a different data set than the one used for identification. From
Figure 9 one can see that the TS model follows the process output with a reasonable accuracy.

4.4 Robust fuzzy control based on gain and phase margins

Based on the PDC strategy, each control rule in the robust fuzzy controller rules base is
designed from the corresponding rule of the TS fuzzy model. The designed fuzzy controller
shares the same fuzzy sets with the fuzzy model in the premise parts. The robust fuzzy
controller rule base is:
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Fig. 9. Validation of the TS fuzzy model. Solid line: dynamic system, dashed line: TS fuzzy
model.

Rule 1 : IF θ̃(t) is A1
k|θ̃

THEN G1
c (s) =

0.647s2 + 3.292s + 3.979

0.507s

Rule 2 : IF θ̃(t) is A2
k|θ̃

THEN G2
c (s) =

0.643s2 + 3.258s + 3.939

0.500s

Rule 3 : IF θ̃(t) is A3
k|θ̃

THEN G3
c (s) =

0.389s2 + 2.199s + 3.107

0.353s

Rule 4 : IF θ̃(t) is A4
k|θ̃

THEN G4
c (s) =

0.662s2 + 3.349s + 4.019

0.511s

Rule 5 : IF θ̃(t) is A5
k|θ̃

THEN G5
c (s) =

0.624s2 + 3.190s + 3.898

0.495s

For robust fuzzy controller design, different gain margins and phase margins are specified
for the model of robotic manipulator plus dead-time in Table 1. Observed that among the
gain and phase margins specifications obtained (marked by *), to Am = 2 and φm = 45, and
Am = 3 and φm = 60 the phase margin is quite close to the specified ones. The largest error
occurred for gain margin. The dead-time process is 0.1s and the Padé approximation order is
2.

Specified Resultant

Am φm A∗
m φ∗

m
6.02 45 12.62 48.86
9.54 45 12.9 20.23
13.98 45 13.8 36.58
9.54 60 13.7 60.28
13.98 60 14.1 66.30

Table 1. Gain and phase margins obtained from the especifications.

The Figure 10 shows the results obtained with the fuzzy robust controller based on gain and
phase margins specifications plus the TS fuzzy model. As well as the gain and phase margins
resulting.
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Fig. 10. Performance of the robust fuzzy controller based on the gain and phase margins
specifications. The dashed line is the reference and the solid line is the robotic manipulator
model with the robust fuzzy controller.

5. Conclusion

This paper presented a proposal for analysis and design of robust fuzzy control, for non-linear
systems based on gain and phase margins specifications. From the proposed analysis and
design, it has the following final remarks:

• The TS fuzzy model, due to the flexibility to incorporate in its structure the linear
sub-models of the non-linear plant made possible, via PDC strategy, the design of robust
fuzzy sub-controllers;

• The proposed Axiom and Theorems guaranteed the robust stability, since all formulation
and analysis were made in the frequency domain, based on gain and phase margins
specifications;

• As noted, the identification method based on fuzzy clustering is effective for modeling the
robotic manipulator;

• The proposed robust fuzzy controller, based on gain and phase margins specifications,
guarantees the stability of the obtained model as observed.
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