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1. Introduction 
Two different approaches to the mobile robot localization problem exist: relative and 
absolute. The first one is based on the data provided by sensors measuring the dynamics of 
variables internal to the vehicle; absolute localization requires sensors measuring some 
parameters of the environment in which the robot is operating. If the environment is only 
partially known, the construction of appropriate ambient maps is also required. The actual 
trend is to exploit the complementary nature of these two kinds of sensorial information to 
improve the precision of the localization procedure (see e.g. (Bemporad et al., 2000; Bonci et 
al., 2004; Borenstein et al., 1997; Durrant-Whyte, 1988; Gu et al., 2002; Ippoliti et al., 2004)) at 
expense of an increased cost and computational complexity. The aim is to improve the 
mobile robot autonomy by enhancing its capability of localization with respect to the 
surrounding environment. 
In this framework the research interests have been focused on multi-sensor systems because 
of the limitations inherent any single sensory device that can only supply partial 
information on the environment, thus limiting the ability of the robot to localize itself. The 
methods and algorithms proposed in the literature for an efficient integration of multiple-
sensor information differ according to the a priori information on the environment, which 
may be almost known and static, or almost unknown and dynamic. 
In this chapter both relative and absolute approaches of mobile robot localization are 

investigated and compared. With reference to relative localization, the purpose of this 
chapter is to propose and to compare three different algorithms for the mobile robot 
localization only using internal sensors like odometers and gyroscopes. The measurement 
systems for mobile robot localization only based on relative or dead-reckoning methods, 
such as encoders and gyroscopes, have the considerable advantage of being totally self-
contained inside the robot, relatively simple to use and able to guarantee a high data rate. A 
drawback of these systems is that they integrate the relative increments and the localization 
errors may considerably grow over time if appropriate sensor-fusion algorithms are not 
used (De Cecco, 2003). Here, different methods are analysed and tested. The best 
performance has been obtained in the stochastic framework where the localization problem 
has been formulated as a state estimation problem and the Extended Kalman Filtering (EKF) 

Source: Mobile Robots: Perception & Navigation, Book edited by: Sascha Kolski, ISBN 3-86611-283-1, pp. 704, February 2007, Plv/ARS, Germany
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216 Mobile Robots, Perception & Navigation 

is used. The EKF fuses together odometric and gyroscopic data. A difference with respect to 
other EKF based techniques is that the approach followed here derives the dynamical 
equation of the state-space form from the kinematic model of the robot, while the measure 
equation is derived from the numerical integration equations of the encoder increments. 
This allows to fuse together all the available informative content which is carried both by the 
robot dynamics and by the acquired measures. 
As previously mentioned, any relative localization algorithm is affected by a continuous 
growth in the integrated measurement error. This inconvenience can be reduced by 
periodically correcting the internal measures with the data provided by absolute sensors 
like sonar, laser, GPS, vision systems (Jarvis, 1992; Talluri & Aggarwal, 1992; Zhuang & 
Tranquilla, 1995; Mar & Leu, 1996; Arras et al., 2000; Yi et al., 2000; Panzieri et al., 2002). To 
this purpose, a localization algorithm based on a measure apparatus composed of a set of 
proprioceptive and exteroceptive sensors, is here proposed and evaluated. The fusion of 
internal and external sensor data is again realized through a suitably defined EKF driven by 
encoder, gyroscope and laser measures. 
The developed algorithms provide efficient solutions to the localization problem, where 

their appealing features are: 

• The possibility of collecting all the available information and uncertainties of a 
different kind into a meaningful state-space representation, 

• The recursive structure of the solution, 

• The modest computational effort. 
Significant experimental results of all proposed algorithms are presented here, and their 
comparison concludes this chapter. 

2. The sensors equipment 

In this section the considered sensor devices are introduced and characterized. 

2.1 Odometric measures 

Consider a unicycle-like mobile robot with two driving wheels, mounted on the left and right 
sides of the robot, with their common axis passing through the center of the robot (see Fig. 1). 

 
Fig. 1. The scheme of the unicycle robot. 
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Localization of this mobile robot in a two-dimensional space requires the knowledge of 
coordinates x  and y  of the midpoint between the two driving wheels and of the angle θ  

between the main axis of the robot and the X -direction. The kinematic model of the 
unicycle robot is described by the following equations: 

 ( ) ( ) ( )cosx t t tν θ=&  (1) 

 ( ) ( ) ( )siny t t tν θ=&  (2) 

 ( ) ( )t tθ ω=&  (3) 

where ( )tν  and ( )tω  are, respectively, the displacement velocity and the angular velocity 

of the robot and are expressed by: 

 ( )
( ) ( )
2

r lt t
t r

ω ω
ν

+
=  (4) 

 ( )
( ) ( )r lt t

t r
d

ω ω
ω

−
=  (5) 

where ( )r tω  and ( )l tω  are the angular velocities of the right and left wheels, respectively, 

r  is the wheel radius and d  s the distance between the wheels. 

Assuming constant ( )r tω  and ( )l tω  over a sufficiently small sampling period 
1:k k kt t t+Δ = − , 

the position and orientation of the robot at time instant 1kt +  can be expressed as: 

 
( ) ( ) ( )

( )

( )
( )

( )
1

sin
2 cos

2

2

k k

k k

k k k k k

k k

t t
t t

x t x t t t t
t t

ω
ω

ν θ
ω+

Δ
Δ⎛ ⎞

= + Δ +⎜ ⎟Δ ⎝ ⎠

 (6) 

 
( ) ( ) ( )

( )

( )
( )

( )
1

sin
2 sin

2

2

k k

k k

k k k k k

k k

t t
t t

y t y t t t t
t t

ω
ω

ν θ
ω+

Δ
Δ⎛ ⎞

= + Δ +⎜ ⎟Δ ⎝ ⎠

 (7) 

 ( ) ( ) ( )1k k k kt t t tθ θ ω+ = + Δ  (8) 

where ( )k kt tν Δ  and ( )k kt tω Δ  are: 

 ( )
( ) ( )

2

r k l k

k k

q t q t
t t rν

Δ + Δ
Δ =  (9) 

 ( )
( ) ( )

.r k l k

k k

q t q t
t t r

d
ω

Δ − Δ
Δ =  (10) 

The terms ( )r kq tΔ  and ( )l kq tΔ  are the incremental distances covered on the interval 
ktΔ  by 

the right and left wheels of the robot respectively. Denote by ( )r k
y t  and ( )l ky t  the measures 

of ( )r kq tΔ  and ( )l kq tΔ  respectively, provided by the encoders attached to wheels, one has 

 ( ) ( ) ( )r k r k r ky t q t s t= Δ +  (11) 

 ( ) ( ) ( )l k l k l k
y t q t s t= Δ +  (12) 

where ( )rs ⋅  and ( )ls ⋅  are the measurement errors, which are modelled as independent, 
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218 Mobile Robots, Perception & Navigation 

zero mean, gaussian white sequences  (Wang, 1988). It 
follows that the really available values  ( )ky tν

 and  ( )ky tω
 of ( )k kt tν Δ  and ( )k kt tω Δ  

respectively are given by: 

 ( )
( ) ( )

( ) ( )
2

r k l k

k k k k

y t y t
y t r t t tν νν η

+
= = Δ +  (13) 

 ( )
( ) ( )

( ) ( )
2

r k l k

k k k k

y t y t
y t r t t tω ωω η

−
= = Δ +  (14) 

where ( )νη ⋅  and ( )ωη ⋅  are independent, zero mean, gaussian white sequences 

, where, by (9) and (10),  ( )2 2 2 2 4r l rνσ σ σ= +  and 

( )2 2 2 2 2

r l r dωσ σ σ= + . 

2.2 The Fiber optic gyroscope measures 

The operative principle of a Fiber Optic Gyroscope (FOG) is based on the Sagnac effect. The 
FOG is made of a fiber optic loop, fiber optic components, a photo-detector and a 
semiconductor laser. The phase difference of the two light beams traveling in opposite 
directions around the fiber optic loop is proportional to the rate of rotation of the fiber optic 
loop. The rate information is internally integrated to provide the absolute measurements of 
orientation. A FOG does not require frequent maintenance and have a longer lifetime of the 
conventional mechanical gyroscopes. In a FOG the drift is also low. A complete analysis of 
the accuracy and performances of this internal sensor has been developed in (Killian, 1994; 
Borenstein & Feng, 1996; Zhu et al., 2000; Chung et al., 2001). This internal sensor represents 
a simple low cost solution for producing accurate pose estimation of a mobile robot. The 
FOG readings are denoted by ( ) ( ) ( )gyθ θθ η⋅ = ⋅ + ⋅ , where ( )gθ ⋅  is the true value and ( )θη ⋅  is 

an independent, zero mean, gaussian white sequence . 

2.3 Laser scanner measures 

The distance readings by the Laser Measurement System (LMS) are related to the in-door 
environment model and to the configuration of the mobile robot. 
Denote with l  the distance between the center of the laser scanner and the origin O′  of the 

coordinate system ( ), ,O X Y′ ′ ′  fixed to the mobile robot, as reported in Fig. 2. 

 
Fig. 2. Laser scanner displacement. 
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At the sampling time 
kt , the position 

sx , 
sy  and orientation 

sθ  of the center of the laser 

scanner, referred to the inertial coordinate system ( ), ,O X Y , have the following form: 

 ( ) ( ) ( )coss k k kx t x t l tθ= +  (15) 

 ( ) ( ) ( )sins k k ky t y t l tθ= +  (16) 

 ( ) ( )s k kt tθ θ=  (17) 

The walls and the obstacles in an in-door environment are represented by a proper set of 

planes orthogonal to the plane XY  of the inertial coordinate system. Each plane jP , 

{ }1,2, , pj n∈ K  (where 
pn  is the number of planes which describe the indoor environment), 

is represented by the triplet j

rP , j

nP  and jPν
, where j

rP  is the normal distance of the plane 

from the origin O , j

nP  is the angle between the normal line to the plane and the X -direction 

and jPν
 is a binary variable, { }1,1jPν ∈ − , which defines the face of the plane reflecting the 

laser beam. In such a notation, the expectation of the i -th ( )1,2, , si n= K  laser reading 

( )j

i kd t , relative to the present distance of the center of the laser scanner from the plane jP , 

has the following expression (see Fig. 3): 

 ( )
( ) ( )( )cos sin

cos

j j j j

r s k n s k nj

i k j

i

P P x t P y t P
d t

ν

θ

− −
=  (18) 

where 
 j j

i n iPθ θ ∗= −  (19) 

with [ ]0 1,iθ θ θ∗ ∈  given by (see Fig. 4): 

 .
2

i s i

π
θ θ θ∗ = + −  (20) 

The vector composed of geometric parameters j

rP , j

nP  and jPν
, { }1,2, , pj n∈ K , is denoted by ∏ . 

 
Fig. 3. Laser scanner measure. 
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Fig. 4. Laser scanner field of view for plane jP . 

The laser readings ( )j
i

kd
y t  are denoted by ( ) ( ) ( )j

i

j

i id
y d η⋅ = ⋅ + ⋅ , where ( )j

id ⋅  is the true value 

expressed by (18) and ( )iη ⋅  is an independent, zero mean, gaussian white sequence 

. 

3. Relative approaches for mobile robot localization 

The purpose of this section is to propose and to compare three different algorithms for the mobile 
robot localization only using internal sensors like odometers and gyroscopes. The first method 
(Algorithm 1) is the simplest one and is merely based on a numerical integration of the raw 
encoder data; the second method (Algorithm 2) replaces the gyroscopic data into the equations 
providing the numerical integration of the increments provided by the encoders. The third 
method (Algorithm 3) operates in a stochastic framework where the uncertainty originates by the 
measurement noise and by the robot model inaccuracies. In this context the right approach is to 
formulate the localization problem as a state estimation problem and the appropriate tool is the 
EKF (see e.g. (Barshan & Durrant-Whyte, 1995; Garcia et al., 1995; Kobayashi et al., 1995; Jetto et al., 
1999; Sukkarieh et al., 1999; Roumeliotis & Bekey, 2000; Antoniali & Oriolo, 2001; Dissanayake et 
al., 2001)). Hence, Algorithm 3 is a suitably defined EKF fusing together odometric and gyroscopic 
data. In the developed solution, the dynamical equation of the state-space form of the robot 
kinematic model, has been considered. The numerical integration equations of the encoder 
increments have been considered for deriving the measure equation. This allows to fuse together 
all the available informative content which is carried both by the robot dynamics and by the 
acquired measures. 

3.1 Algorithm 1 

Equations (6)-(8) have been used to estimate the position and orientation of the mobile robot 
at time 

1kt +
 replacing the true values of ( )k k

t tν Δ  and ( )k kt tω Δ  with their measures ( )ky tν
 

and ( )ky tω
 respectively, provided by the encoders. An analysis of the accuracy of this 
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estimation procedure has been developed in (Wang, 1988; Martinelli, 2002), where it is 
shown that the incremental errors on the encoder readings especially affect the estimate of 
the orientation ( )ktθ  and reduce its applicability to short trajectories. 

3.2 Algorithm 2 

This algorithm is based on the ascertainment that the angular measure ( )ky tθ
 provided by 

the FOG is much more reliable than the orientation estimate obtainable with Algorithm 1. 
Hence, at each time instant, Algorithm 2 provides an estimate of the robot position and 
orientation ( ) ( ) ( )1 1 1, ,k k kx t y t y tθ+ + +⎡ ⎤⎣ ⎦ , where ( )1ky tθ +

 is the FOG reading, ( )1kx t +
 and ( )1ky t +

 

are computed through equations (6), (7), replacing ( )k kt tν Δ  with its measure ( )ky tν
, ( )ktθ  

with ( )ky tθ
 and ( )k kt tω Δ  with ( ) ( )1k ky t y tθ θ+ − . 

3.3 Algorithm 3 

This algorithm operates in a stochastic framework exploiting the same measures of 
Algorithm 2. A state-space approach is adopted with the purpose of defining a more 
general method merging the information carried by the kinematic model with that 
provided by the sensor equipment. The estimation algorithm is an EKF defined on the 
basis of a state equation derived from (1)-(3) and of a measure equation inglobing the 
incremental measures of the encoders ( )ky tν

 and the angular measure of the gyroscope 

( )ky tθ
. This is a difference with respect to other existing EKF based approaches, 

(Barshan & Durrant-Whyte, 1995; Kobayashi et al., 1995; Sukkarieh et al., 1999; 
Roumeliotis & Bekey, 2000; Antoniali & Oriolo, 2001; Dissanayake et al., 2001b), where 
equations (1)-(3) are not exploited and the dynamical equation of the state-space model 
is derived from the numerical integration of the encoder measures. 

Denote with ( ) ( ) ( ) ( ): , ,
T

X t x t y t tθ= ⎡ ⎤⎣ ⎦  the true robot state and with ( ) ( ) ( ): ,
T

U t t tν ω= ⎡ ⎤⎣ ⎦  the 

robot control input. For future manipulations it is convenient to partition ( )X t  as 

( ) ( ) ( )1: ,
T

X t X t tθ= ⎡ ⎤⎣ ⎦ , with ( ) ( ) ( )1 : ,
T

X t x t y t= ⎡ ⎤⎣ ⎦ . The kinematic model of the robot can be 

written in the compact form of the following stochastic differential equation 

 ( ) ( ) ( )( ) ( ),dX t F X t U t dt d tη= +  (21) 

where ( ) ( )( ),F X t U t  represents the set of equations (1)-(3) and ( )tη  is a Wiener process 

such that ( ) ( )( )TE d t d t Qdtη η = . Its weak mean square derivative ( )d t dtη  is a white noise 

process  representing the model inaccuracies (parameter uncertainties, slippage, 
dragging). It is assumed that 2

3
Q Iησ= , where 

nI  denote the n n×  identity matrix. The 

diagonal form of Q  understands the hypothesis that model (21) describes the true dynamics 

of the three state variables with nearly the same degree of approximation and with 
independent errors. 

Let 
kt TΔ =  be the constant sampling period and denote 

kt  by kT , assume 
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222 Mobile Robots, Perception & Navigation 

( ) ( ) ( ):U t U kT U k= = , for ( ), 1t kT k T∈ +⎡ ⎤⎣ ⎦  and denote by ( )X k  and by ( )ˆ ,X k k  the 

current state and its filtered estimate respectively at time instant 
kt kT= . Linearization 

of (15) about ( )1U k −  and ( )ˆ ,X k k  and subsequent discretization with period T  results 

in the following equation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 dX k A k X k L k U k D k W k+ = + + +  (22) 

Partitioning vectors and matrices on the right hand side of equation (22) according to the 
partition of the state vector one has 

 ( ) ( )( )
( ) ( )

( ) ( )
( )

( )
( )

( )
( )
( )

1,1 1,2 1 1

2 22,1 2,2

exp , ,
d d

d d

d

A k A k L k D k
A k A k T L k D k

L k D kA k A k

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (23) 

 
( )

( ) ( )( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
ˆ ,

1

ˆ0 0 1 sin ,
,

ˆ: 0 0 1 cos ,

0 0 0
X t X k k

U t U k

k k k
F X t U t

A k k k k
X t

ν θ

ν θ
=

= −

⎡ ⎤− −
⎢ ⎥⎡ ⎤∂

= = −⎢ ⎥⎢ ⎥
∂⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

 (24) 

 ( ) ( )
( ) ( )

( ) ( )
1,1 2 1,2

ˆ1 sin ,1 0
: ,

ˆ0 1 1 cos ,
d d

k k k T
A k I A k

k k k T

ν θ

ν θ

⎡ ⎤− −⎡ ⎤
= = = ⎢ ⎥⎢ ⎥

−⎣ ⎦ ⎢ ⎥⎣ ⎦

 (25) 

 ( ) [ ] ( )2,1 2,20 0 , 1
d d

A k A k= =  (26) 

 ( )
( ) ( ) ( )

( ) ( ) ( )
( ) [ ]

2

1 22

ˆ ˆcos , 0.5 1 sin ,
, 0

ˆ ˆsin , 0.5 1 cos ,

T k k k T k k
L k L k T

T k k k T k k

θ ν θ

θ ν θ

⎡ ⎤− −
= =⎢ ⎥

−⎢ ⎥⎣ ⎦

 (27) 

 ( )
( ) ( ) ( )

( ) ( ) ( )
( )1 2

ˆ ˆ1 , sin ,
, 0

ˆ ˆ1 , cos ,

T k k k k k
D k D k

T k k k k k

ν θ θ

ν θ θ

⎡ ⎤−
= =⎢ ⎥

− −⎢ ⎥⎣ ⎦

 (28) 

 ( ) ( ) ( )( ) ( )
( )
( )

( )1
1

2

: exp 1

k T

kT

W k
W k A k k zT d

W k
τ η τ τ

+ ⎡ ⎤
= + − =⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
∫  (29) 

with ( ) 2

1W k ∈ℜ , ( ) 1

2W k ∈ℜ , 0,1,2,...k = . 

The integral term ( )W k  given (29) has to be intended as a stochastic Wiener integral, its 

covariance matrix is ( ) ( ) ( ) ( ) ( )2:
T

dE W k W k Q k k Q kησ⎡ ⎤ = =⎣ ⎦
, where 

 ( )
( ) ( )
( ) ( )

1,1 1,2

2,1 2,2

Q k Q k
Q k

Q k Q k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (30) 

 
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 3
2 2 2

1,1 3 3
2 2 2

ˆ ˆ ˆ1 sin , 1 cos , sin ,
3 3

ˆ ˆ ˆ1 cos , sin , 1 cos ,
3 3

T T
T k k k k k k k k

Q k
T T

k k k k k T k k k

ν θ ν θ θ

ν θ θ ν θ

⎡ ⎤
+ − − −⎢ ⎥

= ⎢ ⎥
⎢ ⎥
− − + −⎢ ⎥⎣ ⎦

 (31) 
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( )

( ) ( )

( ) ( )
( ) ( ) ( )

2

1,2 2,1 1,2 2,22

ˆ1 sin ,
2

, , .

ˆ1 cos ,
2

T

T
k k k

Q k Q k Q k Q k T
T

k k k

ν θ

ν θ

⎡ ⎤
− −⎢ ⎥

= = =⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

 (32) 

Denote by ( ) ( ) ( )1 2,
T

Z k z k z k= ⎡ ⎤⎣ ⎦  the measurement vector at time instant kT , the elements of 

( )Z k  are: ( ) ( )1 k
z k y tν≡ , ( ) ( )2 k

z k y tθ≡ , where ( )ky tν
 is the measure related to the 

increments provided by the encoders through equations (9) and (13), ( )ky tθ
 is the angular 

measure provided by the FOG. The observation noise ( ) ( ) ( ),
T

V k k kν θη η= ⎡ ⎤⎣ ⎦  is a white 

sequence  where 2 2diag ,R ν θσ σ⎡ ⎤= ⎣ ⎦ . The diagonal form of R  follows by the 

independence of the encoder and FOG measures. As previously mentioned, the measure 

( )2
z k  provided by the FOG is much more reliable than ( )1z k , so that . This gives 

rise to a nearly singular filtering problem, where singularity of R  arises due to the very 
high accuracy of a measure. In this case a lower order non singular EKF can be derived 

assuming that the original R  is actually singular (Anderson & Moore, 1979). In the present 

problem, assuming 2 0θσ = , the nullity of R  is 1m =  and the original singular EKF of order 

3n =  can be reduced to a non singular problem of order 2n m− = , considering the third 

component ( )kθ  of the state vector ( )X k  coinciding with the known deterministic signal 

( ) ( )2 g
z k kθ= . Under this assumption, only ( )1

X k  needs be estimated as a function of ( )1z ⋅ . 

As the measures ( )1z ⋅  provided by the encoders are in terms of increments, it is convenient to 

define the following extended state ( ) ( ) ( )1 1: , 1
T

T T
X k X k X k⎡ ⎤= −⎣ ⎦

 in order to define a measure 

equation where the additive gaussian noise is white. The dynamic state-space equation for ( )X k  

is directly derived from (22), taking into account that, by the assumption on ( )2z ⋅ , in all vectors 

and matrices defined in (25)–(32), the term ( )ˆ ,k kθ  must be replaced by ( )g kθ . 

The following equation is obtained 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
g

X k A k X k L k U k B k k D k W kθ+ = + + + +  (33) 

where 

 ( ) ( )
( )

( )
( )1,22 2,2 1

2 2,2 2,2 2,1

0
, ,

0 0 0

d
A kI L k

A k L K B k
I

⎡ ⎤⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (34) 

 ( )
( )

( )
( )1 1

2,1 2,1

,
0 0

D k W k
D k W k

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (35) 

,0i j  being the ( )i j×  null matrix. 

Equations (6), (7) and (13) and the way the state vector ( )X k  is defined imply that the 

( ) ( )1 k
z k y tν≡  can be indifferently expressed as 
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 ( ) ( ) ( ) ( ) ( )
1 1

1 ,0, ,0z k k k X k kνα α η
− −⎡ ⎤= − +⎣ ⎦

 (36) 

or 

 ( ) ( ) ( ) ( ) ( )
1 1

1 0, ,0,z k k k X k kνβ β η
− −⎡ ⎤= +⎣ ⎦

 (37) 

where 

 
( )

( )

( )
( )

( )sin
2: cos

2

2

k k

k k

k

k k

t t
t t

kT t
t t

ω
ω

α θ
ω

Δ
Δ⎛ ⎞

= +⎜ ⎟Δ ⎝ ⎠

 (38) 

 
( )

( )

( )
( )
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with ( ) ( ) ( )1k k g k g kt t t tω θ θ+Δ = −  and ( ) ( )k g k
t tθ θ= . The measure equations (36) and (37) can 

be combined to obtain a unique equation where ( )1z k  is expressed as a function both of 

( ) ( )1x k x k+ −  and of ( ) ( )1y k y k+ − . As the amount of observation noise is the same, 

equations (36) and (37) are averaged, obtaining 

 ( ) ( ) ( ) ( )1 1 1
z k C k X k v k= +  (40) 

where ( ) ( ) ( ) ( ) ( )
1 1 1 1

1 2, 2, 2, 2C k k k k kα β α β
− − − −⎡ ⎤= − −⎣ ⎦

 and ( ) ( )1 :v k kνη= . Equations (33) 

and (40) represent the linearized, discretized state-space form to which the classical EKF 
algorithm has been applied. 

3.4 Experimental results 

The experimental tests have been performed on the TGR Explorer powered wheelchair 
(TGR Bologna, 2000) in an indoor environment. This mobile base has two driving wheels 
and a steering wheel. The odometric system is composed by two optical encoders connected 
to independent passive wheels aligned with the axes of the driving wheels, as shown in Fig. 
5. A sampling time of 0.4 s  has been used. 

 
Fig. 5. TGR Explorer with data acquisition system for FOG sensor and incremental encoders. 
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The odometric data are the incremental measures that at each sampling interval are 

provided by the encoders attached to the right and left passive wheels. The incremental 

optical encoders SICOD mod. F3-1200-824-BZ-K-CV-01 have been used to collect the 

odometric data. Each encoder has 1200 pulses/rev. and a resolution of 0.0013 rad. These 

measures are directly acquired by the low level controller of the mobile base. The gyroscopic 

measures on the absolute orientation have been acquired in a digital form by a serial port on 

the on-board computer. The fiber optic gyroscope HITACHI mod. HOFG-1 was used for 

measuring the angle θ  of the mobile robot. The main characteristics of this FOG are 

reported in the Table 1. While the used FOG measures the rotational rates with a very high 

accuracy, the internal integration of angular rates to derive the heading angle can suffer 

from drift (Barshan & Durrant-Whyte, 1995; Komoriya & Oyama, 1994). Because of the low 

rate integration drift of the used FOG (see Table 1), the drift is not accounted for in the 

proposed experiments where the robot task duration is on the order of several minutes. For 

longer task duration the rate integration drift can be compensated as proposed in (Ojeda et 

al., 2000) or can be periodically reset by a proper docking system or an absolute sensing 

mechanism (Barshan & Durrant-Whyte, 1995). 

Rotation Rate -1.0472 to +1.0472 rad/s 

Angle Measurement Range -6.2832 to +6.2832 rad 

Random Walk 0.0018 rad h≤  

Zero Drift (Rate Integration) 0.00175rad h≤  

Non-linearity of Scale Factor within ± 1.0% 

Time Constant Typ. 20 ms 

Response Time Typ. 20 ms 

Data Output Interval Min. 10 ms 

Warm-up Time Typ. 6.0 s 

Table 1. Characteristics of the HITACHI gyroscope mod. HFOG - 1. 

The navigation module developed for the considered mobile base interacts with the user in 

order to involve her/him in the guidance of the vehicle without limiting the functionality 

and the security of the system. The user sends commands to the navigation module through 

the user interface and the module translates the user commands in the low level command 

for the driving wheels. Two autonomy levels are developed to perform a simple filtering or 

to introduce some local corrections of the user commands on the basis of the environment 

information acquired by a set of sonar sensors (for more details see (Fioretti et al., 2000)). 

The navigation system is connected directly with the low level controller and with the Fiber 

Optic Gyroscope by analog and digital converters and serial port RS232, respectively. 

All the experiments have been performed making the mobile base track relatively long trajectories. 

In the indoor environment of our Department a closed trajectory of 108 m length, characterized by 

a lot of orientation changes has been considered. The trajectory has been imposed by the user 

interface with the end configuration coincident with the start configuration. In order to quantify 

the accuracy of the proposed localization algorithms, six markers have been introduced along the 

trajectory. The covariance matrix R  of the observation noise ( )V ⋅  has been determined by an 

analysis of the sensor characteristics. The detected estimate errors in correspondence of the marker 
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configurations (the distance between the marker and the corresponding estimated configuration) 

of the mobile base with Algorithm 1 have been reported in the first row of Table 2. This algorithm 

fails to successfully localize the robot, because as it was predictable, the results exhibit a very large 

drift and the estimated trajectory is totally wrong after few meters of travel. 
With reference to the same experimental path, the trajectory estimated by Algorithm 2 is 
more accurate with respect to that estimated by Algorithm 1. Algorithm 2 successfully 
removes the integration error present in the odometry. The goodness of the estimated 
trajectory is quantified by the numerical values of the estimation errors in correspondence of 
the markers. These values are reported in the second row of Table 2. 
The experimental results obtained by Algorithm 3 are relatively close to those of Algorithm 
2. The improvement introduced by Algorithm 3 can be evaluated looking at the numerical 
values reported in the third row of Table 2. 

 Markers 

 Mk1 Mk2 Mk3 Mk4 Mk5 Mk6 stop 

Algorithm 1 0.014 0.143 0.690 4.760 1.868 3.770 6.572 

Algorithm 2 0.012 0.041 0.042 0.164 0.142 0.049 0.187 

Algorithm 3 0.012 0.037 0.035 0.150 0.106 0.030 0.161 

Table 2. Estimation errors (in meters) in correspondence of the marker configurations 
(distance between the marker and the corresponding estimated configuration). 

3.5 Comments 

The performed experimental tests show that the simple odometric localization is not 
satisfactory, making it necessary the introduction of another internal sensor. A fiber optic 
gyroscope showed to be a key tool for obtaining a significant improvement in the accuracy 
of the estimated trajectory. Algorithm 2 is very similar to Algorithm 1, the only difference is 
that Algorithm 2 exploits the gyroscopic measures. This is enough to produce a huge 
improvement of the estimated trajectory, thus confirming the validity of Equations (6), (7) 
provided that an accurate estimate of the robot orientation is available. 
Algorithm 3 uses the same measures of Algorithm 2 but operates in the stochastic framework of 
the Kalman filtering theory. The novelty of the proposed EKF is that its formulation explicitly 
includes both the information carried by the model of the robot and the information carried by 
the observations. This introduces a further improvement with respect to Algorithm 2 and a very 
high degree of accuracy in the estimated trajectory is achieved. The main merit of Algorithm 3 is 
that it operates in a state-space form where sensor and model uncertainties are intrinsically taken 
into account. This makes the estimator more robust with respect to possible uncertain physical 
parameters and/or not exactly known initial conditions. Taking also into account its modest 
computational burden, Algorithm 3 appears to be the most appealing among the three 
localization procedures here proposed. 

4. Absolute approaches for mobile robot localization 

The purpose of this section is to propose and to experimentally evaluate a localization algorithm 
based on a measure apparatus composed of a set of internal and external sensors of a different 
nature and characterized by a highly different degree of accuracy. The sensor equipment 
includes odometric, gyroscopic and laser measures. 

The main technical novelty of this section is the integration in a stochastic framework of 
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the new set of measures. Both the information carried by the kinematic model of the 

robot and that carried by the dynamic equations of the odometry are exploited. The 

nearly singular filtering problem arising from the very high accuracy of angular 

measure has been explicitly taken into account. An exteroceptive laser sensor is 

integrated for reducing the continuous growth in the integrated error affecting any 

relative localization algorithm, such as the Algorithm 3. 

4.1 Algorithm 4 

The algorithm operates in a stochastic framework as Algorithm 3, and is based on the 
ascertainment that the angular measure ( )ky tθ

 provided by the FOG is much accurate than 

the other measures. This gives rise to a nearly singular filtering problem which can be 
solved by a lower order non singular Extended Kalman Filter, as described in subsection 3.3. 
The EKF is defined on the basis of a state equation derived from (1)–(3) and of a measure 
equation containing the incremental measures of the encoders ( )ky tν

 and the distance 

measures ( )j
i

kd
y t , 1,2, , si n= K , provided by the laser scanner from the jP  plane, 

{ }1,2, , pj n∈ K . The angular measure of the gyroscope ( )ky tθ
 is assumed coincident to the 

third component ( )kθ  of the state vector ( )X k . 

Let ( )Z k  be the measurement vector at time instant kT . Its dimension is not constant, 

depending on the number of sensory measures that are actually used at each time instant. 

The measure vector ( )Z k  is composed by two subvectors ( ) ( ) ( )1 1 2,
T

Z k z k z k= ⎡ ⎤⎣ ⎦  and 

( ) ( ) ( ) ( )2 3 4 2, , ,
s

T

nZ k z k z k z k+
⎡ ⎤= ⎣ ⎦L , where the elements of ( )1Z k  are: ( ) ( )1z k y kν≡ , 

( ) ( )2
z k y kθ≡ , where ( )y kν

 is the measure related to the increments provided by the 

encoders through equations (9) and (13), ( )y kθ
 is the angular measure provided by the 

FOG. The elements of ( )2Z k  are: ( ) ( ) ( )2

j

i i i
z k d k kη+ = + , 1,2, , si n= K , { }1,2, , pj n∈ K , with 

( )j

id k  given by (18) and . The environment map provides the information needed 

to detect which is the plane jP  in front of the laser. 

The observation noise ( ) ( ) ( ) ( ) ( )1, , , ,
s

T

nV k k k k kν θη η η η⎡ ⎤= ⎣ ⎦K , is a white sequence 

 where [ ]1 2: blockdiag ,R R R= , with 2 2

1 : diag ,R ν θσ σ⎡ ⎤= ⎣ ⎦
 and 2 2 2

2 1 2: diag , , ,
sn

R σ σ σ⎡ ⎤= ⎣ ⎦L . 

The diagonal form of R  follows by the independence of the encoder, FOG and laser 
scanner measures. 

The components of the extended state vector ( )X k  and the last sn  components of vector 

( )Z k  are related by a non linear measure equation which depends on the environment 

geometric parameter vector ∏ . The dimension ( )s
n k  is not constant, depending on the 

number of laser scanner measures that are actually used at each time, this number depends 
on enviroment and robot configuration. 
Linearization of the measure equation relating ( )2Z k  and ( )X k  about the current estimate 
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of ( )X k  results in: 

 ( ) ( ) ( ) ( )2 2 2Z k C k X k V k= +  (41) 

where ( ) ( ) ( ) ( )2 1 2, , ,
sn

V k k k kη η η⎡ ⎤= ⎣ ⎦K  is a white noise sequence  and 

 ( ) ( ) ( ) ( ) ( )2 1 2: , , ,
s

T
T T T

n k
C k c k c k c k⎡ ⎤= ⎣ ⎦L  (42) 

with 

 ( ) ( ) { }cos , sin ,0,0 , 1,2, , , 1,2, ,
cos

j
j j

i n n s pj

i

P
c k P P i n k j nν

θ
⎡ ⎤= − − = ∈⎣ ⎦ K K  (43) 

and 

 
2

j j

i n g iP
π

θ θ θ= − − +  (44) 

Equations (33), (40) and (41) represent the linearized, discretized state-space form to which 
the classical EKF algorithm has been applied. 

4.2 Laser scanner readings selection 

To reduce the probability of an inadequate interpretation of erroneous sensor data, a 
method is introduced to deal with the undesired interferences produced by the presence of 
unknown obstacles on the environment or by incertitude on the sensor readings. Notice that 
for the problem handled here both the above events are equally distributed. A simple and 
efficient way to perform this preliminary measure selection is to compare the actual sensor 
readings with their expected values. Measures are discharged if the difference exceeds a 
time-varying threshold. This is here done in the following way: at each step, for each 
measure ( )2 iz k+

 of the laser scanner, the residual ( ) ( ) ( )2

j

i i ik z k d kγ += −  represents the 

difference between the actual sensor measure ( )2 iz k+
 and its expected value j

id , 

( )1,2, ,
s

i n k= K , 1,2, , pj n= K , which is computed by (18) on the basis of the current estimate 

of the vector state ( )X k . As , the current value ( )2 iz k+
 is accepted if 

( ) ( )2i ik s kγ ≤  (Jetto et al., 1999). Namely, the variable threshold is chosen as two times the 

standard deviation of the innovation process. 

4.3 Experimental results 

The experimental tests have been performed in an indoor environment using the same TGR 
Explorer powered wheelchair (TGR Bologna, 2000), described in Section 3.4. 
The laser scanner measures have been acquired by the SICK LMS mod. 200 installed on the 
vehicle. The main characteristics of the LMS are reported in  Table 3. 

Aperture Angle 3.14 rad 

Angular Resolution 0.0175/ 0.0088/ 0.0044 rad 

Response Time 0.013/ 0.026/ 0.053 s 

Resolution 0.010 m 
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Systematic Error ± 0.015 m 

Statistic Error (1 Sigma) 0.005 m 

Laser Class 1 

Max. Distance 80 m 

Transfer Rate 9.6/ 19.2/ 38.4/ 500  kBaud 

Table 3. Laser. 

A characterization study of the Sick LMS 200 laser scanner has been performed as proposed 
in (Ye & Borenstein, 2002). Different experiments have been carried out to analyze the effects 
of data transfer rate, drift, optical properties of the target surfaces and incidence angle of the 
laser beam. Based on empirical data a mathematical model of the scanner errors has been 
obtained. This model has been used as a calibration function to reduce measurement errors. 
The TGR Explorer powered wheelchair with data acquisition system for FOG sensor, 
incremental encoders, sonar sensors and laser scanner is shown in Fig. 5. 

 
Fig.  6. Sample of the estimated trajectory. The dots are the actually used laser scanner measures. 
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A significative reduction of the wrong readings produced by the presence of unknown 
obstacles has been realized by the selection of the laser scanner measures using the 
procedure described in the previous subsection . 
Different experiments have been performed making the mobile base track short and 
relatively long and closed trajectories. Fig.  6 illustrates a sample of the obtained results; the 
dots in the figure, are the actually used laser scanner measures. In the indoor environment 

of our Department, represented by a suitable set of planes orthogonal to the plane XY  of 
the inertial system, a trajectory of 118 m length, characterized by orientation changes, has 
been imposed by the user interface. The starting and final positions have been measured, 
while six markers specify different middle positions; this permits to compute the distance 
and angle errors between the marker and the corresponding estimated configuration. 
In these tests, the performances of Algorithm 4 have been compared with those ones of the 
Algorithm 3, which is the most appealing among the three relative procedures here 
analyzed. Table 4 summarizes the distance and angle errors between the marker and the 
corresponding configurations estimated by the two algorithms. 

  Markers 

  Mk1 Mk2 Mk3 Mk4 Mk5 Mk6 stop 

Error 0.1392 0.095 0.2553 0.1226 0.2004 0.0301 0.3595 

A
lg

 3
 

θΔ  0.49 0.11 0.85 0.58 1.39 0.84 2.66 

Error 0.0156 0.0899 0.0659 0.1788 0.0261 0.0601 0.0951 

A
lg

 4
 

θΔ  0.59 0.05 0.45 0.07 0.72 0.12 1.55 

Table 4. Estimation errors (in meters) in correspondence of the marker configurations 
(distance between the marker and the corresponding estimated configuration) and 
corresponding angular errors (in degrees). 

Other significant sets of experiments have been performed inside a room, considering a 
short trajectory of 20 m characterized by different orientation changes (see Fig. 7). 

 
Fig. 7. Sample of the estimated trajectory inside the room, where dots indicate the laser measures. 
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The room has been modelled very carefully, permitting a precise evaluation of the distance 
and angle errors between the final position and the corresponding configuration estimated 
by the Algorithm 4; Table 5 resumes these results. 

  final position 

error 0.0061 

A
lg

 4
 

θΔ  0.27 

Table 5. Estimation distance errors (in meters) and corresponding angular errors (in degrees). 

In order to investigate further the efficiency of the developed Algorithm 4 and to evaluate its 
correction performances, it has been imposed a wrong initial position (see Table 6 and Fig. 8). 

 
error of initial position error of final position

error 0.2236 0.0152 

θΔ  1.5 0.73 

Table 6. Distance (in meters) and angle (in degrees) errors introduced on the initial position 
and corresponding errors on the final position. 

 
Fig. 8. Estimated trajectory with a wrong initial positioning. 

As a result, it has been seen that the Algorithm 4 is able to correct possible errors on the 
initial positioning, as confirmed by the results reported in Table 6. 

4.4 Comments 

As shown by the developed experimental tests (see Table 4), Algorithm 4 permits to obtain a 
much more reliable and accurate positioning than that one obtained by Algorithm 3. Note 
that estimation errors on the final position of the Algorithm 3 are due to the angle drift 
introduced by the gyroscope. 
Additionally, Algorithm 4 improves the positioning accuracy in spite of a wrong initial 
positioning. Table 6 shows as the possible errors introduced by a wrong initial pose, have 
been efficiently corrected by the Extended Kalman Filter. 
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5. Concluding remarks 

This chapter has presented a concise look at the problems and methods relative to the 
mobile robot localization. Both the relative and absolute approaches have been discussed. 
Relative localization has the main advantage of using a sensor equipment which is totally 
self-contained in the robot. It is relatively simple to be used and guarantees a high data rate. 
The main drawback is that the localization errors may considerably grow over time. 
The three corresponding algorithms which have been proposed only use odometric and 
gyroscopic measures. The experimental tests relative to Algorithm 1 show that the 
incremental errors of the encoder readings heavily affect the orientation estimate, thus 
reducing the applicability of the algorithm to short trajectories. A significant improvement is 
introduced by Algorithm 2 where the odometric measures are integrated with the angular 
measures provided by a gyroscope. 
Algorithm 3 uses the same measures of Algorithm 2 but operates in a stochastic framework. 
The localization problem is formulated as a state estimation problem and a very accurate 
estimate of the robot localization is obtained through a suitably defined EKF. A further 
notable improvement is provided by the fusion of the internal measures with absolute laser 
measures. This is clearly evidenced by Algorithm 4 where an EKF is again used. 
A novelty of the EKF algorithms used here is that the relative state-space forms include all 
the available information, namely both the information carried by the vehicle dynamics and 
by the sensor readings. The appealing features of this approach are: 

• The possibility of collecting all the available information and uncertainties of a 
different kind in the compact form of a meaningful state-space representation,  

• The recursive structure of the solution, 

• The modest computational effort. 
Other previous, significant experimental tests have been performed at our Department using 
sonar measures instead of laser readings (Bonci et al., 2004; Ippoliti et al., 2004).  Table 7 reports a 
comparison of the results obtained with Algorithm 3, Algorithm 4, and the algorithm (Algorithm 
4(S)) based on an EKF fusing together odometric, gyroscopic and sonar measures. The 
comparative evaluation refers to the same relatively long trajectory used for Algorithm 4. 

 Alg 3 Alg 4 Alg 4(S) 

error 0.8079 0.0971 0.1408 

θΔ  2. 4637 0.7449 1. 4324 

Table 7. Estimation errors (in meters) in correspondence of the final vehicle configuration 
(distance between the actual and the corresponding estimated configuration) and 
corresponding angular errors (in degrees). 

Table 7 evidences that in spite of a higher cost with respect to the sonar system, the 
localization procedure based on odometric, inertial and laser measures does really seem to 
be an effective tool to deal with the mobile robot localization problem. 
A very interesting and still open research field is the Simultaneous Localization and Map 
Building (SLAM) problem. It consists in defining a map of the unknown environment and 
simultaneously using this map to estimate the absolute location of the vehicle. An efficient 
solution of this problem appears to be of a dominant importance because it would definitely 
confer autonomy to the vehicle. The SLAM problem has been deeply investigated in 
(Leonard et al., 1990; Levitt & Lawton, 1990; Cox, 1991; Barshan & Durrant-Whyte, 1995; 
Kobayashi et al., 1995; Thrun et al., 1998; Sukkarieh et al., 1999; Roumeliotis & Bekey, 2000; 
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Antoniali & Orialo, 2001; Castellanos et al., 2001; Dissanayake et al., 2001a; Dissanayake et 
al., 2001b; Zunino & Christensen, 2001; Guivant et al., 2002; Williams et al., 2002; Zalama et 
al., 2002; Rekleitis et al., 2003)). The algorithms described in this chapter, represent a solid 
basis of theoretical background and practical experience from which the numerous 
questions raised by SLAM problem can be solved, as confirmed by the preliminary results in 
(Ippoliti et al., 2004; Ippoliti et al., 2005). 
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