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1. Introduction 

In recent years, the research field on smart environments, which are spaces with multiple 
embedded and networked sensors and actuators, has been expanding (Cook & Das, 2004). 
The main purpose for the introduction of smart environments is to support humans in both 
physical and informative ways (Johanson et al., 2002), (Mynatt et al., 2004), (Mizoguchi et al., 
1999). In smart environments, the distributed sensor nodes observe the spaces, extract useful 
information from the obtained data and the actuators including mobile robots provide 
various services to users. Moreover, robots in the space can get necessary information from 
the smart environment and operate without restrictions due to the capability of on-board 
sensors and computers. In fact, mobile robot control is easier in smart environments since 
the global positions can be directly measured by using distributed sensors and 
Simultaneous Localization And Mapping (SLAM) problem (Durrant-Whyte & Bailey, 2006), 
where the robot tries to simultaneously estimate its own location and build a map of the 
environment, can be completely avoided (Lee & Hashimoto, 2003). 
However, one of the major problems in developing smart environments is calibration of the 
sensors. Calibration is needed for proper calculation from the local (sensor's) coordinate 
system to the world (smart environment's) coordinate system and it is usually done by using 
calibration objects that are objects with known positions, shapes and so on. For example, 
researches on camera calibration based on geometrical features including 3D points (Tsai, R. 
Y., 1987), 2D points (Sturm & Maybank, 1999), (Zhang, 2000), lines (Zhang, 2004), circles (Wu 
et al., 2004), and spheres (Agrawal & Davis, 2003) are being pursued actively. Several 
researchers extended such a single camera calibration algorithm to a multiple-camera 
calibration algorithm. An extension of a planar point pattern based calibration algorithm to the 
multi-camera systems with an arbitrary number of cameras is presented in (Ueshiba & Tomita, 
2003). The algorithm is based on factorization of homography matrices between the model and 
image planes, which is expressed as a composition of a camera projection matrix and a plane 
parameter matrix. If a calibration object is put in three or more places, the relative positions 
and orientations between cameras as well as the intrinsic camera parameters are determined. 
Another work also utilized a known 2D calibration object for stereo camera calibration (Malm 
& Heyden, 2001). The technique uses both stereo camera constraints and single camera 
constraints, and therefore noise-robust calibration is realized.  
In the case of smart environments, it takes a great deal of time and efforts to calibrate the 
sensors since multiple sensors are distributed in the space. Although the researches 
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mentioned above aim to lighten this enormous work, our research purpose is to automate 
the calibration process with satisfactory accuracy. In order to solve this problem, mobile 
robots have been used for realizing automated calibration. Mobile robots can cover wide 
areas of the environment by moving from place to place so there is no need to place many 
landmarks in exactly known positions beforehand. Some researchers focus on node 
localization in wireless sensor networks using mobile robots (Shenoy & Tan, 2005), 
(Sreenath et al., 2006). In the methods, each mobile robot broadcasts its position information 
and if a wireless sensor node can get the information, the node is considered to be located 
adjacent to the robot. An effective path planning of mobile robots for wireless node 
localization is also addressed in (Koutsonikolas et al., 2006). Although the sensor nodes just 
receive the position information from the robots in these researches, the measurement of the 
sensors can also be used for calibration. In (Rekleitis & Dudek, 2005), which is closely 
related to our work shown in this chapter, camera sensor network is calibrated based on 
grid patterns attached to a mobile robot. We also introduce a mobile robot assisted 
calibration method and use the position information of the robot to calibrate distributed 
sensors including laser range finders and cameras. Hereby we can add a calibration function 
without major changes in the system because we can use existing moving object tracking 
and mobile robot localization functions of smart environments. 
Next section gives a brief introduction of our smart environment which is called “Intelligent 

Space (iSpace).” Section 3 and 4 describe the automated calibration method based on the 

mobile robot tracking for distributed laser range finders and cameras, respectively. Mobile 

robot localization used in the calibration method is explained in section 5. Experimental 

results of the proposed method and comparison with the manual calibration are shown in 

section 6. Finally, a conclusion is given in section 7. 

2. Intelligent space 

“Intelligent Space (iSpace)” has been proposed by Hashimoto laboratory at The University 

of Tokyo (Lee & Hashimoto, 2002). Figure 1 shows the concept of iSpace. We call the sensor 

node devices distributed in the space DINDs (Distributed Intelligent Network Device). A 

DIND consists of three basic components: sensors, processors and communication devices. 

The processors deal with the sensed data and extract information about objects (type of 

object, three dimensional position, etc.), users (identification, posture, activity, etc.), and the 

environment (geometrical shape, temperature, emergency, etc.). The network of DINDs can 

realize the observation and recognition/understanding of the events in the whole space. 

Based on the extracted and fused information, actuators such as displays or projectors 

embedded in the space provide informative services to users. In iSpace, mobile robots are 

also used as actuators to provide physical services to the users and for them we use the 

name mobile agents.  

Figure 2 shows a configuration of the iSpace implementation in our laboratory. CCD 

cameras, laser range finders, and a 3D ultrasound positioning system are used as sensors of 

DINDs. The laser range finders are placed close to the ground horizontally (about 20 cm 

above the floor). The advantage of the low position is that it is possible to scan also 

relatively short objects, assuring that all objects on the floor will enter the scan. The 3D 

ultrasound positioning system involves 112 ultrasonic receivers installed on the ceiling. This 

system can measure the three dimensional position of an ultrasonic transmitter (tag) to an 
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accuracy of 20-80 millimeters using triangulation. Moreover, differential wheeled robots are 

used as mobile agents. For estimating the position and orientation of the robot, an ultrasonic 

transmitter is installed on the top of the mobile robot. The mobile robot is also equipped 

with a wireless network device to communicate with iSpace. 
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Fig. 1. Concept of Intelligent Space (iSpace) 

 

 

Fig. 2. Configuration of Intelligent Space – sensors and mobile robots 
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3. Automated calibration of distributed laser range finders 

3.1 Overview of the method 
Our goal is to find transformation parameters (translation vector T and rotation matrix R) 
from the laser range finder coordinates to the world coordinates. Since the laser range 
finders are placed horizontally as noted in section 2, the calibration parameters are position 
and orientation of the laser range finder in 2D plane (Tixg, Tiyg, θig) (i=1, 2, ..., N), where N and 
i denote the number of laser range finders in the environment and index of each laser range 
finder, respectively. As mentioned in section 1, we utilize mobile robots in iSpace to realize 
the automated calibration. Figure 3 shows the overview of the calibration method. 
Let WO−WxWy be the coordinate system fixed to iSpace (world coordinate system) and 
LiO−LixLiy be the coordinate system fixed to the ith laser range finder (laser range finder i 
coordinate system). First, each DIND tracks the mobile agents and gets the position of the 
mobile robots in the local coordinate system (xik, yik). The DINDs also request the position 
server in iSpace where the postion information of objects is collected and stored to send the 
position of the robot in the world coordinate system (xgk, ygk). The calibration process is then 
performed based on the set of corresponding points {(xgk, ygk), (xik, yik)} (k = 1, 2, ..., n). 
 

 

Fig. 3. Calibration of a laser range finder using a mobile robot 

In the following subsections, the functions needed for the proposed calibration method are 

described. Tracking of moving objects and pose estimation from a set of corresponding 

points are explained in section 3.2 and 3.3, respectively.  

3.2 Object tracking using a laser range finder 
The tracking process consists of extraction of objects, estimation of the object centers and 

tracking using Kalman Filter. 

Figure 4 shows the the object extraction. In the extraction process, background subtraction is 
first applied. The static parts of scan (background) are subtracted from the scan data in 
order for determining which parts of the scan are due to moving objects (foreground). The 
scan points in the foreground are then clustered based on the Euclidean distance between 
them using a nearest neighbor classifier. This divides the foreground to a number of 
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clusters, each belonging to one of the tracked objects. Clusters with a small number of scan 
points are discarded as measurement noise. Data association is based on the Euclidean 
distance. The position of cluster centers are compared with the positions of currently 
tracked objects and each cluster is assigned to the closest object. The clusters that are far 
from all currently tracked objects are considered as new objects, and a new tracking process 
is started for them. 
From the previous step the positions of cluster centers were obtained. But since the objects 

are scanned from one side, the center of the obtained cluster of points (xcl, ycl) in general 

does not coincide with the center of the tracked object (xobj, yobj). So, as shown in Fig. 5, the 

object center is assumed to be at a fixed distance d from the center of the cluster of scan 

points belonging to it, that is, 

 
cos( )

sin( )

obj cl

obj cl

x x d

y y d

α

α

= +

= +
 (1) 

where α is the angle of the line between the laser range finder and the center of the cluster, 

and d is a parameter depending on the radius of the object. In our experiments d was set to 6 

centimeters for human (i.e. human’s leg) and 15 centimeters for the mobile robot. 

 

      
(a) (b) 

 

      
(b) (d) 

 

Fig. 4. Process of object extraction using laser range finder (a) raw scan data, (b) static part of 
the scan (background), (c) result of background subtraction (foreground), (d) result of 
clustering and centers of the clusters. The units of x and y are in meters. 
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Fig. 5. Estimation of object center 

Moreover, in order to distinguish between humans and mobile robots, the number of 
clusters belonging to an object is used since two clusters belonging to his/her legs are 
detected in the case of tracking a human. In our implementation we gradually determine the 
type of object by filtering the number of clusters. Only the positions of mobile robots are 
used for calibration purpose. 
Finally, the Kalman filter is applied to track the objects. 
The details of our laser range finder based tracking method and evaluation of the method 
are described in (Brscic & Hashimoto, 2006).  

3.3 Calibration of laser range finders based on the corresponding points 
In the calibration process, the position and orientation of the laser range finders in the world 
coordinate system (Tixg, Tiyg, θig) is calculated. We solve the least square error problem 
denoted by the following equation: 
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where atan2(·) denotes the four-quadrant inverse tangent function and μ’s stand for mean 

values, for example: 

 
1

1 n
gg

x k
k

x
n

μ
=

= ∑  (6) 

 

The problem with least-squares estimation as given by equations (3)-(5) is sensitivity to 

outliers. Since robot tracking is done online it is possible that outliers, such as 

miscorrespondence between data can easily appear. In order to eliminate the effect of 

outliers instead of simple least squares we use the least median of squares (LMedS) based 

estimation. In the LMedS method, the estimation error is evaluated by not the sum of the 

square error but its median value.  

The automated calibration process is summarized as follows: 

1. Store corresponding points (xgk, ygk), (xik, yik) acquired by the robot tracking process  

2. Sample 2 data randomly from the set of corresponding points 

3. Calculate (Tixg, Tiyg, θig) from the sampled data using equations (3)-(5) 

4. Evaluate the estimation error by the median of the square error for all corresponding 

points 

5. Repeat steps 2) – 4) enough times 

6. Select (Tixg, Tiyg, θig) which has minimum estimation error as the estimate 

4. Automated calibration of distributed cameras 

4.1 Overview of the method 
The idea of the automated camera calibration is similar to the one explained in the previous 

section. Two measurements, the result of robot localization and the tracking result of the 

robot, are stored as corresponding points and the calibration is performed based on them. 

But, in this case, the position information obtained by a camera is the positions of the robots 

on the image plane. In addition, we need to calibrate both the intrinsic and the extrinsic 

camera parameters.  

In the following subsections, tracking of mobile robots using a camera is explained in 

section 4.2 and the calibration method is mentioned in section 4.3. 

4.2 Visual tracking of mobile robots 
To detect moving objects in iSpace using CCD cameras, a similar algorithm to the one using 

laser range finders is implemented. In addition, we utilize color markers installed on a 

mobile robot to identify the mobile robot. Since color histogram is stable to deformation and 

occlusion of the objects relatively (Swain & Ballard, 1991), it is qualified as unique feature 

value to represent each object. Compared with the contour and so on, color histogram of the 

object stays largely unchanged against the various images that are captured by the 

distributed cameras.  

Following three processes are performed to detect color markers. 

1. Background subtraction: The background subtraction process compares the current 

image frame and an adaptive background image frame to find parts of the image that 

have changed due to the moving object. 

www.intechopen.com



Object Tracking 

 

236 

2. Color histogram matching: The color histogram matching process searches over the 
current image and finds target colors which are registered in advance. 
In the previous processes, the system does not discriminate if each feature point belongs 
to the color marker or is just noise. So we need the following segmentation process to 
detect target objects and remove noise. 

3. Segmentation: The overlapped areas of results from both background subtraction and 

color histogram matching are clustered. Clustering algorithm is based on nearest 

neighbor method. If the distance in both the x and y direction between two pixels is 

lower than a given threshold, these pixels are considered as part of the same object. In 

case that the number of pixels, height or width of the cluster does not get to a certain 

value, the cluster is removed as noise. 

Figure 6 (left) and (right) show a captured image and the result of the color marker 

detection, respectively. We can find that three color markers on the top of the mobile robot 

are detected successfully.  

 

     

Fig. 6. Detection of color markers on a mobile robot using a camera DIND 

4.3 Calibration of cameras based on the corresponding points 
The automated camera calibration is performed based on the positions of the robots in the 

world coordinate system (xgk, ygk) and their corresponding points in the image coordinate 

system (uik, vik) (k = 1, 2, ..., n). Here we apply Tsai’s method (Tsai, 1987) for the calibration. 

Although the method requires a 3D calibration object, we can use mobile robots with 

different heights or multiple markers attached to different heights.   

In the Tsai’s method, following 11 parameters are calibrated. 

Five intrinsic parameters are: 

• f: effective focal length 

• κ1: 1st order lens distortion coefficient 

• sx: uncertainty scale factor for x 

• (Cx, Cy): computer image coordinate for the origin in the image plane 
Six extrinsic parameters are: 

• Rx, Ry, Rz: rotation angles for the transform between the world and camera coordinate 
frames 

• Tx, Ty, Tz: translational components for the transform between the world and camera 
coordinate frames 
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5. Mobile robot localization 

In calibration methods based on corresponding points shown in section 3 and 4, the position 
information of robots in the world coordinate system is required. In our mobile robot 
localization method, the position of the mobile robot measured by the 3D ultrasonic 
positioning system installed in the space and the mobile robot on-board sensor data (wheel 
encoder) are fused to minimize the position error. In the following subsections, the detail of 
the localization method is given.  

5.1 Model of the mobile robot 
We consider a two-wheeled mobile robot model shown in Fig. 7. Let wO-wxwy be the 
coordinate system fixed to iSpace (world coordinate system) and RO-RxRy be the coordinate 
system fixed to the mobile robot (robot coordinate system). The position and orientation of 
the mobile robot are denoted by (x, y, θ) in the world coordinate system. The control inputs 
for the mobile robot are the translational velocity v and rotational velocity ω. Here, the 
kinematic model for the mobile robot is expressed as follows: 

 
cos 0

sin 0

0 1

x θ
v

y θ
ω

θ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

$
$
$

 (7) 

 

 

Fig. 7. Model of a mobile robot 

In addition, an ultrasonic transmitter used with the ultrasonic positioning system is installed 
on the mobile robot. Its coordinate in the robot coordinate system is (L, 0). 

5.2 Localization using extended Kalman filter 
The position and orientation of the mobile robot are estimated based on data from iSpace 
(the 3D ultrasonic positioning system) and the mobile robot (wheel encoder). These two 
measurement data are fused using extended Kalman filter. Extended Kalman filter has been 
widely applied to sensor fusion problems and it is computationally-efficient compared to 
other probabilistic methods, e.g. particle filter (Thrun et al., 2005). 
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In order to implement the extended Kalman filter, the model of the system has to be 
developed. Discretizing (7), we obtain the following state equation: 

 
k k 1 k 1

k k 1 k 1 k k

k k 1

Δ cos

Δ sin

Δ

x x v t θ
y y v t θ w
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− −

− −

−
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W  (8) 

where xk, yk and θk denote position and orientation of the mobile robot at time k, Δt is the 
sampling rate, v and ω are the translational velocity and the rotational velocity obtained 
from encoders, wk represents the process noise.  
The observation equation is expressed as follows: 

 
zps k k

k k
zps k k

cos

sin

x x L θ
v

y y L θ
⎡ ⎤ +⎡ ⎤
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V  (9) 

where (xzps, yzps) is the position of the ultrasonic transmitter in the world coordinate system 
observed by iSpace and vk represents the measurement noise. L is the distance on the central 
axis between the tag and robot center, as noted in Fig. 7. 
Linearizing the state equation, Jacobian matrix Ak is obtained: 

 
k 1
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We consider that the noise on the encoder is white noise with a normal distribution. Here, 
the matrix Wk is expressed as follows: 

 
k 1

k k 1

Δ  cos 0

Δ  sin 0

0 Δ

t θ
t θ

t

−

−

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

W  (11) 

From the observation equation, the matrix Hk is 

 k
k

k

1 0 sin

0 1 cos

L θ
L θ
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⎣ ⎦
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The matrix Vk is determined as follows: 

 k

1 0

0 1

⎡ ⎤
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⎣ ⎦

V  (13) 

In this research, we assume the process noise covariance Q and measurement noise 
covariance R are constant and use diagonal matrices. The values are tuned experimentally. 

6. Experiment 

6.1 Calibration of distributed laser range finders 
In the environment shown in Fig. 8, three laser range finders are calibrated using a mobile 
robot. The arrangement of the laser range finders and the actual path of the mobile robot, 
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which is estimated by the mobile robot localization method described in the previous 
section, are also shown in the figure. The mobile robot entered the room from the right part 
of Fig. 8 and circled around the room in clockwise direction. In the mobile robot navigation 
system installed in iSpace, to find the best way for the robot to move through the space 
towards goals (path planning), the Field D* method (Ferguson & Stentz, 2005) is used. 
Moreover, in order for the robot to follow the calculated path and at the same time avoid 
bumping into obstacles, the Dynamic Window Approach (DWA) (Fox et al., 1997) is applied 
as a local control algorithm. 
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Fig. 8. Experimental environment for calibration of laser range finders – arrangement of the 

sensors and path of the mobile robot estimated by the extended Kalman filter 

In order to evaluate the accuracy of the proposed method, we make a comparison between 

the automated calibration and manual calibration. In the case of manual calibration, a 

calibration object (an object which can be well detected by a laser range finder) is placed in 

turn on several points with known global coordinates and the calibration parameters are 

calculated by (3)–(5). 

Table I shows the result of the automated calibration compared to that of manual one. The 

maximum difference between manual calibration and automated calibration is 0.11 meters 

for translation and 0.06 radians for rotation. The laser range fingers can only measure the 

edge of the mobile robot, but the tracking process works well and almost the same result as 

manual calibration case is achieved. The tracked positions of the mobile robot in each sensor 

node, which are transformed into the global coordinates using the estimated parameters are 

shown in Fig. 9. It is obvious that there is a good correspondence between the tracks, which 

shows that the calibrated parameters are correct. 
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Automated / Manual LRF ID 
i Tixg [m] Tiyg [m] θig [rad] 

1 −1.91 / −1.95 1.10 / 1.00 −0.19 / −0.15 

2 0.99 / 0.95 0.95 / 1.02 −2.60 / −2.54 

3 0.09 / 0.20 −2.01 / −1.97 1.56 / 1.60 

Table 1. Estimated pose of the distributed laser range finders - comparison of automated 
and manual calibration results 
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Fig. 9. The actual path of the mobile robot (presented again) and the tracked positions of the 
robot in each sensor node, obtained by transformation into the global coordinates using the 
estimated parameters 

6.2 Calibration of distributed cameras 
Figure 10 shows reference path followed by mobile robots and camera arrangement. In this 
experiment, four CCD cameras are calibrated and two mobile robots with different height 

followed the same  “∞” shaped path defined as 

 
sin( / 2)

sin( )
x

y

x t

y t

α β
α β

=
=

 (14) 

where αx, αy, and β are constants, and t is a time step. Note that we can use an arbitrary path 
for calibration because we utilize only position information of the color markers. The 

observable area of each camera on the ground plane is about 4 meters × 4 meters. The 

captured image size is 320 pixels × 240 pixels. 
In order to evaluate the accuracy of the proposed method, we made a comparison between 
the automated calibration and manual calibration. If the height of a place is known, the three  
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Fig. 10. Reference path followed by mobile robots and camera arrangement 

dimensional position is reconstructed from one camera image. Therefore, we selected 
sample points shown in Fig. 11 from the image, and the corresponding positions on the 
ground plane (z=0) are reconstructed. The reference positions of sampled points are 
obtained from the ultrasonic 3D positioning system. 
Table 2 shows the comparison of mean and maximum errors, which are the average and 
maximum Euclidean distance between the reference positions and the reconstructed 
positions of the nine sampled points, respectively. Although the difference of the average 
error is less than 8 millimeters, the manual calibration is more precise than the automated 
calibration in most cases. Especially, the maximum error is relatively large in the case of the 
automated calibration. This is mainly due to the fact that the obtained positions of the 
markers are not widely distributed on the image plane. This means that the path of the 
mobile robot is important for the calibration. In iSpace, this problem would be solved by 
mutual cooperation of DINDs and mobile agents - DINDs should ask mobile agents to move 
to the area where the corresponding points are not acquired enough.  
 

 

Fig. 11. Sampled points for evaluation of the camera calibration. The unit is in pixels. 
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Automated / Manual Camera 
ID Mean error [mm] Maximum error [mm] 

1 67.5 / 40.2 128.4 / 72.8 

2 81.4 / 29.0 140.8 /54.7 

3 54.6 / 64.6 116.4/ 91.3 

4 32.6 /72.5 73.2 / 116.5 

Average 59.0 / 51.6 114.7 / 83.8 

Table 2. Comparison of mean and maximum error between automated and manual 
calibration of distributed cameras 

7. Conclusion 

We described an automated calibration method for distributed sensors in Intelligent Space 
(iSpace) by using mobile robots. The proposed method utilizes the positions of the robots in 
the world coordinate system and their corresponding points in the local coordinate system. 
The mobile robot localization and moving object tracking functions of iSpace are extended 
and calibration of distributed laser range finders and vision sensors is realized. In our work 
we used the ultrasound positioning system to localize the mobile robot. In a real 
environment this type of global positioning system is not always available, but it can still be 
possible to estimate the robot’s position by using other already calibrated sensors or 
implementing a self localization method based on a preexisting map.  
Performance of the proposed method was demonstrated experimentally. The experimental 
result shows that the method can provide enough accuracy for the various applications in 
iSpace such as mobile robot localization, human tracking, iSpace-human interface (Niituma 
et al., 2007) and so on.  
For future work, since the proposed calibration method is affected by the error of the object 
tracking, we will develop a more accurate tracking algorithm. In addition, as mentioned in 
section 5.2, optimization of paths of mobile robots for calibration is another research 
direction. We will also consider utilization of the inter-sensor information for accuracy 
improvement and computational stability. 
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