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1. Introduction

Wireless sensor and actuator networks are an important component in mechatronics. As
the sensors permeate the environment they can monitor objects, space and the interaction
of objects within a space. Sensors can monitor a wide range of diverse phenomena by
collecting information such as vibrations, temperature, sound, and light. Different sensors
have different associated costs. For example, a sensor simply detecting light will have
different costs to a sensor recording sound. However, less costly sensors can be used to detect
a phenomenon before alerting the more costly sensors to start their monitoring. As the number
of heterogeneous sensors increases, so will the amount of interactions between the sensors. In
an instrumented system sensors are becoming more interconnected, interactive, intelligent,
and interdependent.
There are many different types of sensor environments, ranging from large areas covered by
sensors, to many sensors in a small area.Different environments have a wide range of different
characteristics. The different environments may include :

Transportation The management of traffic and the transportation of goods. This can include
traffic lights, traffic controllers to manage traffic flow, or shock sensors, impact indicators for
fragile goods.

Smart Buildings A distributed control system to efficiently manage building automation. For
instance, smart buildings allows people to visualize and manage air–conditioning, lighting,
or other appliances in the building.

Environmental Monitoring The monitoring of the characteristics and quality of the
environment. This can include continuous monitoring a river system for pH level, dissolved
oxygen, conductivity, turbidity and colour

Health and Well–Being The monitoring and delivery of health to a patient. This can
include wearable wireless health sensors for remote bio-monitoring. Enabling patients to live
independently.

Water The management of distribution of water to the populace. Water management includes
the planning, developing, and distributing water resources.

Each environment can be considered to be a distributed control system with similar
requirements. Figure 1 is a common framework used by each environment. The real world
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signifies the environment that needs to be managed. For instance, real world could be a
building, a patient, water ways, toll way, or a rainforest. To manage each system, there needs
to be a data and measurement platform. The platform is used to collect in situ continuous
sensor data. The data is then sent to the analysis platform. The analysis of the data involves
the assimilation, interpolation and explanation of the data. By the end of the analysis cycle
the system should have high–quality trusted data. The high–quality trusted data is then sent
to the decision model, where simulations are run and predictions are made. The outcomes or
final decisions are sent to the actuators in the system. Actuators can include air-conditioning,
lights or even a person.

Sensors

Data and Measurement
Platform

Assimilation,
Interpolation &

Explanation

Analysis Platform

High-Quality
Trusted Data Simulation &

Prediction

Decision Model

Capturing Actions

Outcomes
Raw Data

Command

& Control

Actuators

Real World

Fig. 1. Logic System Flow Diagram

The requirement for high–quality trusted data in the system, places the need for
security, information assurance and reliability into the system. The future networks
are increasingly becoming heterogeneous and highly dynamic. Cooperative networking
paradigm envisages advanced wireless networks to cost effectively provide multimedia
services and applications (incorporating various sensors) anywhere, anytime. Self-organising,
opportunistic networking tries to exploit resources (bandwidth, memory, computing power,
etc) available in various devices and nodes in the system. This approach of moving away from
exclusively relying on infrastructure networks raises serious challenges to overall reliability
of the system.
The complex nature of operation of sensor network applications involve use of different
communication technologies, ranging from Cellular, WLAN, WiMax, WPN, WMN, WSN.
Although much work has been done on the inter-operability between these networks, the
authentication of nodes and the level of security available for services in such situations are
still needs innovative solutions.
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The system may not require encryption, but may require authentication. For instance, a sensor
detecting the amount of light in a publicly available room supplies no or little information to
an adversary. However, the information the light sensor sends to another device should be
authenticated before any actions are taken.
One of the security vulnerabilities investigated in this chapter is the use of small keys. For
performance reasons, sensors use small keys, however, small keys give an attacker a greater
opportunity to compromise a sensor node. Thus, small keys will require frequent refreshing.
Old keys can be used to generate new keys. But, if the old key is compromised then the new
key can easily be compromised. A secure, efficient and scalable mechanism to freshen the
keys between the sensors nodes is discussed.
When sensors are deployed in battlefields or developed to monitor homeland security, they
have a likelihood of becoming the target of adversaries. In an open environment, an
individual server or an intermediate sensor node may not be completely and permanently
trustworthy. Several existing protocols (Chen et al., 1995; Gong, 1993) found in traditional
network protocols handle the shortcomings of untrusted servers. We, however, show that
those existing protocols have an O(n2) complexity, and are therefore not suitable to a resource
constrained environment.
In this paper, we describe five protocols to address the problems described above. These
protocols use information from the sensor nodes and the servers to generate a new key.
Some of the protocols do not rely on the sensor nodes to generate cryptographically good
pseudo–random numbers. We will show the sensor nodes can prove that the new key is fresh,
and will demonstrate how key confirmation ensures that the nodes are guaranteed to be using
the same key.
Section 2 shows the notations used throughout this paper. Section 3 provides a background to
sensor networks, and the unique security challenges. Section 4 describes the multiple server
protocols found in traditional networks, and the problems with using those protocols in sensor
networks. Section 5 describes three multiple server protocols for sensor networks. Section 5.3
provides a detailed analysis of the multiple server protocols. Section 6 compares the protocols
in different sensor network environments. Finally, a conclusion is provided in Section 7.

2. Notation and assumptions

Table 1 gives a list of notations, which are used when describing authentication and key
establishment protocols in this paper.
In protocols using a multiplicity of servers an assumption is made that A and B do not trust
any individual server. TinyOS is used as the development environment, with the following
restrictions on the size of the data structures. The key size is 64 bits, the nonce size is 1 byte,
the packet size is 29 bytes, and finally the location size is 2 bytes (which allows 64K of nodes
in a sensor network).

3. Background

We refer to a sensor network as a heterogeneous system combining small, smart, and cheap,
sensing devices (sensors) with general–purpose computing elements. A sensor network
consists of a potentially large number of sensors; there may also be a few control nodes, which
may have more resources. The functions of the control nodes include: connecting the sensor
network to an external network; aggregating results before passing them on; controlling
the sensor nodes; providing services not available to a resource constrained environment.
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Notation Description
A and B The two nodes who wish to share a new session key.

S A trusted server.
Si A server in a set of servers S1, . . . , Sn, where n is the numbers of servers.

NA A nonce generated by A.
{M}K Encryption of message M with key K to provide confidentiality and

integrity.
[[M]]K Encryption of message M with key K to provide confidentiality.
[M]K One-way transformation of message M with key K to provide integrity.
KAB The long-term key initially shared by A and B.
K′

AB The value of the new session key.
KAS, KBS Long-term keys initially shared by A and S, and by B and S for centralized

authentication server.
KASi

, KBSi
Long-term keys initially shared by A and Si, and by B and Si, for each
i ∈ 1, . . . , n.

X, Y The result of the concatenation of data strings X and Y.
A → B : m Denotes that A sends a message m to B.
A → Si : m Denotes that A sends a message m to each server.
Si → A : m Denotes that each server sends a message m to A.

X ⊕ Y Exclusive–or operation with X and Y.

Table 1. Notations

Sensor network applications (Bulusu, 2005) include tracking bushfires, monitoring wildlife,
conducting military surveillance, and monitoring public exposure to contaminants.
Some sensor nodes are resource constrained, such as the Mica mote (Crossbow, 2006). The
Mica motes contain a 4 MHz processor with 512 KB flash memory and 4 KB of data memory.
A Mica mote also has a separate 512 KB flash memory unit accessed through a low-speed
serial peripheral interface. The RF communication transfer rate is approximately 40 kbps. The
maximum transmission range is approximately 100 meters in open space. Communication is
the most expensive operation in sensor networks.
Other components in the sensor network may have more computation power and memory.
Examples are the Stargate platform (Crossbow, 2006), the GNOME platform (GNOME, 2006),
the Medusa MK–2 platform (Medusa, 2006), and the MANTIS platform (MANTIS, 2006).
These platforms may use other higher–level operating systems such as the Linux operating
system. The platforms themselves may have additional communication mechanisms. For
instance, the GNOME platform also has an Ethernet connection.

3.1 Key establishment in wireless sensors

Security in sensor environments (where there are sensors with low resources) differs in many
ways from that in other systems. Efficient cryptographic ciphers must still be used with
care. Security protocols should use a minimal amount of RAM. Communication is extremely
expensive; any increase in message size caused by security mechanisms comes at a significant
cost. Energy is the most important resource, as each additional instruction or bit transmitted
means the sensor node is a little closer to becoming nonfunctional. Nearly every aspect of
sensor networks is designed with extreme power conservation.
There are many aspects to WSN security (Deng et al., 2005); ranging from data fusion
security, location aware security, to the lower level security primitives such as cryptography,
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authentication and key establishment protocols. We will not cover all aspects of WSN security
in this paper, instead only concentrate on some of the lower level primitives: authentication
and key establishment protocols.
Several cryptography libraries using symmetric keys (Karlof et al., 2004; Perrig et al., 2001)
have been proposed. Recent work has shown that even asymmetric keys may be used in
WSNs (Malan et al., 2004; Watro et al., 2004). Singh et al. (Singh et al., 2006) has proposed
an efficient key establishment protocol using elliptic curves. However, they still consume
considerably more resources than the symmetric counterparts.
Key establishment protocols are used to exchange and set up shared secrets between sensor
nodes. Asymmetric cryptography is unsuitable for most sensor architectures because of
the higher computational overhead, and energy and memory consumption. When using
symmetric keys, we can classify the key establishment protocols in WSNs into three main
categories: Pair–wise schemes; Random key predistribution schemes; Key Distribution Center
(KDC) schemes.
The simplest is the full pair–wise scheme (Chan et al., 2003), where each node in a network of
total of n nodes shares a unique pairwise key with every other node in the network. The
memory overhead for every sensor node is (n − 1) cryptographic keys. Other pair–wise
schemes (Blundo et al., 1993; Leighton & Micali, 1994) also have O(n) memory cost. In a
pair–wise scheme, the sensor network is not compromised even if a fraction of the sensors are
compromised.
Random key predistribution schemes are the second category (Chan et al., 2003). This is a
major class of key establishment protocols for sensor networks. They rely on the fact that a
random graph is connected with high probability if the average degree of its nodes is above
a threshold. After the connected secure network is formed, the protected links can be further
used for agreeing on new keys, called path–keys. One of the main problems with random key
predistribution schemes is that if a certain number of sensor nodes become compromised,
then the entire sensor network can be compromised.
The third category is the KDC scheme. If two entities sharing no previous secret want to
communicate securely with each other, they can receive assistance from a third party. In
WSNs the two entities are typically resource–constrained sensor nodes, and the third party
is a resource–heavy base station. However, in a multi-tiered environment, such as a military
battlefield, the third party may be a resource heavy camera. Typically, the base station
provides an authentication service that distributes a secure session key to the sensor nodes.
The level of security of a typical key distribution protocol depends on the assumption that the
third party is trustworthy (Boyd, 1996).
KDC schemes use the least amount of memory compared with the other two categories, and
has an extra advantage of providing authentication for the sensor nodes. Examples of KDCs
in WSNs were first proposed in SPINS (Perrig et al., 2001). However, the SPINS protocol may
not be suited for every WSN topology. For instance, it does not easily scale to a large WSN,
since the non–uniform communication will focus the load onto the KDC. This may cause the
battery life of the network nodes to diminish considerably. However, a KDC mechanism is
suitable for a surveillance sensor environment.
Hybrid schemes can also by created by combining different key establishment categories. The
PIKE scheme (Chan & Perrig, 2005) is such a scheme, it combines a pair–wise scheme with the
KDC scheme, where one or more sensor nodes act as a trusted intermediary to facilitate the
key establishment. The scheme was developed to limit the amount of memory used by the
pair-wise and random key predistribution schemes, and also to limit the communication load
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because of the KDC schemes. However, the difficulties in using a sensor node as the trusted
third party are: the trusted intermediary can easily become compromised; key sizes in sensors
nodes are not large; sensor networks may only accept authenticated messages, so may not
have access to an encryption algorithm.
It should be noted that none of the above sensor key establishment schemes can handle
authentication when the third party is compromised. Also, if the KDC is a sensor or controller
node, then there is a higher likelihood that it can be compromised.

3.2 Security for the KDC

Several researchers have addressed security of the controller nodes and/or the base station.
SIA (Przydatek et al., 2003) addresses the issue of compromised nodes by using statistical
techniques and interactive proofs, ensuring the aggregated result reported by the base station
is a good approximation to the true value, even if a small number of sensor nodes and the
aggregation node may have been compromised. However, the communication overhead
between sensor nodes and the base station is high. Other works have shown that some of
the statistical methods used are not resilient to a group of malicious sensor nodes, and the end
user should be aware of which statistical methods are easily cheated (Wagner, 2004). Another
way to protect results is to use a witness node mechanism (Zhu et al., 2003).
A different approach is to protect the base station location. Routing mechanisms to protect the
location and disguise the identity of the base station have been proposed (Deng et al., 2004).
Hop-by-hop re-encryption of each packet’s header and data fields is designed to change the
presentation of a packet so that it cannot be used to trace the direction toward or away from
the base station. Uniform rate control is advised so that traffic volume nearer the base station is
undifferentiated from traffic farther from the base station. Time decorrelation between packet
arrivals and departures further increases the difficulty of tracing packets.
However, ensuring that the authentication services are not hindered by a compromised or
broken controller node or base station presents different challengers. A simple approach is
to replicate the authentication services of the server so that any one of several servers can
perform authentication. However, this approach reduces the level of security; if one server is
compromised, security for every replicated server is compromised.

3.3 Limitations and concerns

When WSNs are deployed in battlefields or developed to monitor national security, they have
a likelihood of becoming the target of adversaries. In an open environment, an individual
server or an intermediate sensor node may not be completely and permanently trustworthy.
To make a key distribution protocol work in an environment where sensor nodes do not
trust an individual base station, an authentication scheme, which can be used with limited
resources and can reduce the requirement for trusting servers, needs to be found.
For performance reasons, sensors use small keys. However, small keys give an attacker a
greater opportunity to compromise a sensor node. Thus, small keys will require frequent
refreshing. Old keys can be used to generate new keys. But, if the old key is compromised
than the new key can easily be compromised. Many existing sensor protocols concentrate on
the initial key distribution but do not have a secure mechanism available to update the keys.
Keys in sensor networks are usually 64 bits in size, and they may become easily compromised.
Sensors that are short–lived may not require that cryptographic keys be updated, however any
sensors that exist for an extended amount of time will require updating of keys.
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4. Traditional reliable key establishment protocols

Many key establishment protocols assume that server is never compromised. In a
sensor environment, this may not be always true. A method alleviate the problem with
a compromised server compromising the entire system is to use multiple server key
establishment protocols. Boyd and Mathuria have produced a survey of key establishment
protocols using multiple servers (Boyd & Mathuria, 2003) in traditional networks. In their
survey, two multiple server protocols were listed: Gong’s multiple server protocol (Gong,
1993), and the Chen–Gollmann–Mitchell protocol (Chen et al., 1995). However, this survey
did not take into account the unique nature of a sensor environment. The main goals of using
multiple servers in a sensor network are:

• even if one or more servers become unavailable, it may be possible for the sensor nodes to
establish a session key.

• even if one or more servers are untrustworthy, the sensor nodes may still be able to
establish a good key.

Protocol 1 Gong’s simplified multi-server protocol

M1 A → B : A, B, NA, {A, B, x1, cc(x)}KA1
, . . . , {A, B, xn, cc(x)}KAn

M2 B → Si : A, B, NA, NB, {A, B, xi, cc(x)}KAi
, {B, A, yi, cc(y)}KBi

M3 Si → B : {B, NA, yi, cci(y)}KAi
, {A, NB, xi, cci(x)}KBi

M4 B → A : {B, NA, y1, cc1(y)}KA1
, . . . , {B, NA, yn, ccn(y)}KAn

, {NA}KAB
, NB

M5 A → B : {NB}KAB

A simplified version of Gong’s original multiple server protocol is described in (Boyd &
Mathuria, 2003). We describe this version as shown in Protocol 1. One of the main features
of this protocol is that the nodes, A and B, choose the keying material while the n servers,
S1, S2, . . . , Sn, act as key translation centers that allow keying material from one node to be
made available to the other. Initially A shares a long-term key KAi with each server Si, and
similarly B shares KBi with Si. Node A has split the key x into x1, x2, . . . , xn and node B has
split the key y into y1, y2, . . . , yn. The session key is defined as KAB = h(x, y) where h is a
one–way function. The protocol sends a total of 2n + 3 messages.
To prevent compromised servers from disrupting the protocol, A and B form a cross-checksum
for all the shares. The cross-checksum for x is shown in Equation (1).

cc(x) = (h(x1), h(x2), . . . , h(xn)) (1)

The cci(x) (should be equal to cc(x)) and cci(y) (should be equal to cc(y)) are the
cross–checksums returned by server Si. The node will give a credit point to the servers if
their cross–checksum values are the same as the values obtained from the majority of servers.
When all the checks are complete, B retains the value xj with the most credit points.
The major problem with this protocol is the size of the messages. The message sizes of M1 and
M4 in the Gong multi–server protocol are of O(n2). Message M5 is O(1), while M2 and M3
are of O(n). A message size of O(n2) is not desirable in a sensor network. Another problem is
that the size of the output of the one–way function will have to be reasonably large (otherwise
a malicious server can quickly calculate the possible values for x and y). So for small values
of n, the message sizes themselves will be very large for a sensor network.
The second multiple server protocol we consider is the Chen et al. multiple server protocol as
shown in Protocol 2. One of the main features of this protocol is that the servers, rather than
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the sensor nodes, choose the keying material. Both nodes employ a cross-checksum to decide
which servers have given valid inputs. The protocol sends a total of 2n + 4 messages.

Protocol 2 Chen-Gollmann-Mitchell multi-server protocol

M1 A → B : A, B, NA

M2 B → Si : A, B, NA, NB

M3 Si → B : {B, NA, Ki}KAi
, {A, NB, Ki}KBi

M4 B → A : {B, NA, K1, }KA1
, . . . , {B, NA, Kn}KAn

, ccB(1), . . . , ccB(n)
M5 A → B : ccA(1), . . . , ccA(n), {B, NB, N′

A}K′
AB

M6 B → A : {A, N′
A, NB}K′

AB

The cross-checksum used in this protocol is different from the one used in the Gong
multi–server protocol. The sensor node B calculates the ccB(i) as shown in Equation(2).

ccB(i) = {h(K1), h(K2), . . . , h(Kn)}Ki
, ∀i ∈ (1, . . . , n) (2)

To prevent A or B imposing the session key, the choice of h() is limited; for example, it cannot
be an exclusive–or–operation. If B doesn’t receive any message from server Sj then ccB(j) is
an error message, and h(Kj) is replaced by an error message in the calculation of the other
ccB(i) values. When A receives the checksums, A will first decrypt the values and compares
the values with its own calculations of the cross-checksums. The valid Ki secrets are retained
for the majority of i values and others are discarded. The session key KAB is defined to be the
hash of all the good Ki values concatenated, as shown in Equation (3).

KAB = h(Kj, . . . , Km) (3)

The messages M4 and M5 in the Chen et al. multi–server protocol have a computational
complexity of O(n2). While messages M2 and M3 have O(n), messages M1 and M6 have
O(1) computational complexity.
This protocol encounters similar problems as the Gong multi–server protocol with regard
to the size of the messages. Once again, several messages are of O(n2) in size. With the
cross–checksums containing the outputs of a one–way function where the inputs are key
values, once again the size of the output will need to be large. The cross-checksums in this
protocol are encrypted instead of only requiring a hash algorithm. However, the Chen et al.
multi–server protocol is considerably more efficient with regard to the size of the messages.
Another aspect of the multiple server protocols is the creation of the new key KAB. The
nodes A and B retrieve the new key by using a secret sharing mechanism such as the one
defined in (Shamir, 1979). Secret sharing is a mechanism allowing the owner of a secret to
distribute shares amongst a group. Individual shares or a small number of shares are no help
in recovering the secret. The n shares are distributed, such that any set of t (or more) shares
is sufficient to obtain the secret. The most well-known threshold scheme uses polynomial
interpolation.
When polynomial interpolation is used in cryptographic applications the field is typically Zp,
the field of integers modulo p, for some prime p. To share a secret s ∈ Zp in the (t, n) threshold
scheme, the dealer generates a polynomial of degree t − 1:

f (x) = a0 + a1x + · · ·+ at−1xt−1 (4)
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The coefficients are randomly chosen in Zp except for a0 = s. The shares are values of f (x)
with 1 ≤ x ≤ n. If t shares are known s can be recovered. For example, if f (1), f (2), . . . , f (t)
are known then:

s =
t

∑
i=1

f (i) ∏
i<j≤t

j

j − i
(5)

Given any t points on the polynomial (excluding the value of 0), the value for f (0) can be
obtained.
The time complexity to compute n shares is O(nt). The time complexity to recover a0 is
O(t log2 t) (Gong, 1993). Having such a scheme or similar scheme in a sensor node will
consume significant amount of resources in an already resource constrained environment.
The existing multiple server protocols are therefore not suitable for a sensor network
environment. An ideal solution with the desired characteristics requires innovative multiple
server protocols, specifically designed for the sensor environment.

5. Multiple server protocols for sensor environments

Three multiple server protocols have been developed specifically for the sensor environment
(Singh & Muthukkumarasamy, 2008). In this chapter we will label the three Multiple Server
Protocols (MSP) as Singh et al. MSP1, Singh et al. MSP2, and Singh et al. MSP3. The
multiple authentication server protocols Singh et al. have developed are based on the
concept of the Boyd four–pass protocol (Boyd & Mathuria, 2003). These will maintain similar
security characteristics as that of the centralized authentication protocol, as shown in the Boyd
four–pass protocol. Because of the severe resource constraints which exist in sensor nodes, a
multiple authentication server protocol should have low computational complexity in both
time and space. A multiple server authentication protocol in a sensor environment should
have the following characteristics:

• Small computation overhead,

• Minimal number of messages,

• Sensor nodes should not be relied upon to generate good randomness,

• The new key should be fresh,

• There should be key confirmation by both nodes.

The next several sections will go into detail about the three different sensor multiple server
protocols.

5.1 Singh et al. Multiple Server Protocol 1

The Singh et al. MSP1 is an efficient multiple server protocol specifies n servers. The protocol
has the following message flows. The sensor node A sends the first message, A, B, NA, to each
of the servers. Each server sends their message to both sensor nodes A and B. Sensor node B
sends NB, the keying data, and the cross–checksums created by B. It is important to note at
this stage that KS is unknown, so unlike the original protocol, B is not able to send [NA]KAB

.
When sensor node A receives the next message, it will calculate its own cross checksums, and
compare them against the cross–checksums created by B. At this stage, the keys KS and KAB

are created. Sensor node A sends its cross–checksums to B, so B can create KAB. The final
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message completes the key confirmation between A and B, as shown in Protocol 3 (Singh &
Muthukkumarasamy, 2006).
The Singh et al. MSP1 provides key authentication, key freshness and key confirmation, using
multiple authentication servers. In the Singh et al. MSP1 protocol, the following constructs
are used:

AUTHAi = [A, B, Ki]KASi

MASKAi = [[AUTHAi]]KASi

AUTHBi = [A, B, Ki]KBSi

MASKBi = [[AUTHBi]]KBSi

Protocol 3 Singh et al. MSP1

M1 A → Si : A, B, NA

M2 Si → B : NA, A, Si, AUTHBi, MASKBi ⊕ Ki

M2′ Si → A : Si, AUTHAi, MASKAi ⊕ Ki

M3 B → A : ccB(1), . . . , ccB(n), NB

M4 A → B : ccA(1), . . . , ccA(n), [NB]KAB

M5 B → A : [NA]KAB

Both of the sensor nodes and the servers contribute to the key value. The values NA and
NB are generated by A and B respectively as input to the MAC function, that determines the
session key. The key used with the MAC function is generated by the servers. Both A and B
compute the session key as KAB = [NA, NB]KS

. The nodes should have a minimum number of
servers returning valid results before confirming that the key is valid. Node B will calculate
ccB(i) ∀i ∈ 1, . . . , n.

ccB(i) =

{

[Ki]Ki
if valid,

EM otherwise
(6)

Where EM is an error message; an example will be the value zero. There is a remote chance
a valid case may be zero. If the valid value is zero, the server needs to be considered a
compromised server (even though it is not a malicious server).
Node A will calculate ccA(i), and compare it with ccB(i). If they are the same, then the server
Si is valid. Below is a way the nodes compare the cross checksum for ccA(i) and ccB(i).

ccA(i) =

{

ccB(i) = [Ki]Ki
if valid,

EM otherwise
(7)

After the comparison of the entire cross checksums, a set of valid keys V1, . . . , Vm should
remain. The creation of KS is defined as follows.

KS = V1 ⊕ . . . ⊕ Vm (8)

Where Vi is the ith valid key given by a server, and m is the total number of valid servers
t ≤ m ≤ n, where t is the minimal number of trusted servers. However, unlike the existing
multiple server protocols, the trusted servers will not be able to calculate KS. The calculated
ccA(i) values are returned to B, where B performs similar checks as A and calculates KS.
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5.1.1 Analysis of singh et al. MSP1

The Singh et al. MSP1 has a number of advantages, one of which is that the nodes do not
need good random number generators to create the nonces. The nodes could even safely
use a counter for their nonce values. Another advantage is that if a server or a number of
servers are unavailable, the authentication service itself still exists through the other servers.
The servers and the sensor nodes have different keys; even if one or more servers become
compromised, the authentication service or the security of the system is not compromised.
The protocol only encrypts random information. If the encryption cipher uses an IV value
(such as RC5 and SKIPJACK currently used in TinyOS (TinyOS, 2007)) then we can use a
constant IV value. However, the constant IV value chosen for Singh et al. MSP1 protocol
must only be used to encrypt the random data and should never be used to encrypt other
information. Also, a wide variation of different ciphers can safely be used.
Some MACs have vulnerabilities when the message sizes are variable. All of the message
sizes are of constant value, allowing us to safely use a wider range of MACs than previously
available. The size of the MACs can be lower than that of conventional protocols. The integrity
checking is performed by the sensor nodes. If x is the size of the MAC in bits, then an
adversary has 1 in 2x chance in blindly forging a valid MAC for a particular message. The
adversary should be able to succeed in 2x−1 tries. Because of the low bandwidth of sensor
nodes, a 4 byte MAC, requiring 231 packets, will take years to complete. If an adversary did
attempt this attack, the sensor node would be non–functional within that period. In addition,
an adversary will need to forge 2t MACs; t MACs to A and t MACs to B, and stop traffic from
the other base stations before they can determine the value of KAB.
In order to study the performance impacts of each of the multiple server protocols, we first
define the following symbols. The size of location indicator is a0, the nonce size is a1, the key
size is a2, the hash size is a3, and the number of servers is n. The following equations are used
to define how many bytes are sent for each message: M1i = 2a0 + a1, M2i = 2a0 + a1 + a2 + a3,
M2′i = a0 + a2 + a3, M3 = a1 + na3, M4 = (n + 1)a3, and M5 = a3. However, there are n
messages of type M1, M2 and M2′.

5.2 Singh et al. Multiple Server Protocol 2

The Singh et al. MSP1 protocol was investigated and extended further to reduce the large
number of messages sent through the WSN. Thereby the Singh et al. MSP2 was developed
as shown in Protocol 4. The assumption is made that the servers can communicate through a
different network, other than the low bandwidth WSN used by the sensor nodes. For instance,
the GNOME platform (GNOME, 2006) also has an Ethernet connection it can use as a high
speed backbone network to communicate with other GNOME machines. In the Singh et al.
MSP2 protocol, the sensor node A only sends one message to a server, denoted as S1. Server
S1 then gathers all the required information from the other servers through the server network
(rather than the sensor network). Server S1 concatenates the information and sends it to sensor
node B. The list of servers may either be a static list, known by the sensor nodes, or it may be
a list based on the trustworthiness of the servers.

5.2.1 Security analysis

If S1 becomes malicious, there are a number attacks that the server can try. The simplest
attack is a denial of service, where the server will not gather any extra information from other
servers, or doesn’t respond to the sensor node B. If sensor node A does not receive a response
from B in a required amount of time, then it should try S2.
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Protocol 4 Singh et al. MSP2 protocol

M1 A → S1 : A, B, NA

M2 S1 → Si : A, B
M3 Si → S1 : MASKBi, AUTHBi ⊕ Ki, MASKAi, AUTHAi ⊕ Ki

M4 S1 → B : S1, MASKB1, AUTHB1 ⊕ K1, . . . , Sn, MASKBn, AUTHBn ⊕ Kn, NA, A
M4′ S1 → A : MASKA1, AUTHA1 ⊕ K1, . . . , MASKAn, AUTHAn ⊕ Kn

M5 B → A : ccB(1), . . . , ccB(n), NB

M6 A → B : ccA(1), . . . , ccA(n), [NB]KAB

M7 B → A : [NA]KAB

Another possible attack S1 can try is to forge the MACs to create legitimate messages from the
other servers. As discussed earlier, it is unreasonable to assume a server can forge a message,
let alone 2t messages.
If there are t malicious servers, then S1 can contact those servers and not involve the trusted
servers. However, the Singh et al. MSP1 is also vulnerable to t malicious servers.
If contacting only one server is still a concern, then a higher level reputation based framework
(Ganeriwal & Srivastava, 2004) on top of existing authentication protocols to make sure the
nodes collaborate with only trustworthy base stations. Another solution is that A can send
the first message to p servers, where p < n, and each server is allocated servers from which
to obtain information (however, this will require more code and logic within the sensor
applications).

5.2.2 Cost/complexity analysis

The Singh et al. MSP2 decreases the number of packets sent by A. The following equations
are used to define how many bytes are sent for each message, M1 = 2a0 + a1, M2i = 2a0,
M3i = 2a2 + 2a3, M4 = a0 + a1 + na2 + na3, M4′ = na2 + na3, M5 = a1 + na3, M6 = (n+ 1)a3,
and M7 = a3.
Although the Singh et al. MSP2 decreased the number of messages sent by A, it is not as
reliable as Singh et al. MSP1. If S1 is down, either A will need to detect this and try S2, or S1

itself will need to be a clustered system. The drawback of a true replicated clustered system
is that it is more likely that the system can be compromised, since there are more machines
available for an adversary to attack. Another problem if S1 becomes malicious is that it may
not return any information from the other servers. Once again, A can try other servers.

5.3 Singh et al. Multiple Server Protocol 3

The third multiple server protocol is the Singh et al. MSP3. The third protocol was designed
for the case where if the key KS becomes compromised, and the long–term keys KAS and KBS

have not changed. The key KS is important because it can be used in the future to create or
renew a session key between A and B. The multiple server scenarios have strengthened the
security between the nodes and the KDC. Compromised keys between a node and one (or
more) servers, does not affect the security of the protocol. An adversary can replay previous
(portion of) messages to force the sensor nodes to use the same KS as before.
The Singh et al. MSP3 protocol was designed to remove this problem. The advantage of the
Singh et al. MSP3 over Singh et al. MSP2 is that if KS is ever compromised and the long term
keys KAS and KBS have not changed, then the protocol can be run again safely. The calculation
for AUTH was also done so that a replay attack is not possible.
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AUTHAi = [A, B, NA, NB]KAi

AUTHBi = [A, B, NA, NB]KBi

Protocol 5 Singh et al. MSP3

M1 A → B : A, NA

M2 B → S1 : A, B, NA, NB

M3 S1 → Si : A, B, NA, NB

M4 Si → S1 : AUTHBi, MASKBi ⊕ Ki, AUTHAi, MASKAi ⊕ Ki

M5 S1 → B : AUTHB1, MASKB1 ⊕ K1, . . . , AUTHBn, MASKBn ⊕ Kn

M5′ S1 → A : AUTHA1, MASKA1 ⊕ K1, . . . , AUTHAn, MASKAn ⊕ Kn

M6 B → A : ccB(1), . . . , ccB(n), NB

M7 A → B : ccA(1), . . . , ccA(n), [NB]KAB

M8 B → A : [NA]KAB

The Singh et al. MSP3 has one more message than Singh et al. MSP2, however, Singh et al.
MSP2 has a larger message. This is because of the need to send A and NA in M4, whereas
in Singh et al. MSP3 the message M5 does not need to send this extra information. The
maximum size message in Singh et al. MSP2 can be decreased if another message M1′ is sent
as shown in Equation (9).

A → B : A, NA (9)

5.4 Performance analysis

When looking at authentication algorithms, a number of different aspects need to be taken into
consideration. Apart from the security properties, such as key establishment, key freshness,
and key confirmation, a number of performance aspects should also be looked at. In the
past, symmetric key algorithm performance was categorized by the number of messages
and the number of rounds. However, in sensor networks these are not true indicators of
the performance of an algorithm. Other measures such as computational costs, number of
bytes and packets sent and received, the amount of memory consumed are also important in
a sensor environment.
The computational costs to the scheme arises because of the encryption, decryption and
integrity checking of the keys generated by the servers. There is also the generation of the KAB

by both A and B. An inefficient aspect of the Boyd four–pass protocol is the need to decrypt the
message before the integrity check is done. The protocols have a similar restriction if bits were
changed in the MASK then it will not be known until both MASK and AUTH were calculated.
Bogus messages injected by a third party cannot be detected using any computationally
efficient methods. The Bellare–Rogaway uses the encrypted messages when performing the
integrity check, rather than the decrypted message. A very simple modification to the Boyd
four–pass protocol removes this minor limitation, as shown in the Protocol 6.

Protocol 6 Boyd protocol integrity change

M1 A → S : A, B, NA

M2 S → B : [[KS]]KAS
, [A, B, [[KS]]KAS

], [[KS]]KBS
, [A, B, [[KS]]KBS

]KBS
, NA, A

M3 B → A : [[KS]]KAS
, [A, B, [[KS]]KAS

]KAS
, [NA]KAB

, NB

M4 A → B : [NB]KAB

The size of the messages does not change, and there is the added benefit of the integrity check
performed before the decryption of the message. This technique was also extended to be used
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in Singh et al. protocols (however, encryption algorithms are then required to be implemented
on the sensor nodes). However, it has been shown that the communication costs are almost
an order of magnitude more than the computational costs in security systems (Perrig et al.,
2001).
The communication costs will be heavily dependent on the topology of the network. Also,
different protocols have different communication overheads for the sensor nodes, and the
servers. The communication overheads of the different protocol is examined in detail in
Section 6.

6. Comparison

We now compare Singh et al. protocols with the Chen et al. protocol and the Gong protocol.
The computational complexity of the existing multiple server protocols is greater since the
key is constructed using a key–sharing mechanism. This has two major drawbacks in a sensor
network environment. The first is the amount of extra code (and therefore memory overhead)
needed when creating the new key. The second is the additional computation (and therefore
extra energy) required when creating the new key. If we use a threshold scheme such as
Shamir’s scheme (Shamir, 1979) to recover the key, the computational complexity will be
O(t log2 t). Whereas Singh et al. protocols use a simple exclusive–or function (as describe
in Equation (8)) to recover the key, which has a computational complexity of only O(n). Not
only does this save on computational cost, but also has the added benefit of requiring less
code than a full–blown key–sharing threshold scheme. The advantage of using a full–blown
key–share threshold scheme, is that t servers can calculate the new session key between A and
B if they are the only servers involved in the protocol. However, for performance reasons we
have not placed the same restriction on Singh et al. multiple server protocols.
Another comparison is the communication cost of Singh et al. protocols compared with the
Chen et al. and Gong protocols. For simplicity, we will assume that the output of the one–way
function used to calculate the cross–checksums in the existing multiple server protocols is the
same size as the integrity function used in Singh et al. protocols. Although, as described
earlier, for security reasons the one–way function in the existing multiple server protocols
will need to be larger.
We will compare the total number of bytes sent by sensor node A for each of the existing
multiple server protocols, and Singh et al. MSP1 and Singh et al. MSP2. However, similar
calculations as the ones shown here can be used to calculate the impact on the base stations
and sensor B.
The total number of bytes sent by sensor A in the Gong multi–server protocol is n2a3 + 2na0 +
na2 + 2a0 + 2a1 + a3, which has a complexity of O(n2). The number of bytes sent by sensor A
in the Chen et al. multi–server protocol is n2a3 + na3 + 3a0 + 3a1 + a3. The above two cases
have a complexity of O(n2). However, the number of bytes sent by sensor A in Singh et al.
MSP1 and Singh et al. MSP2 are 2na0 + na1 + (n + 1)a3 and 2a0 + a1 + (n + 1)a3, respectively.
Both of these messages have a complexity of O(n).
Figure 2 compares the total number of bits sent out in the entire network, relative to the
number of servers used. The Gong protocol is the most expensive, followed by the Chen
protocol. Also, the protocols consider for this graph send all their messages over the sensor
network, rather than sending some of the messages over a faster backbone network.
The existing multiple server protocols have message sizes of size O(n2), whereas Singh et al.
protocols are O(n). It should be noted that the existing multiple server protocols do have
added functionality, where the trusted servers are able to calculate the key KAB. However, for
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Fig. 2. Total Number of bits sent by different Protocols

performance reasons we have not placed the same restriction on Singh et al. multiple server
protocols.
Table 2 describes the costs of the Singh et al. MSP1, where n is the number of servers. The table
shows that in the protocol sensor node A transmits the most amount of messages. However,
even though sensor node B only transmits two messages, the size of one of its messages is
based on the number of servers. Hence, the number of bits sent by sensor node B is similar
to the number of bits sent by sensor node A. The messages and size of messages transmitted
by a server Si is constant and independent on the number of servers in the protocol. The
number of messages received and the number of bits received is very similar when comparing
sensor node A and sensor node B. The message and number of bits received by a server Si is
insignificant compared to all the other messages.

Node A B S1 Si

Msgs Tx n + 1 2 2 2

Msgs Rx n + 2 n + 1 1 1

Bits Tx 72n + 32 32n + 40 248 248
Bits Rx 144n + 40 168n + 32 40 40

Table 2. Performance Figures for Singh et al. MSP1

Table 3 describes the costs of the Singh et al. MSP2, where n is the number of servers. The table
shows that in the protocol the server S1 transmits the most amount of messages. However,
even though sensor nodes A and B only transmits several messages, some of their message
sizes is based on the number of servers. Hence, the number of bits sent by sensor nodes A
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and B is still linear. The messages and size of messages transmitted by a server Si (except
S1) is constant and independent on the number of servers in the protocol. The number of
messages received and the number of bits received is very similar when comparing sensor
node A and sensor node B. The message and number of bits received by a server Si (except
S1) is insignificant compared to all the other messages. The number of bits received by S1 is
linear in nature.

Node A B S1 Si

Msgs Tx 2 2 n + 1 1
Msgs Rx 3 2 n 1

Bits Tx 32n + 72 32n + 40 232n − 40 192
Bits Rx 128n + 40 128n + 56 192n − 152 40

Table 3. Performance Figures for Singh et al. MSP2

Table 4 describes the costs of the Singh et al. MSP3, where n is the number of servers.
The protocol has many of the same features as Singh et al. MSP2. For instance, the server
S1 transmits the most amount of messages. The sensor nodes A and B only transmits
several messages, some of their message sizes is based on the number of servers. Hence,
the number of bits sent by sensor nodes A and B is still linear. However, the message sizes
are slightly larger when compared against the previous protocol because of the extra security.
The messages and size of messages transmitted by a server Si (except S1) is constant and
independent on the number of servers in the protocol. The number of messages received and
the number of bits received is very similar when comparing sensor node A and sensor node
B. As in the previous protocol, the message and number of bits received by a server Si (except
S1) is insignificant, however, it is slightly larger when compared to the previous protocol. As
in the previous protocol, the number of bits received by S1 is linear in nature.

Node A B S1 Si

Msgs Tx 2 3 n + 1 1

Msgs Rx 3 3 n 1
Bits Tx 32n + 72 32n + 88 240n − 48 192

Bits Rx 128n + 40 128n + 72 192n − 144 48

Table 4. Performance Figures for Singh et al. MSP3

The Singh et al. MSP1 puts a larger emphasis on communication costs on sensor node A. The
other two protocols put greater emphasis on the server nodes. The extra message in Singh et
al. MSP3 does not affect sensor node A, and for a large number of servers it is insignificant.
The number of cryptographic operations performed by each node in the three protocols shown
in the table, is the same for each of the protocols. The number of AUTH calculations is 2n + 4
for both A and B. The number of MASK calculations is 2n for both A and B. For Si the
number of AUTH and MASK calculations is two. The only nodes that need to create good
random numbers are each of the servers Si and they only create one for each run through of
the protocol. Both NA and NB can be a simple counter.
Another comparison is the number of packets sent by each of Singh et al. multiple server
protocols, as shown in Figure 3. The comparison is done over two different network
topologies. The servers either communicate over the sensor network or they have a separate
network to communicate over. The Singh et al. MSP1 has the same cost over both network
topologies, since every message interacts with a sensor node, and the servers do not need to
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communicate with one another. Because of the larger number of messages sent by the Singh et
al. MSP2 and Singh et al. MSP3, it is natural for the number of packets to be more than Singh
et al. MSP1, when all the messages have to be sent on the same sensor network. As the number
of servers increases, the difference (when on the same network) between Singh et al. MSP1
and the other two protocols does not dramatically increase. The other two protocols have the
advantage of concatenating messages, which the original multiple server protocol does not
have. If the servers can communicate over a different network, the number of packets sent
by Singh et al. MSP2 and Singh et al. MSP3 stay very close to one another, and sometimes
they are the same. This is because of the first protocol having larger message sizes, and the
messages need to be segmented sooner than they do in the other protocol. The number of
packets sent on the energy–constrained sensor network is significantly larger if using Singh et
al. MSP1, when the servers are on different networks.
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TinyOS has a seven byte overhead when sending a single packet. When comparing the bits
sent by each of the protocols, we included the packet overhead. We once again cover the case
of two network topologies, as shown in Figure 4. The Singh et al. MSP1 has the same cost
over both networks. When comparing the protocols, if the servers can communicate over a
different network, there is virtually no difference between Singh et al. MSP2 and Singh et
al. MSP3. However, the extra overhead of sending data to the server S1, which then sends
the same data down to the sensor nodes, causes both protocols to have significantly more
overhead when run over the same network.
Table 5 compares the existing multiple server protocols with some of Singh et al. protocols. In
the table we look at the protocol reliability, and compare the protocols when the servers use
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the WSN or a different network. We also evaluate the robustness of the protocols based on
security attacks in any environment.

Properties of the Protocol
Protocol Protocol Efficiency Efficiency Security

Reliability of WSN of multi–tiered
Gong Excellent Bad Bad Excellent
Chen et al. Excellent Bad Bad Excellent
Singh et al. MSP1 Excellent Good Average Good
Singh et al. MSP2 Average Average Excellent Good
Singh et al. MSP3 Average Average Excellent Excellent

Table 5. Comparison of Multiple Server Protocols

After the detailed analysis of the protocols and the comparison with existing protocols,
we conclude that Singh et al. MSP1 should be used in situations where the environment
is concerned with reliability. If reliability isn’t a major concern and if the servers can
communicate over a different network then Singh et al. MSP2 should be used. If the
environment is not multi–tiered then the most reliable protocol (Singh et al. MSP1) is also
the most efficient. If concerned about the security of KS then Singh et al. MSP3 should be
used. In a complex environment the need for reliability and security puts extra costs on the
protocols.
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7. Conclusions

Key establishment protocols, without the assumption of trusting an individual authentication
server, are needed in sensor environments where clients cannot trust individual servers. We
examined the existing multiple server protocols developed for traditional networks, and
investigated the problems using those protocols for WSNs. We then three multiple server
protocols for sensor networks and a complex sensor system containing multi–tiered networks,
and provided a detailed analysis and comparison of each the protocols.
The multiple server protocols designed for a sensor environment removed the requirement
for the servers to know the keys between each of the sensor nodes, and thus helping to limit
the message sizes to O(n). The protocols have the added benefit of not solely relying on the
sensor nodes to generate cryptographically sound pseudo–random numbers, but still using
information from each of the sensors to generate the new key. We have shown that our
protocols are flexible enough for them to be used with almost any cryptographic primitive
and in a range of environments.
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