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1. Introduction     

Simulations of vadose zone moisture flow and contaminant transport typically use closed-
form soil hydraulic properties (i.e., unsaturated hydraulic conductivity and soil water 
retention characteristics). Understanding large-scale vadose zone hydrological processes 
requires a solid approach to characterizing the large degree of heterogeneity of hydraulic 
properties in the field (e.g., Dagan & Bresler, 1983; Bresler & Dagan, 1983; Vereecken et al., 
2007). As a result, the impact of soil heterogeneity on vadose zone flow and transport has 
been the focus of considerable research in recent decades (e.g., Hopmans & Stricker, 1989; 
Butters & Jury, 1989; Ellsworth & Jury, 1991; Destouni, 1992; Russo, 1993, 1998; Mallants et 
al., 1996; Hendrayanto et al., 2000; Avanidou & Paleologos, 2002; Hristopulos, 2003; Jhorar et 
al., 2004; Das & Hassanizadeh, 2005; Kozak & Ahuja. 2005; Kozak et al., 2005; Neuweiler & 
Cirpka 2005; Ward et al., 2006; Lu et al., 2007; Coppola, et al., 2009). Local scale soil 
hydraulic properties have been studied extensively (e.g., Gardner, 1958; Brooks & Corey, 
1964; Laliberte, 1969; Farrell & Larson, 1972; Campbell, 1974; Mualem, 1976; Clapp & 
Hornberger, 1978; van Genuchten, 1980; Libardi et al., 1980; van Genuchten & Nielson, 1985; 
Hutson & Cass, 1987; Russo, 1988; Bumb et al., 1992; Setiawan & Nakano, 1993; Rossi & 
Nimmo, 1994; Kosugi, 1994; Zhang & van Genuchten, 1994; Leij et al., 1997). However, 
connecting heterogeneous properties and processes at different scales remains a major 
scientific challenge in hydrology (Dagan, 1989; Gelhar, 1993; Renard & de Marsily, 1996; 
Sposito, 1998; Grayson & Bloschl, 2000; Kasteel et al., 2000; Cushman et al., 2002; Farmer, 
2002; Zhang, 2002; Williams & Ahuja, 2003; Pachepsky et al., 2003; Zhang et al., 2004; 
Vereecken et al., 2007). One way to connect soil hydrologic processes at different scales is to 
employ hydraulic property upscaling. The upscaling algorithms seek to aggregate a mesh of 
hydraulic properties defined at the small (support) scale into a coarser mesh with “effective” 
hydraulic properties that can be used in large-scale (e.g., landscape-scale, watershed-scale, 
basin-scale) hydro-climate models. The main goal of using effective hydraulic properties is 
to capture particular flow and transport processes in a heterogeneous soil, through 
conceptualization of heterogeneous formation as an equivalent homogeneous formation. In 
this way, the heterogeneous system is replaced by an equivalent homogeneous medium 
(e.g., Rubin, 2003; Zhu & Mohanty, 2003a,b; Zhu & Mohanty, 2004; Zhu et al., 2007; Zhu, 
2008; Zhu & Sun, 2009; Zhu & Sun, 2010). Hydraulic parameters that define the equivalent 
homogeneous medium are known as effective parameters.  
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However, upscaling studies have revealed significant challenges and problems in 
representing soil hydrologic processes and parameters at different scales (e.g., Bresler & 
Dagan, 1983; Milly & Eagleson, 1987; Kim & Stricker, 1996; Smith & Diekkruger, 1996; Kim 
et al., 1997; Harter & Hopmans, 2004). For example, upscaled effective hydraulic properties 
derived from stochastic analysis, which account for local-scale hydraulic property 
heterogeneities perform well for deep and unbounded unsaturated zones where gravity-
dominated flow is the main process and where the mean hydraulic gradient is 
approximately constant (e.g., Zhang et al., 1998). The gravitational flow regime enables the 
use of relatively simple approaches in stochastic analysis of subsurface flow (e.g., 
Tartakovsky et al., 1999; Harter & Zhang, 1999; Russo, 2003; Severino et al., 2003; Severino & 
Santini, 2005; Russo, 2005; Russo & Fiori, 2009). In a recent study, Zhang (2010) investigated 
the effective hydraulic conductivity of unsaturated media through numerical experiments of 
gravity-induced flow with multidimensional heterogeneity. Under this flow scenario, the 
use of average unit hydraulic gradient assumption implies that pressure head is constant 
throughout the profile. It should be pointed out that the unit-gradient assumption is 
applicable for a limited range of infiltration conditions where the pressure gradient is close 
to zero; and thus this assumption may be of limited applicability for near-surface processes, 
such as vadose zone and atmosphere interactions. On the other hand, many studies on 
hydraulic property upscaling that focus on near-ground surface interactions mostly deal 
with steady state flux exchanges (e.g., Zhu & Mohanty, 2002a,b; 2003a; Zhu et al., 2006) and 
results indicate that upscaling behaviors are distinctly different for infiltration and 
evaporation and an effective hydraulic property is usually more difficult to define for 
evaporation. In a study of effective hydraulic parameters for transient hydrological 
processes, Zhu and Mohanty (2006) combined the one-dimensional local process and the 
Miller-Miller (Miller & Miller, 1956) media concept, thereby illustrating that effective 
hydraulic parameters depend on the time frame being considered. Zhu & Sun (2009) 
investigated the use of effective soil hydraulic properties (expressed in terms of hydraulic 
parameters) applicable to near surface large-scale transient infiltration problems in a 
landscape with horizontally heterogeneous soil hydraulic properties. These studies show 
that methods to aggregate and upscale local hydraulic parameters are critical to improve the 
understanding of near surface large-scale hydrologic processes. 
Two widely used upscaling approaches in vadose zone flows include homogenization 
theory and Monte Carlo type of simulations based on the stream tube approximation. In the 
homogenization theory, an upscaled flow equation is developed based on a separation of 
length scales in the medium for the limit at which the typical length scale of heterogeneities 
became negligible compared to the size of the medium (e.g., Sviercoski et al., 2009; 
Neuweiler & Eichel, 2006; Neuweiler & Cirpka, 2005; Lewandowska & Laurent, 2001). The 
second approach is the stream tube approach in which the heterogeneous field is 
conceptualized as a series of vertically homogeneous and horizontally independent stream 
tubes or parallel columns (Dagan & Bresler, 1983; Bresler & Dagan, 1983; Govindaraju et al., 
1992; Rubin & Or, 1993; Chen et al., 1994a,b; Toride & Leij, 1996a, b; Kim et al., 1997; 
Wildenschild & Jensen, 1999; Zhu & Mohanty, 2002b). Both approaches have challenges and 
limitations in dealing with heterogeneity and upscaling of hydraulic properties.  
First, the homogenization theory uses an approach based on a separation of length scales in 
the medium and aims at deriving an upscaled flow equation in a heterogeneous medium for 
the limit at which the typical length scale of heterogeneities became negligible compared 
with the size of the medium (e.g., Hornung, 1997). In other words, a clear separation of 
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scales is required to derive upscaled model based on the homogenization theory. The flow 
system is sorted for the different orders and solved for each order separately, which requires 
that system dimensionless numbers, as well as parameter ratios, be of a fixed order of this 
length scale ratio. Different orders of dimensionless numbers and different parameter ratios 
could lead to different upscaled flow models (e.g., Van Duijn et al., 2002 and Lewandowska 
et al., 2004, respectively). The homogenization approach is mostly applicable to a certain 
flow and parameter regime. Previous studies using homogenization theory usually 
considered two flow regimes. The first flow regime was quantified by small Bond number, 
meaning forces due to pressure gradients are dominant at the small scale. The second flow 
regime is quantified by large Bond number, meaning that forces due to pressure gradients 
and gravity contribute equally at the small scale. Most notably, Bond number is assumed to 
be a fixed order in relation to the ratio between the small and the large scale. In addition, 
due to its requirement of separation of scales, the homogenization theory is difficult to use 
for formation without clear scale separation such as in the situation when there are only a 
finite number of layers in the soil formations. 
Second, the stream tube approach is often used in upscaling vadose zone hydrological 
processes in which many studies conceptualize the heterogeneous field as a series of 
vertically homogeneous and horizontally independent stream tubes or parallel columns. In 
the study of Severino et al. (2003), the effective hydraulic conductivity was obtained by an 
ensemble average over all the stream tubes of a local analytical solution of Richards 
equation that regards the hydraulic parameters as horizontally correlated random space 
functions. Leij et al. (2007) simulated and aggregated unsaturated zone flows using the 
stream tube approach in which the heterogeneous field is conceptualized as a series of 
vertically homogeneous and horizontally independent stream tubes or parallel columns. Leij 
et al. (2007) focused on aggregating a posteriori unsaturated flow processes and illustrated 
that a priori aggregation (effective hydraulic properties) would overestimate the large-scale 
average infiltration by more than 40%, if the effective water retention curve was obtained 
from the aggregated suction head and the water content and the arithmetic mean of the 
saturated hydraulic conductivity. More recently, Coppola et al. (2009) studied the effects of 
using unimodal and bimodal interpretative models of hydraulic properties on the ensemble 
hydrological behavior of stream tubes by comparing predictions to mean water contents 
measured over time at several field scale sites. Zhu & Sun (2009) examined how the effective 
hydraulic parameters are sensitive to the time frame of hydrologic processes, by using the 
stream tube concept to study the effective hydraulic parameters for transient infiltration. 
Ahuja et al. (2010) who also used the steam tube approach, explored effective parameter sets 
to describe field-average infiltration and redistribution under different rainfall conditions 
and investigated whether an effective field saturated hydraulic conductivity and correlated 
hydraulic parameters derived from matching early-stage average ponded infiltration could 
give reasonable results for infiltration under lower rainfall rates as well as for soil water 
redistribution. These results showed that there were no unique effective average properties 
that gave the best results for both infiltration and redistribution, even for the same initial 
pressure-head condition. It should be emphasized that when the stream tube approach is 
used, no interactions among these tubes are considered. The stream tube approach is most 
appropriate to model flows where the effective cross-sectional diameter of a ‘‘tube’’ or 
“column” is larger than its length (e.g., Protopapas and Bras, 1991; Leij et al., 2006; Leij et al., 
2007).  
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In this chapter, we seek to provide some practical guidelines of how the commonly used 
simple averaging schemes (arithmetic, geometric, or harmonic mean) perform in simulating 
large scale evaporation in a heterogeneous landscape. As discussed earlier, previous studies 
on hydraulic property upscaling focusing on steady state flux exchanges illustrated that an 
effective hydraulic property is usually more difficult to define for evaporation. This chapter 
mainly focuses on upscaling hydraulic properties of large scale transient evaporation 
dynamics based on the stream tube approach. Specifically, we examine large scale hydraulic 
parameters in two practical aspects: (1) if the three simple averaging schemes (i.e., 
arithmetic, geometric and harmonic means) of hydraulic parameters are appropriate in 
representing large scale evaporation processes, and (2) how the applicability of these simple 
averaging schemes depends on the time scale of evaporation processes in heterogeneous 
soils. Multiple realizations of local evaporation processes are carried out using HYDRUS-1D 
computational code (Simunek et al, 1998). The three averaging schemes of soil hydraulic 
parameters are used to simulate the cumulative flux exchange, which is then compared to 
the large scale average cumulative evaporation. The relative error between the cumulative 
evaporation based on simple averaging schemes and the average cumulative evaporation is 
used to judge the applicability of the simple averaging schemes in predicting the large scale 
evaporation from the heterogeneous soils.  The sensitivity of the relative errors to the time 
frame of evaporation processes is also discussed. 

2. Methods 

2.1 Hydraulic properties and hydraulic parameters 
The hydraulic properties are characterized by the soil water retention curve which defines 
the water content (θ) as a function of the suction head (h), and the hydraulic conductivity 
function which establishes the relationship between the hydraulic conductivity (K) and the 
water content or the suction head. Some of the more commonly used models describing 
these functional relationships include: the Gardner-Russo model (Gardner, 1958; Russo, 
1988), the Brooks-Corey model (Brooks & Corey, 1964), and the van Genuchten (1980) 
model. 
The unsaturated hydraulic conductivity (K)-suction head (h) and the suction head (h)-water 
content (θ) are represented by the Gardner-Russo model (Gardner, 1958; Russo, 1988), 

 ( ) 2/( 2)0.5 hSe h   [e (1  0.5 h)] lα α − +−= +   (1) 

 ( ) h
SK h   K e α−=   (2) 

where Se = (θ-θr)/(θs-θr) is the effective degree of saturation, θ is the volumetric water content, 
θ r is the residual volumetric water content, θ s is the saturated volumetric water content, h is 
the suction head (positive for unsaturated soils), K is the hydraulic conductivity, KS is the 
saturated hydraulic conductivity, ǂ is related to pore-size distributions, l is a parameter which 
accounts for the dependence of the tortuosity, and the correlation factors on the water content 
estimated to be about 0.5 as an average for many soils. 
Brooks & Corey (1964) established the constitutive relationship between K and h and 
between Se and h using the following empirical equations from the analysis of a large soil 
database, 
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 ( )Se h   ( h)           ( h 1)λα α−= >   (3a) 

 ( )Se h   1                  ( h 1)α= ≤   (3b) 

 

 ( ) SK h   K ( h)          ( h 1)βα α−= >   (4a) 

 ( ) SK h   K                    ( h 1)α= ≤   (4b) 

where λ is a pore-size distribution parameter affecting the slope of the retention function, 
and ǃ = λ(l+2) + 2. 
The model developed by van Genuchten (1980) is an S-shaped function. The function was 
combined with Mualem’s hydraulic conductivity function (Mualem, 1976) to predict the 
unsaturated hydraulic conductivity. Van Genuchten’s equations for the soil water retention 
curve and the hydraulic conductivity can be expressed as follows, 

 ( ) n mSe h   [1  ( h) ]α −= +   (5) 

 ( ) ( )
2m1/m

SK h   K Se 1 –  1 –  Se ,       m  1 –  1 /ml ⎧ ⎫= =⎨ ⎬
⎩ ⎭

  (6) 

where m and n are empirical parameters. 
In this chapter, we use van Genuchten model since it closely fits measured water-retention 
data for many types of soils (Leij et al., 1997). Other hydraulic property models can also be 
similarly used. While results of simulated hydrologic processes using other hydraulic 
property models may differ quantitatively, they demonstrate similar trends. 

2.2 Field-measured and re-generated hydraulic parameter data 
Heterogeneity in hydraulic properties (as expressed in terms of hydraulic parameters) 
largely determines the variability in the water content and flux. The hydraulic parameters 
we used in this study are an 84-point set of van Genuchten parameters that were derived 
from field measurements at the Corn Creek Fan Complex (see Fig. 1) at the Desert National 
Wildlife Refuge, north of Las Vegas, Nevada, U.S.A. (Young et al., 2005). One main purpose 
of the study by Young et al. (2005) was to characterize the hydraulic properties of surface 
materials that exist in distinct geomorphic surfaces at the study site. Field work first 
identified distinct geologic units on both the proximal and distal portions of the Corn Creek 
Fan, where each unit had distinct morphologic or geologic surface features. After digitizing 
the geologic unit identification into a geographic information system database, hydraulic 
and physical properties were obtained from 84 locations in a large area of >100 km2. 
Hydraulic properties, including soil water retention and hydraulic conductivity functions, 
were estimated at sites underneath plant canopies and at intercanopy locations. The 
locations were chosen based on the geologic unit mosaic of the Corn Creek Fan to cover the 
various geologic units present on the site, assuming that each unit has distinct hydraulic 
property characteristics. The field work hence was not designed to obtain a detailed spatial 
structure for the study site. We use the data set, which has a strong correlation between Ks 
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and ǂ, along with synthetic hydraulic parameter data sets having different levels of 
parameter correlation, to investigate the effects of hydraulic parameter correlations, not the 
spatial autocorrelations of the parameters. The soil hydraulic properties of the surface soil at 
each field site were determined using tension infiltrometry. Hydraulic and physical 
properties were obtained from 84 locations resulting in 84 samples. Full van Genuchten 
hydraulic parameters were estimated using the tension infiltrometer, resulting in a 
hydraulic parameter set of 84 points (called Field Set in the subsequent analysis). Additional 
details of the field test methodology and procedures are given by Young et al. (2005). Table 1 
lists the basic statistics for the Field Set.  
In practice, van Genuchten parameter n can be determined with greater certainty than the 
other van Genuchten parameters (e.g., Schaap & Leij, 1998). Hills et al. (1992) also 
demonstrated that random variability of ǂ is more important than that of other van 
Genuchten parameters. Spatial variability in ǂ has a larger impact on the ensemble behavior 
of soil hydrologic processes than that in other van Genuchten parameters (Zhu & Mohanty, 
2002b). Therefore, it is reasonable to treat n as deterministic to examine the influence of 
more important hydraulic parameters. Following these findings, we treated n as a 
deterministic parameter using the mean value from the Field Set in this study. The 
variabilities of other van Genuchten parameters, θr and θs, are also relatively insignificant in 
comparison to KS and ǂ due to the fact that we are mainly concerned with the cumulative 
evaporation, not the moisture content. 
 

 
Fig. 1. Location of the Corn Creek Fan Complex, north of Las Vegas, Nevada, U.S.A., where 
the variability of the hydraulic parameters were characterized. 
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Since the field measurement-derived hydraulic parameter data set that we use for the 
subsequent analysis in the upscaling context indicates a fairly strong correlation between the 
two parameters KS and ǂ and has only 84 measured points, we seek to investigate the 
influence of hydraulic parameter correlation, the variances of hydraulic parameters on 
appropriateness of averaging schemes by synthetically re-generating random hydraulic 
parameter fields for those two parameters. In doing so, we generate two additional data sets 
for the KS and ǂ: 1) an 84-point set that has the same mean and variance with the Field Set, 
but has zero correlation between the KS and ǂ (called Set 1), 2) an 84–point set that has the 
same mean but has two times bigger variance in comparison to the Field Set and also has 
zero correlation between the KS and ǂ (called Set 2). Specifically, Set 1 is designed to 
examine the importance of parameter correlation, since it only differs in correlation level 
between the KS and ǂ in comparison to the Field Set. Set 2 can be used to investigate the 
influence of parameter variance since it has larger variance than the Field Set. The basic 
statistics of the hydraulic parameter data sets that will be used in the subsequent analyses is 
listed in Table 1. 
 
 

Data set <KS>(cm/min) <ǂ>(1/cm) CV(KS) CV(ǂ) CC(KS, ǂ) 

Field Set 0.123 0.092 0.837 0.287 0.74 

Set 1 0.123 0.092 0.837 0.287 0.0 

Set 2 0.123 0.092 1.18 0.41 0.0 
 

Table 1.  Basic statistics of field hydraulic parameter set and regenerated sets. <KS> and <ǂ> 
represent means of KS and ǂ respectively; CV(KS) and CV(ǂ) are the variances of KS and α 
respectively; CC(KS, ǂ) is the coefficient of correlation between KS and ǂ. 

2.3 Aggregation of local scale evaporation processes and relative error calculation 
For the local scale evaporation process, we use HYDRUS-1D package (Simunek et al, 1998) 
to simulate the one-dimensional flow subjected to the head-type conditions on the land 
surface (1000cm) and on the bottom (1cm or 10cm). The HYDRUS-1D modular program 
uses fully implicit, Galerkin-type linear finite element solutions of the governing equation 
for a variably-saturated porous medium (Richards, 1931). Initial suction is assumed to be 
constant in the profile representing initial wetness of soils. A large suction head of 1000 cm 
is used as top boundary condition to induce the evaporation. Multiple realizations (84) of 
HYDRUS-1D simulations are performed and the average cumulative evaporation is 
calculated. Another simulation is performed to calculate the cumulative evaporation using 
the simple averaging schemes for the KS and ǂ. Three simple averaging schemes are used 
for KS and ǂ, as described in the following. 
1. Arithmetic mean 

 ( )S SAM K   K= < >   (7) 

 ( )AM   α α= < >   (8) 
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2. Geometric mean 

 ( ) [ ]S SGM K   exp lnK= < >   (9) 

 ( ) [ ]GM   exp lnα α= < >   (10) 

3.  Harmonic mean 

 ( ) [ ] 1
S SHM K   1 /K −= < >   (11) 

 ( ) [ ] 1HM   1 /α α −= < >   (12) 

In the above expressions, “<>” denote simple average (i.e., arithmetic mean). 
Relative error of using the simple averaging schemes to simulate average evaporation in a 
large scale heterogeneous landscape is then defined as 

 ( ) ( ) ( ) ( )SAe t   E t   E t / E t= ⎡ − < >⎤ < >⎣ ⎦   (13) 

where ESA(t) denotes the cumulative evaporation calculated using the simple averaging 
schemes of hydraulic parameters, <E(t)> is the average cumulative evaporation for the 
heterogeneous landscape. A close to zero e(t) indicates that the simple averaging hydraulic 
parameters represent the large scale average evaporation well. Positive e(t) simply means 
the simple averaging hydraulic parameters over-predict the large scale average evaporation, 
while negative e(t) signals the under-prediction of large scale evaporation by using the 
simple averaging hydraulic parameters. 

3. Discussion 

Evolution of relative errors by using the simple averaging schemes of hydraulic parameters 
to simulate large scale cumulative evaporation as functions of time when the initial suction 
head is 1 cm is shown in Fig. 2 to Fig. 4 for Field Set, Set 1 and Set 2, respectively. The initial 
suction head of only 1 cm indicates a wet initial condition close to saturation prior to the 
evaporation. The geometric mean of hydraulic parameters leads to the smallest relative 
errors, illustrating geometric mean is the most optimal averaging scheme. The relative errors 
tend to be larger at the beginning, and decrease as time evolves. The arithmetic mean over-
predicts the average evaporation, while the harmonic mean under-predicts the average 
evaporation. As expected, a larger variance would result in larger relative errors, as 
evidenced from Fig. 4 in comparison to Fig. 2 and Fig. 3. 
In Fig. 5 to Fig. 7, we plot the results of relative errors under otherwise same conditions as 
Fig. 2 to Fig. 4, but for the initial suction head of 10 cm. This initial condition indicates a 
drier condition as the water content decreases dramatically as the suction head increases. In 
general, drier initial condition leads to relatively smaller errors, but signifies an increasing 
difficulty in selecting a consistent simple averaging scheme that can be used in predicting 
the average evaporation. The most appropriate simple averaging scheme changes with 
correlation between the hydraulic parameters and the variances of hydraulic parameters. 
Under initial drier condition, the simple averaging schemes work better when the hydraulic 
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parameters are correlated (see Fig. 5). Under drier condition with uncorrelated hydraulic 
parameters, the three simple averaging schemes all under-predict average evaporation (see 
Fig. 6 and Fig. 7). 
In general, the results indicate that the effective hydraulic parameters are mostly constant 
(i.e., do not change much with time) except during the initial stage of evaporation, when the 
errors of using simple averaging schemes vary more significantly with time. In later stage, 
the errors tend to be more uniform with time. This suggests that the average evaporation 
behavior at the initial stage in a heterogeneous soil is more difficult to represent using an 
equivalent homogeneous medium. 

4. Conclusions 

In this chapter, we examined how the time frame of hydrologic processes affects the 
performance of averaging schemes and how the hydraulic parameter correlation and 
variability impact the performance of simple averaging schemes.  The average cumulative 
evaporation in the heterogeneous soils was quantified through multiple realizations of local 
scale evaporation processes. The suitability of using the simple averaging schemes to 
represent the heterogeneous evaporation processes was quantified by the difference 
between the cumulative evaporation based on the simple averaging schemes and the 
average cumulative evaporation. 
 
 

-20.0

-10.0

0.0

10.0

0 20 40 60 80 100

R
e

la
ti

v
e

 E
rr

o
r 

(%
)

Time (min)

AM_1cm GM_1cm HM_1cm

 
Fig. 2. Evolution of the relative errors for the cumulative evaporation when the surface 
suction head is 1000 cm. The initial suction head is 1 cm. Results based on Field Set. 
AM=Arithmetic mean, GM=Geometric mean, HM=Harmonic mean. 
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Fig. 3. Evolution of the relative errors for the cumulative evaporation when the surface 
suction head is 1000 cm. The initial suction head is 1 cm. Results based on Set 1. 
AM=Arithmetic mean, GM=Geometric mean, HM=Harmonic mean. 

-20.0

-10.0

0.0

10.0

0 20 40 60 80 100

R
e

la
ti

v
e

 E
rr

o
r 

(%
)

Time (min)

AM_1cm GM_1cm HM_1cm

 
Fig. 4. Evolution of the relative errors for the cumulative evaporation when the surface 
suction head is 1000 cm. The initial suction head is 1 cm. Results based on Set 2. 
AM=Arithmetic mean, GM=Geometric mean, HM=Harmonic mean. 
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Fig. 5. Evolution of the relative errors for the cumulative evaporation when the surface 
suction head is 1000 cm. The initial suction head is 10 cm. Results based on Field Set. 
AM=Arithmetic mean, GM=Geometric mean, HM=Harmonic mean. 
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Fig. 6. Evolution of the relative errors for the cumulative evaporation when the surface 
suction head is 1000 cm. The initial suction head is 10 cm. Results based on Set 1. 
AM=Arithmetic mean, GM=Geometric mean, HM=Harmonic mean. 
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Fig. 7. Evolution of the relative errors for the cumulative evaporation when the surface 
suction head is 1000 cm. The initial suction head is 10 cm. Results based on Set 2. 
AM=Arithmetic mean, GM=Geometric mean, HM=Harmonic mean. 

In general, all averaging schemes produce larger deviation from averaged evaporative 
fluxes at the beginning of evaporation. Relative Errors based on using the simple averaging 
schemes of hydraulic parameters are generally larger for initial wetter conditions due to 
larger pressure gradient near the surface. The appropriateness of different averaging 
schemes is sensitive to the correlation between the hydraulic parameters and the variances 
of hydraulic parameters. At most time frames, average large scale evaporation behavior is 
better captured (i.e., relative errors of cumulative evaporation are smaller) when the 
geometric mean is used as the effective parameters. As expected, larger hydraulic parameter 
variances would introduce larger relative errors when using the simple averaging schemes 
of hydraulic parameters of the heterogeneous soils. 
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