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1. Introduction

Chance Constrained Programming belongs to the major approaches for dealing with random
parameters in optimization problems. Typical areas of application are engineering and
finance, where uncertainties like product demand, meteorological or demographic conditions,
currency exchange rates etc. enter the inequalities describing the proper working of a system
under consideration. The main difficulty of such models is due to (optimal) decisions that
have to be taken prior to the observation of random parameters. In this situation, one can
hardly find any decision which would definitely exclude later constraint violation caused by
unexpected random effects. Sometimes, such constraint violation can be balanced afterwards
by some compensating decisions taken in a second stage. For instance, making recourse to
pumped storage plants or buying energy on the liberalized market is an option for power
generating companies that are faced with unforeseen peaks of electrical load. As long as the
costs of compensating decisions are known, these may be considered as a penalization for
constraint violation. This idea leads to the important class of twostage or multistage stochastic
programs Birge & Louveaux (1997); Kall & Wallace (1994); Ruszczyński & Shapiro (2003).
In many applications, however, compensations simply do not exist (e.g., for safety relevant
restrictions like levels of a water reservoir) or cannot be modeled by costs in any reasonable
way. In such circumstances, one would rather insist on decisions guaranteeing feasibility ’as
much as possible’. This loose term refers once more to the fact that constraint violation can
almost never be avoided because of unexpected extreme events. On the other hand, when
knowing or approximating the distribution of the random parameter, it makes sense to call
decisions feasible (in a stochastic meaning) whenever they are feasible with high probability,
i.e., only a low percentage of realizations of the random parameter leads to constraint violation
under this fixed decision. A generic way to express such a probabilistic or chance constraint as
an inequality is

P(h(x, ξ) ≥ 0) ≥ p. (1)

Here, x and ξ are decision and random vectors, respectively, "h(x, ξ) ≥ 0" refers to a
finite system of inequalities and P is a probability measure. The value p ∈ [0, 1] is called
the probability level, and it is chosen by the decision maker in order to model the safety
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requirements. In the following we tacitly assume that (1) represents a constraint inside an
optimization problem where some objective function f (x) has to be minimized. Since the role
of f is as in conventional optimization problems, we shall focus our attention to the special
type of constraint as given by (1).
Sometimes, the probability level is strictly fixed from the very beginning (e.g., p = 0.95, 0.99
etc.). In other situations, the decision maker may only have a vague idea of a properly chosen
level. Of course, he is aware that higher values of p lead to fewer feasible decisions x in
(1), hence to optimal solutions at higher costs. Fortunately, it turns out that usually p can
be increased over quite a wide range without affecting too much the optimal value of some
problem, until it closely approaches 1 and then a strong increase of costs becomes evident. In
this way, models with chance constraints can also give a hint to a good compromise between
costs and safety.
Formally, the chance constraint (1) may be written as a usual inequality constraint:

α(x) ≥ p, where α(x) := P(h(x, ξ) ≥ 0). (2)

In contrast to conventional optimization problems, however, the challenge posed by chance
constraints consists in the fact that the function α is not given explicitly. Therefore
neither theoretical properties (continuity, differentiability, concavity) nor suitable algorithmic
approaches are evident. Not surprisingly, there does not exist a general solution method for
chance constrained programs. The choice strongly depends on how random and decision
variables interact in the constraint model. Sometimes a linear programming solver will do the
job. In other models, one has to have access to values and gradients of multidimensional
distribution functions (e.g., the reservoir management model of Section 6). Of particular
interest is the application of algorithms from convex optimization. Convexity of chance
constraints, however, does not only depend on convexity properties of the constraint function
h in (1) but also of the distribution of the random parameter ξ. The question of whether
this distribution is continuous or discrete is another crucial aspect for algorithmic treatment.
The biggest challenges from the algorithmic and theoretical points of view arise in chance
constraints where random and decision variables cannot be decoupled.
All issues discussed up to now illustrate the close tie between algorithmic and structural
properties. Some of these shall be briefly presented in the following sections. The chapter is
organized as follows: Section 2 is dedicated to a discussion of structural properties of chance
constraints. Section 3 will illustrate the importance of stochastic programming in general and
chance constrained programming in particular for energy management problems. Moreover,
we will present the generic look and feel of such problems. This will be further developed in
Section 4. In Section 5 recent results on CCP for Energy management structured problems will
be discussed. These results are illustrated on a typical example in Section 6, that also shows
that CCP can be tractable/interesting for some problems in EM and with some research effort
could become a very important tool for EM under uncertainty. Finally Section 7 sketches some
perspectives.
Among the numerous applications of chance constrained programming one may find
areas like water resource management, circuit manufacturing, chemical engineering,
telecommunications, finance and Energy management. For basic monographs on this topic,
we refer to Prékopa (2003) and relevant chapters in Ruszczyński & Shapiro (2003), Shapiro
et al. (2009).
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2. Models and structural properties

The properties of a concrete chance constrained optimization problem mainly hinge on the
following items:

• Distribution of the random vector (e.g., continuous or discrete distribution, independent
or correlated components)

• Type of constraint system (e.g., linear, separated random vector, coupled random and
decision vectors)

• Type of chance constraints (individual or joint)

Different combinations of elements from these basic categories may lead to mathematical
objects with drastically different theoretical properties and algorithmical requirements.

2.1 Models

The most important models in practical applications of chance constraints are linear in the
random vector. This means that the constraint mapping h in (1) takes one of the forms

h(x, ξ) = g(x)− Aξ or h(x, ξ) = A(ξ)g(x)− b, (3)

where A and A(ξ) are determinstic or stochastic matrices, respectively, g is a mapping just
depending on the decision vector x and b is a vector of appropriate size. The basic difference
between both models is that in the first case the random vector appears separated from the
decision vector, whereas both are coupled in the second model. Both models have numerous
applications in engineering and, in particular, in energy management.
The chance constraint (1) can be written more explicitly as

P(hj(x, ξ) ≥ 0 (j = 1, . . . , m)) ≥ p. (4)

Since here, the probability is taken over the whole stochastic inequality system, one also
calls this a joint chance constraint. Alternatively, one could turn each component of the
stochastic inequality system into several chance constraints individually, and thereby allowing
individual probability levels for each chance constraint:

P(hj(x, ξ) ≥ 0) ≥ pj (j = 1, . . . , m) (5)

Such individual chance constraints, though formally yielding a larger system of m inequalities
as compared to just one inequality in the joint case, may lead to much easier mathematical
models in some special cases (see Section 2.2). Care has to be taken, however, with a correct
interpretation of results for these two models. If one is interested in decisions guaranteeing
satisfaction of the whole stochastic inequality system at the given probability level, then a
formal solution via the individual model, though appealing for its simplicity, may result in
completely unreliable optimal decisions (see, e.g., van Ackooij et al. (2010c)). On the other
hand, individual chance constraints may be used to derive upper and lower bounds for the
optimal value in an optimization problem with joint chance constraints. More precisely, if x is
feasible for (4), then x is feasible for (5) too provided that p ≥ pj for all j. Conversely, if x is
feasible for (5), then x is feasible for (4) too provided that ∑

m
j=1 pj ≥ p + m − 1.

Finally, it has to be mentioned that the chance constraint (1) is of static type. This means that, if
decision and random vector represent discrete time processes, then the decision policy would
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be designed in a way that it does not react on previously observed realizations of the random
vector. Dynamic models for chance constraints lead to new challenges and complications
which are outside the scope of this presentation. For a recently proposed approach in this
direction, we refer to Henrion et al. (2010).

2.2 Random right-hand side

An important special case of the linear separated model (first case of (3)) arises if the linear
transformation A reduces to the identity such that the chance constraint gets the form of
random right-hand side. Then, the probability function of (2) can be written as a composition

α(x) = P(g(x) ≥ ξ) = Fξ(g(x)), (6)

where Fξ is the cumulative multivariate distribution function of the random vector ξ. This
special structure has the advantage that the effort of verifying analytical properties or of
implementing numerical algorithms for the solution of chance constrained problems can
be focussed on distribution functions which are well-studied objects in stochastics. The
composition formula α = Fξ ◦ g allows one to transfer properties like continuity, (local or
global) Lipschitz continuity or differentiability from Fξ and g to α. Since the mapping g
is typically given in analytical form and thus its properties are well understood from the
beginning, it remains to check or to rely on known analogous properties of Fξ . For instance, Fξ

is always continuous if the random vector ξ has a density. Differentiability and convexity are
a more involved issues but can be checked for important classes of distributions (see Sections
2.3 and 2.4).
Under random right-hand side the model of individual chance constraints (5) becomes

αj(x) = P(gj(x) ≥ ξ j) = Fξ j
(gj(x)) ≥ pj (j = 1, . . . , m),

where now Fξ j
refers to the one-dimensional distribution function of the component ξ j.

As one-dimensional distribution functions can be inverted via the concept of quantile, the
individual chance constraints can be rewritten as

αj(x) ≥ pj ⇐⇒ gj(x) ≥ q
(j)
pj

(j = 1, . . . , m),

where q
(j)
pj

:= inf{τ|Fξ j
(τ) ≥ pj} is the pj− quantile of Fξ j

. In other words: individual chance
constraints with random right hand side inherit their structure from the underlying stochastic
constraint. If the latter was linear then the induced individual chance constraints will be linear
too.
Another important special case under random right-hand side arises if the random vector
ξ has independent components, then the calculation of α breaks down to one dimensional
distribution values again:

α(x) = Fξ1
(g1(x)) · · · Fξm

(gm(x)).

Although the constraint α(x) ≥ p cannot be further simplified to an explicit constraint
involving just the gj (as was possible for individual chance constraints), one may still benefit
from the fact that one dimensional distribution functions are usually easy to calculate. On the
other hand, the independence assumption is often not reasonable in practice.
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2.3 Multivariate normal distribution

Perhaps the most important special case in practical applications arises from joint chance
constraints with random right-hand side having a regular multivariate normal distribution.
We shall use the standard notation ξ ∼ N (µ, Σ) to indicate that ξ has a multivariate normal
distribution with mean vector µ and covariance matrix Σ. Such normal distribution is called
regular if Σ is positive definite. According to (6) the constraint with random right-hand
side takes the form Fξ(g(x)) ≥ p then. As g is explicitly given by a formula, in general,
the evaluation of such constraints by optimization algorithms requires the calculation of
Fξ ,∇Fξ . . . ., i.e., of values and (higher order) derivatives of a nondegenerate multivariate
normal distribution function. Fortunately, gradients of such distribution functions can be
reduced analytically to some lower dimensional multivariate normal distribution functions
(see Prékopa (1995), p. 204). The precise formula can be found in Lemma 0.5 below.
Thus, proceeding by induction for higher order derivatives (see also Section 5.2.4), the
whole optimization issue hinges upon the evaluation of nondegenerate normal distribution
functions in this situation. Much progress has been made in computing such distributions
functions be it by using specially designed techniques of numerical integration (Genz & Bretz
(2009)) or be it by developping efficient lower and upper bounds for their values combined
with adapted simulation techniques (Bukszár & Szántai (2002); Szántai & Habib (1998)). Using
those methods at hand, it is possible to deal with joint chance constraints under normally
distributed random right-hand side with moderate precision in moderate dimension of ξ of
say up to a few hundred.
It is important to observe that, given a tool for calculating multivariate normal distribution
functions, it is not only possible to deal with the special case of random right-hand side
but also with the more general linear models introduced in (3). If, for instance, ξ has
a multivariate normal distribution with mean vector µ and covariance matrix Ξ, then the
linearly transformed random vector η := Aξ will have a multivariate normal distribution too
with mean vector Aµ and covariance matrix AΞAT. Consequently, the first model in (3) can be
written without loss of generality in the special form with random right-hand side η and one
is back to the situation discussed before. A similar argument applies to the second model in
(3). However, one must be aware of the fact that a linear transformation of the random vector
may change the normal distribution from a nondegenerate one (i.e., with positive definite
covariance matrix) to a singular one. This is necessarily the case, for instance, if the number
of rows in A exceeds the dimension of the random vector as is typical for instance in network
problems. Then, algorithms for calculating singular normal distribution functions Genz &
Kwong (2000), for calculating normal probabilities of convex sets (in particular: polyhedra)
Deák (1986) or for reducing singular normal distribution functions to regular ones via an
efficient inclusion-exclusion formula Henrion & Römisch (2010) can be applied. At the same
time, it is also possible to obtain gradients with respect to the decision variable x in the models
(3) via reduction to the calculus of values of multivariate normal distribution functions pretty
much the same way (though possibly more involved) as in the case of random right-hand side.
As an instance of such models which are different from random right-hand side, we discuss
two-sided chance constraints with multivariate normal distribution in Section 5.2. We note
that beyond normal distributions and models of type (3) gradients of probability functions
α in (2) may be very difficult to obtain. For a general, abstract gradient formula, we refer to
Uryasev (1995).
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2.4 Convexity

Convexity is a basic issue for theory (structure, stability) and algorithms (convergence towards
global solutions) in any optimization problem. In chance constrained programming, the first
question one could deal with is convexity of the feasible set defined say by a very simple
probabilistic constraint of the type

{x|P(ξ ≤ x) ≥ p} = {x|Fξ(x) ≥ p}. (7)

It is well known that such a set is convex if Fξ is a quasiconcave function. Although
distribution functions can never be concave or convex (due to being bounded by zero and one)
it turns out that many of them are quasiconcave. The left plot of Figure 1 shows the graph of
the bivariate normal distribution function with independent components. It is neither concave
nor convex, but all of its upper level sets are convex (the boundary of the upper level set
corresponding to the level p = 0.5 is depicted by a curve on the graph). For algorithmic

Fig. 1. Bivariate normal distribution function (left) and standard normal distribution and its
logarithm (right).

purposes it is often desirable to know that the function defining an inequality constraint of
type ’≥’ is not just quasiconcave but actually concave. As mentioned above, this cannot hold
for inequalities of type (7). However, a suitable transformation might do the job. Indeed, it
turns out that most of the prominent multivariate distribution functions (e.g., multivariate
normal, uniform distribution on convex compact sets, Dirichlet, Pareto, etc.) share the
property of being log-concave, i.e., log Fξ is concave (an illustration for the one-dimensional
normal distribution and its log is given in the right plot of Figure 1). The key for verifying
such a nontrivial property for the distribution function is to check the same property of
log-concavity for the density of Fξ , if it exists. The latter task is easy in general. For instance,
a nondegenerate normal density is proportional to the exponential of a concave function,
hence multivariate normal distributions are logarithmically concave. The mentioned result
is a consequence of a celebrated theorem due to Prékopa (1995). Now, when Fξ is log-concave,
(7) may be equivalently rewritten as a concave inequality constraint {x| log Fξ(x) ≥ log p}
or equivalently as a convex inequality constraint {x| − log Fξ(x) ≤ − log p}. The same
conclusions on convexity can be drawn for more general chance constraints of linear separated
type

{x|P(Bx ≥ Aξ) ≥ p},
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i.e., the set of feasible decisions can be described by the convex inequality constraint

{x| − log FAξ(Bx) ≤ − log p}

for the same family of distributions of ξ having log-concave densities.
Things become more involved in the feasible set

{x|P(A(ξ)g(x)− b) ≥ p} (8)

of the coupled model (right case of (3)). A classical result by van de Panne & Popp (1963) and
by Kataoka (1963) states that if the random matrix A(ξ) reduces to just one line A1(ξ), the
mapping g is the identity (i.e., g(x) = x), ξ has a regular multivariate normal distribution and
p ≥ 0.5, then the set (8) is convex. A first difference with the log-concavity properties stated
above is that convexity of the feasible set does no longer hold true for arbitrary probability
levels but only for sufficiently large ones. This, however, is not a severe restriction because
in practice one is interested in large probability levels anyway (e.g., p ≥ 0.95). This classical
result has been generalized later on to other than normal distributions of ξ (e.g., elliptically
symmetric or symmetric log-concave, Lagoa et al. (2005)) and to nonlinear mappings g(x) (see
Henrion (2007)).
Evidently, the previous results can be immediately applied to the feasible set of individual
chance constraints:

{x|P(Aj(ξ)g(x)− bj) ≥ pj (j = 1, . . . , m)}.

Indeed, since the intersection of convex sets is convex again, it follows from the previously
mentioned result for one single row A1(ξ) that this feasible set induced by a whole random
matrix is convex provided that pj ≥ 0.5 for j = 1, . . . , m. Not surprisingly, things are not that
evident for the joint chance constraint (8) if A(ξ) has more than just one line. Convexity results
can then be found under the assumption of ξ having a normal distribution with specially
structured covariance matrix (see Henrion & Strugarek (2008); Prékopa (1995)). Convexity in
the general case is an open question.

2.5 Compactness

Compactness of the feasible domain is a very interesting property to check, since non-empty
and compact feasible sets guarantee the existence of solutions and allow us to derive stability
of results. It is interesting to observe that compactness of the coupled chance constraint (8)
can be derived in case of a normal distribution without enforcing it by additional exterior
deterministic constraints on the decision vector (e.g., box constraints). To be more precise, let
the rows Ai of A in (8) be normally distributed according to Ai ∼ N (µi, Σi) with positive
definite covariance matrices Σi for i = 1, ..., m. Assuming that g is a homeomorphism

(e.g., g(x) = x), then, (8) is compact provided that p > mini Φ1(
√

µT
i Σ−1

i µi). Here, Φ1

refers to the one-dimensional standard normal distribution function and, hence, the critical
probability level beyond which compactness is guaranteed can be calculated explicitly from
the distribution parameters of ξ. As a consequence, the Weierstrass Theorem ensures the
existence of a solution to the optimization problem

min{ f (x) | x satisfies (8)},

whenever the objective function f is continuous.
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2.6 Discrete distributions

The setting of joint chance constraints with random right-hand side and nondegenerate
multivariate normal distribution enjoys many desirable features such as differentiability or
convexity (via log-concavity). Of course, other settings may have practical importance too.
For instance, the distribution of the random right-hand side could be other than normal.
The cases of multivariate Gamma or Dirichlet distributions are discussed in Prékopa (1995),
Section 6.6. Here, log-concavity remains an important tool.
Things become different, however, when passing to discrete distributions. These are of
interest for at least two reasons: first, the problem to be solved could have been directly
modeled by discrete random variables (see, e.g., Beraldi & Ruszczyński (2002)). Second, there
may be a need to approximate continuous distributions (e.g., multivariate normal) by discrete
ones, for instance when treating probabilistic constraints in two stage models with scenario
formulations Ruszczyński (2002). A key issue in discrete chance constrained programming
is finding the so called p-efficient points (introduced in Prékopa (1990)) of the distribution
function Fξ of ξ. These are points z such that Fξ(z) ≥ p and the relations Fξ(y) ≥ p, y ≤ z
(partial order of vectors) imply that y = z. One easily observes that all the information about
the p-level set of Fξ is contained in these points because

{y|Fξ(y) ≥ p} =
⋃

z∈E

(z + R
s
+),

where E is the set of p-efficient points and R
s
+ is the positive orthant in the space of the

random vector. In the case of ξ having integer-valued components and p ∈ (0, 1), P is a finite
set (see Theorem 1 in Dentcheva et al. (2000)). Algorithms for enumerating or generating
p-efficient points are described, for instance, in Beraldi & Ruszczyński (2002); Dentcheva et al.
(2000); Prékopa (2003); Prékopa et al. (1998). It is interesting to note that the log-concavity
concept, even if not directly applicable, can be adapted with useful consequences to discrete
distributions as well (see Dentcheva et al. (2000)).
Another powerful approach to solve chance constrained programs with discrete distributions
via integer programming methods has been recently reported in Luedtke & Ahmed (2008).

3. Randomness and energy management optimization problems

In the electrical power industry, it is important to guarantee at each time step, the equilibrium
between the offer and demand and hence avoid shortage supply. This is a major concern,
whatever the time horizon. The traditional Unit Commitment Problem (UCP) consists of
defining the minimal-cost power generation schedule for a given set of power plants satisfying
at each time step the equilibrium between the production and the demand while respecting
physical constraints. This problem, in a deterministic setting, is a challenging large-size,
non-convex, non-linear optimization problem, due to many thermal and hydro power-plants
constraints, which introduce discontinuous operation domains and give non-convex dynamic
constraints. It has been solved satisfactory in an industrial way (Batut & Renaud (1992); Cohen
& Zhu (1983); Lemaréchal & Sagastizábal (1994); Merlin & Sandrin (1983)).
Many uncertainties strongly impact the electrical power industry and should be taken
into account in this problem. Uncertainty consists of the load charge curve and the
hydraulic-inflows of each reservoir, both of which are climate sensitive (temperature and
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cloud cover). Moreover, we have to consider the availability of the power plants, which are
subject to random failure, the prices on both electricity and gas markets and wind generation.
Extending, in the context of electricity markets, the traditional UCP leads to a modern
Energy Management Problem (EMP). This modern version consists of optimizing the
production planning, while keeping supply shortage risk under bounds, using both financial
(interruption options, futures and markets) and physical (thermal and hydraulic production
units) assets (Zorgati et al. (2009)). For economical reasons, one key point, which requires
significant effort deals with the definition of an efficient Water Reservoir Management
Problem. Such a problem can be considered as a sub problem of any EMP. Since the original
deterministic UCP is already challenging, needless to say, adding uncertainty has not made
things easier. Hence, in a logic of price decomposition (or optimization assets against market
prices) we will typically consider subproblems of the huge EMP. It is important to note that the
structures that occur in these subproblems are quite general and occur in many other Energy
management problems. We refer to Section 4 for more on these structures.
When generally considering Optimization Problems encountered in Energy management, we
can state that they are characterized by challenging key features such as:

• the stochastic nature of the problem, due to the uncertainty affecting the electrical system

• the stochastic nature of several physical constraints

• the nature of the decision variables of the problem (real, integer, binary/logical)

• the huge number of variables and constraints

• the non-linear (and non-convex) nature of many constraints

• bilateral constraints

• we are looking for closed loop strategies, i.e., decisions that adapt whenever the outcome
of randomness is observed.

Considering the related Energy Management optimization Problems (EMOP) and a large
class of other problems1 such as long run marginal costs of energetic commodities or gas
management, we clearly obtain the following generic structure of many EMOP:

min f [c(x, ξ)]

s.t. bl(ξδ) ≤ A(ξα)x + θ(ξ) ≤ bu(ξδ)

Px ≤ h (9)

x ∈ X,

where

• f is a risk measure on the cost function c,

• x are the controls of the problem,

• A(ξα) the matrix of the problem affected by random processes ξα and describing either

• the offer. In this case α is the type of assets we consider, e.g., thermal, hydro, Futures,
contracts, wind, etc...

• a network. In this case α can be associated to coal mines, roads, gas compression
stations, pipes and reservoirs, etc...

1 with time horizons ranging from long to short term

299Chance Constrained Programming and Its Applications to Energy Management

www.intechopen.com



• the (bilateral) stochastic inequality bl(ξδ) ≤ A(ξα)x + θ(ξ) ≤ bu(ξδ) has to be given a
meaning. For instance by using a probability constraints, i.e., P[bl(ξδ ≤ A(ξα)x + θ(ξ) ≤
bu(ξδ)] ≥ p or by using Robust Optimization.

• the (possible void) deterministic constraints Px ≤ h models any polyhedral set of
constraints on x

• bl(ξδ) the demand affected by the random process ξδ. In that case bu would be infinity. In
the case of hydro management, bl and bu would be the lower and upper bounds on the
reservoir capacity respectively.

• ξ = [ξα; ξδ] is the concatenation of ξα and ξδ. Alternatively we can write ξ = Ξ(ξα, ξδ) as
some global random process, reflecting complex correlations and dependencies. We have
expressed this feature through the use of the function Ξ.

All other specific constraints such as those appearing in water reservoir management or the
nature of the controls are symbolically described by the set X. Such a set can contain all
dynamic constraints on power plants for example (see Langrene et al. (2010) for the difficulties
induced by such constraints).
We can distinguish three main classes of problems depending on the nature of randomness of
the above stochastic inequalities:

• Only the right member b is random. We can think of coal, gas, hydro production or water
reservoir management problems. In such problems, the matrix describes the topology of
a system or a network and is considered fixed.

• Only the matrix A is random. This case occurs, in gas problems when considering
investments on the network.

• Both A and b are random. This is the case in unit commitment and hedging problems.

4. Structure of energy management optimization problems

The general problem (9) can be declined in various subproblems. Each of these subproblems
contains key features such as bilateral chance-constraints, random matrices with singularities
and binary variables. The point of moving to subproblems is that these do not contain all
problematic features of problem (9) at once. We can hence consider specific and adapted
algorithms and methods. These models of the different subproblems often come with a
robust counterpart or even an approximate chance constrained model. The results of the latter
models can be compared with results obtained, using a chance-constraint formulation.
This section will detail the general structure derived from Energy management optimization
problems. These structures are however far more general and can be found in many other
problems. As such, the derived algorithms can be applied to problems from other contexts as
well. The typical considered problems have the form

minx cTx

s.t. P[bk
l (ξ) ≤ Ak(ξ)x + θk(ξ) ≤ bk

u(ξ)] ≥ pk ∀k = 1, ..., K (10)

Qx ≤ q

x ∈ R
nr × {0, 1}nb ,

where the problem (10) can have unilateral (either bl or bu is ±∞) or bilateral constraints
for any of the K (joint) chance constraints. Moreover, nr + nb = n, where n is the problem
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dimension and either nr or nb can be zero. The matrix can be deterministic, as well as θ, bl or
bu but never all together.
Assuming the law θ centered, and absence of uncertainty, problem (10) is basically an
extension of the linear (mixed-integer) program:

minx cTx

s.t. bl ≤ Ax ≤ bu

Qx ≤ q (11)

x ∈ R
nr × {0, 1}nb ,

Since model (10) is quite general, we will give some specific versions of this model and point
out the structure of the submodels.

4.1 Shortage supply hedging

In a simplified version of the stochastic unit-commitment problem we can only focus on
shortage supply hedging under randomness on power plant generation and customer load.
In such a setting, prices and randomness on hydro reservoirs would be considered absent (in
order to simplify). This leads to a version of model (10), wherein the random matrix A(ξ) has
the following form :

A(ξ) =
(

Aθ(ξθ) Aη(ξη) Aµ(ξµ) Aσ(ξσ) Aε(ξε),
)

where θ, η, µ, σ, ε stand for type of assets, respectively thermal, hydro, markets, contracts and
renewable. The decisions x in this problem relate to production decisions on various assets.
The lines of the matrix would typically correspond to different time steps in our problem and
the entries of the matrix would correspond to random availability coefficients. The thermal
coefficient matrix would typically have the following sparse random structure:

Aα(ξα) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

aα
11 ... aα

1Nα ... 0 ... 0 ... 0 ... 0

. . .
. . .

0 ... 0 ... aα
i1 ... aα

iNα ... 0 ... 0

. . .
. . .

0 ... 0 ... 0 ... 0 ... aα
m1 ... aα

mNα

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

A natural first idea is to use a unilateral probabilistic constraint for this model, i.e., we will
assume that bl(ξδ) is the random load. This would correspond to the idea that we are looking
to produce a sufficient quantity (and avoid shortage supply) in most cases as randomness will
affect our system after decision making. We can also argue that we would like to produce
not too far from the load in a sufficient amount of cases. In that case θ(ξ) would be the
negative customer load and bl and bu two bandwidth parameters (e.g., ±500MW). One can
also imagine a series of such probabilistic constraints with increasing probability level and
increasing margins. We refer to Zorgati et al. (2009) and Zorgati & van Ackooij (2010) for more
on this model.
Variations of this model would consist of considering individual chance constraints rather
than joint ones. The danger of such a model would be that we might avoid shortage supply
with a sufficient level for each time step, but never on the global time horizon. Another
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variation consists in considering that we decide on what asset to use and assume that it
produces at its random maximal level. This greatly simplifies that problem as it ejects (or
neglects) dynamic constraints on thermal plants. It also simplifies the hydro sub-problem
as now, one only needs to know plausible hydro production trajectories, which can be
pre-computed. This reduces problem (10) to a stochastic knapsack problem. Robust versions
of which can be found in Klopfenstein (2007); Klopfenstein & Nace (2007; 2008).

4.2 Singularities in the random matrix?

In Section 4.1 we have seen that an important problem to consider, due to the random failure
process that affects thermal units, is the following:

minx cTx

s.c. P[A(ξ)x ≥ b] ≥ p (12)

x ≥ 0

This problem generalizes the first one since it suffices to add the random b vector to the
random matrix and introduce a single variable xn+1 = −1. Therefore the global setting
wherein both the right member and the matrix are random can be reduced to problem (12).
However as seen in Section 4.1 the random matrix might have many (non-random) zeros and
hence a priori has a distribution with many singularities. It can however be reformulated as a
random-vector problem and do away with the singularities. This reformulation is very useful
when we want to compute the probabilities for each x. To this end, let us define the following
operator T, T(x) = diag((xT, ..., xT)T). We can remark that T is actually a linear operator. We
also define the following matrix operation A �→ A⊙, which we shall call the vector transform,
by A⊙ = (A11, ..., A1n, A21, ..., Ann)

T. Then the system in equation (12) can also be rewritten
as follows

P[T(x)A⊙ ≥ b] ≥ p. (13)

What is very interesting about this transform is that if the original A matrix contained some
non-random zero components due to a formulation issue, as is the case for the thermal
production matrix Aθ then applying this transform we can actually place the zero components
in the T(x) decision matrix and obtain a random vector A⊙ that does not contain any
singularities. Moreover if we assume that A⊙ is actually a normally distributed random vector
with covariance matrix Σ, then computing the probability (13) comes down to computing a
multivariate normal cumulative distribution function having covariance matrix T(x)ΣT(x)T .
One can therefore see that the number of columns of matrix A doesn’t really matter here as
the probability that has to be computed is normal of dimension the number of rows of A.

4.3 Hydro reservoir management

The hydro subproblem of problem (10) is of particular interest as it has a structure that is
common to many other network flow problems with randomness. Indeed, in such problems,
we typically have righthand side randomness. In particular matrix A describes the topology
of the systems, i.e., the flow constraints. Randomness occurs as in each node of the network
random quantities are withdrawn (customer load in a coal-mine investment model with
random load) or added (random water inflows in a hydro reservoir model). The cost vector
can describe investment and transportation costs (coal-mine model, Lepaul (2009)) or water
turbining costs (where we assume that volume dependent water values are available). Further
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deterministic constraints describe non-random parts of the model, such as reservoirs that are
not impacted by random inflows, or nodes in the network not subject to random load (mines,
roads). We refer to van Ackooij et al. (2010b;c) for more information on the hydro reservoir
model. This subproblems also offers an alternative formulation as robust optimization (see
Appariagliato et al. (2006)).

5. Chance constrained programming results for EM

When considering chance constrained optimization problems, such as the EMP (9) two
important paths can be taken. We can either try to solve the problem exactly or we can try
to find a good approximation of the problem. In the first setting it is important to dispose
of a way to evaluate the probability constraint for any x quickly and dispose of a way to
compute gradients (see van Ackooij et al. (2010c)), second derivatives (van Ackooij et al.
(2010b)) and exploit information in the covariance matrices of the uncertainty factors (see van
Ackooij et al. (2010a)) combined with Prékopa’s LP method (Prékopa (1995)). In the second
approach, the difficulty resides in finding a good approximation of the chance-constraint. This
can be typically done by bounding the contraint. The advantage often resides in the fact
that the approximation holds for all laws. Hence, we can obtain convex approximations of
a CCP. In EM, for some problems with random matrices the decision vector contains binary
variables. Such stochastic knapsack problems can be solved approximately by combining
inner and outer bounds on the probability measure (see Zorgati & van Ackooij (2008; 2010)).
Another approach is Robust Knapsack problems, such as those considered in Klopfenstein
(2007); Klopfenstein & Nace (2007; 2008). These approaches can also be handsomely compared
on the same problem. Such approximation schemes can also be used in a continuous setting,
i.e., one wherein the decision vector x is real (see Zorgati et al. (2010)). The advantage of
using such approximation techniques is that they transform the potentially non-convex chance
constraint problem (if we take exotic laws) into a conic quadratic problem. The price of which
is an approximation.
In this section we will discuss both paths.

5.1 Approximate chance constrained programming: Bounds

5.1.1 Minimal information about uncertainties

Two major questions have to be investigated in the aim of taking uncertainties into account in
the optimization process. First, some knowledge about random processes has to be available.
Secondly, provided that such knowledge is available, how can we integrate the associated
information into the optimization process? These questions are key questions in stochastic
optimization and are in practice very difficult.
Since laws are not precisely known or very complex, we aim to approximately solve the
problem. We choose here a very simplistic solution based on minimal available information
about uncertainties. We assume that, for any random parameter r, we know the average
rmean = E(r), the maximal value, rmax and its minimal value rmin, all derived from historically
observed values.
No further hypothesis are made about the underlying random process. We will just suppose
that all uncertain coefficients of the matrix A and vector b are bounded independent random
variables. Boundedness is not a restrictive assumption as all borelian random variables are
tight and can therefore be assumed to be almost bounded.
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5.1.2 Conic approximations of individual chance constraint

Approximate solution of the probabilistic model can be obtained using the following result,
the proof of which follows from an application of Hoeffding’s Theorem (Hoeffding (1963))
and can be found in Zorgati et al. (2010) for each individual chance constraint, i.e., each line
of the individual chance constrained stochastic matrix inequality system:

Lemma 0.1. Let aj, b, j = 1, ..., n be almost surely bounded independent random variables and let A

denote the random vector a. We will note these bounds by amin
j , bmin and amax

j , bmax. Furthermore we

define the (semi positive definite) diagonal matrix ∆ as ∆ = diag((amax
1 − amin

1 , ..., amax
n − amin

n )T).
Any individual chance constraint

P[〈A(ξ), x〉 ≥ b(ξδ)] ≥ α (14)

can be bounded by the 2 following convex conic quadratic inequalities:

〈E[A(ξ)], x)〉 −
√

(1/2)| ln(1 − α)| ‖∆x + δb‖ ≥ E(b)

〈E[A(ξ)], x)〉 ≥ E(b),

where bounded means that the feasible set of equation (14) contains the feasible set of the 2 convex conic
inequalities.

As a consequence, the individualized and unilateralized version of the constraints in the
general problem (10) related to time step i:

P(〈Ai, x〉 ≤ bl + θi(ξ)) ≥ βi

P(〈Ai, x〉 ≥ bu + θi(ξ)) ≥ βi

can be approximated by

〈Ai, x〉 ≤ bl + E(θi) +
√

(1/2) |ln 1 − βi|Ri

〈Ai, x〉 ≤ bl + E(θi)

〈Ai, x〉 ≥ bu + E(θi) +
√

(1/2) |ln 1 − βi |Ri

〈Ai, x〉 ≥ bu + E(θi),

where Ri = [max(θi)− min(θi)]
2

If the initial problem has m constraints and mn variables, the convex approximation using the
result leads to a problem with m(2n + 5) constraints and mn variables.
This result implies that any individual chance-constrained optimization problem of the form
(10) can be approximated by the convex conic quadratic problem :

minx ctx

s.t.
∥

∥Ãlx + b̃l

∥

∥

2 ≤ f̃lt x + d̃l , l = 1, ..., L,

since, by Lemma 0.1, any linear constraint corresponds to a particular case of conic quadratic
constraint with null matrix Ai and null vector bi and any positivity constraint can also be
written in a conic quadratic form (with fi = 0 (Alizadeh & Goldfarb (2001); Lobo et al. (1998))).
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Then, by applying Schur’s complement theorem, it is easy to give the Semi-Definite version
of this conic quadratic approximation :

Corollary 0.2. Any individual chance constraint:

P[〈Ai(ξ), x〉 ≥ bi(ξδ)] ≥ αi, ∀i ∈ I

can be bounded by the following semi-definite condition:

[

( f̃ t
l x + d̃l)I Ãlx + b̃l

(Ãlx + b̃l)
t f̃ t

l x + d̃l

]

� 0, l ∈ (1, L),

where notations are as in Lemma 0.1

5.1.3 Approximations in the combinatorial case : Stochastic Knapsack problems

As indicated earlier, when problem (10) only contains binary decisions, we are facing a
stochastic multi-knapsack problem. By considering individual chance constraints, using finite
subadditivity of the probability measure and the inclusion-exclusion principle, we show that
thanks to Hoeffding’s inequality, any chance constraint can be approximated by an "outer"
bound for m odd and by a "inner" bound for m even. This leads to a robust mixed inner-outer
algorithm that allows us to approximately solve our binary chance-constrained program and,
in general, any stochastic Multi-Knapsack Problem, i.e., canonical problems of the form

minx∈{0,1}n cTx

s.t. P[A(ξ)x ≥ b] ≥ 1 − p (15)

We refer to Zorgati & van Ackooij (2010) for the proofs of the theorems in this paragraph.

5.1.3.1 Method 1 : Mixed Inner Outer approximation (AMIO)

The following approximation is based on Hoeffding’s inequality.

Lemma 0.3. Let u be the all-one vector. Assuming 〈E (Ai), u〉 ≤ bi and fixing τi ≥ 0 such that
bi = τi + 〈E (Ai), u〉, we obtain

P[〈Ai, x〉 ≥ bi] ≤ exp(−
2τ2

i

∑
n
j=1(aij − aij)

2
).

Whenever 〈E (Ai), u〉 > bi, we obtain

P[〈Ai, x〉 ≥ bi] ≥ 1 − exp(−
2τ2

∑
n
j=1(aij − aij)

2
),

where τ = minx 〈E (Ai), x〉 − bi.
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Lemma 0.4. Define τi(x) = bi − 〈E (Ai), x〉. Let x be a feasible solution of the following problem

min(x,z)∈{0,1}n+m cTx

s.t. −Ĉizi + (1 − zi) ln(1 − p) ≤
−2(bi − 〈E (Ai), x〉)2

∑
n
j=1(aij − aij)

2

−2(bi − 〈E (Ai), x〉)2

∑
n
j=1(aij − aij)

2
≤ ln(p) + C(1 − zi) (16)

−Mizi ≤ τi(x) ≤ Mi(1 − zi)

where C is such that exp (C) ≥ 1
p , Ĉi = 2

M2
i

∑
n
j=1(aij−aij)

2 and Mi some big constant such that τi(x) ∈

[−Mi, Mi] ∀x, then x is feasible for the canonical problem on constraint i if τi(x) ≤ 0. If x is a feasible
solution for constraint i of the canonical problem (15) and τi(x) ≥ 0 then x is feasible for constraint i
for (16).

We will call the problem (16) the mixed-inner-outer approximation (MIO) of the canonical
problem. It is a linear problem if we remark that zi is binary, and the fact that the first
constraint is active whenever zi = 0 and the second when zi = 1. Indeed the following
problem is equivalent to MIO :

min(x,z)∈{0,1}n+m cTx

s.t. −τi(x) ≥

√

√

√

√−
1

2

n

∑
j=1

(aij − aij)
2 ln(p)zi

τi(x) ≥ −Mizi (17)

−τi(x) ≥ −

√

√

√

√

1

2

n

∑
j=1

(aij − aij)
2Ĉizi +

√

√

√

√−
1

2

n

∑
j=1

(aij − aij)
2 ln(1 − p)(1 − zi)

−τi(x) ≥ −Mi(1 − zi)

The interpretation is noteworthy since the ratios inside the constraints are the expected
difference between load and the production normalized by the total power available at time
step k. Indeed on some constraints we will have enforced the original constraint, therefore
obtaining a feasible, but potentially costly solution. However on some other constraints
we will have relaxed the original constraint, therefore obtaining a potentially non-feasible
but cheap solution. On some examples, this allows us to approximate rather accurately the
optimal cost.
We will speak of the augmented MIO problem whenever the objective function is replaced
by minx,z cT x − aTz, for some positive vector a. The point in adding the additional a vector
is giving additional value to the event τi(x) ≤ 0, which is the average version of what we
wish to achieve with our chance constraint! The more negative τi(x), the likelier the chance
constraint is satisfied.
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5.1.3.2 Method 2 : Robust Knapsack Formulation (RKP(Γ))

Following Klopfenstein & Nace (2008), we can build a Robust Knapsack version of our
problem (10) RKP(Γ). We thus obtain

min cT x

s.t. ∑
j∈S

aijxj + ∑
j/∈S

aijxj ≥ bi∀i∀S ⊂ {1, ..., n} , |S| = Γ.

Here Γ is a hardness parameter. Taking for instance Γ = n gives the full-robust solution, i.e.,
whatever the realization of uncertainty the chance-constraint is satisfied. If the above problem
is infeasible for Γ = 0 there is no solution to problem (15) either. The problem RKP(Γ) can be
solved using a dynamic programming algorithm as indicated in Klopfenstein & Nace (2008).
The main difficulty in these approximations is that for many Γ the RKP(Γ) problem may be
infeasible.

5.2 Gradients for two-sided chance constraints under multivariate normal distribution

In the hydro sub-problem that we consider (Section 4.3), probabilistic constraints are induced
by two-sided stochastic inequalities. Indeed we have seen that it is of the following form:

min{cTx | P(Ax + a ≤ Lξ ≤ Bx + b) ≥ p}, (18)

where A, B, L and a, b, c are matrices and vectors, respectively, of appropriate orders.
Assuming inflows normally distributed, these inequalities bound a normally distributed
random vector by some decision-dependent functions. More precisely the probabilistic
constraint may take the form

P(α(x) ≤ ξ ≤ β(x)) ≥ p.

We refer to van Ackooij et al. (2010c) for more on these methods.
Here, ξ is a random vector having a regular multivariate normal distribution, P denotes the
probability measure, p ∈ (0, 1) is a probability level and x refers to a decision vector. In
geometric terms, it is required that the probability of some x-dependent rectangle be not
smaller than p. In order to determine an optimal decision x∗ in the context of an optimization
problem, one has to have access to values and derivatives of this probability function. As
far as values are concerned, one may employ numerical algorithms designed for the calculus
of normal distribution functions Szántai (2000), of normal probabilities of general convex sets
Déak (1980) or directly of rectangles Genz (1992). However, none of these algorithms provides
gradients of the probability function with respect to changes of the lower and upper limit of
the rectangle. In case of one-sided constraints (i.e., α = −∞, so that one is dealing with
distribution functions), there is no problem to reduce the computation of the gradient to that of
a value of a distribution function (see Lemma 0.5 below). Formally, one could also do so with
gradients of two-sided constraints by exploiting a representation of rectangle probabilities in
terms of distribution functions (see (19)) and then taking derivatives of the latter ones term
by term. We note that such representation allowing for reduction of derivatives to those of
distribution functions is available even for general polyhedra Henrion & Römisch (2010). This
approach, however, becomes impractical already in small dimension. For example in the case
of an n-dimensional rectangle, the number of terms in the representation equals 2n.
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5.2.1 Constraints induced by rectangular sets and multivariate normal distributions

We present a simple formula for the derivative of the normal probability of rectangles
with respect to their lower and upper limits. In particular, this formula allows to reduce
the problem to the same calculus of probabilities of rectangles (in one dimension less).
Consequently, the same algorithm in Genz (1992) can be used for computing values and
derivatives of the probability function introduced above.
Let ξ be some n-dimensional random vector having a nondegenerate multivariate normal
distribution with mean vector µ and covariance matrix Σ. We will write ξ ∼ N (µ, Σ) for
short. Denote by

Φξ(z) := P (ξ ≤ z) ∀z ∈ R
n

its cumulative distribution function (with P referring to the underlying probability measure).
We further introduce the rectangle probability function

Fξ(a, b) := P (a ≤ ξ ≤ b) ∀a, b ∈ R
n : a ≤ b.

The following relation is well known to hold whenever a ≤ b:

Fξ(a, b) = ∑
i1,...,in∈{0,1}

(−1)[n+∑
n
j=1 ij] Φξ(yi1

, . . . , yin
), (19)

where

yij
:=

{

aj if ij = 0

bj if ij = 1
.

For instance, if n = 2, the probability of the rectangle [a, b] calculates via the distribution
function as

Fξ(a, b) = Φξ(a1, a2)− Φξ(a1, b2)− Φξ(b1, a2) + Φξ(b1, b2).

The following lemma can be found (in its equivalent form for standard normal distributions)
in Prékopa (1995). It shows how the derivative of a multivariate normal distribution can be
reduced to values of a different multivariate normal distribution (in one dimension less):

Lemma 0.5. Assume that ξ ∼ N (µ, Σ) with some positive definite covariance matrix Σ =
(

σij

)

.

Then, Φξ is contiuously differentiable and

∂Φξ

∂zi
(z) = fξ i

(zi) · Φξ̃(zi)
(z1, . . . , zi−1, zi+1 . . . , zs) (i = 1, . . . , n) .

Here, fξ i
denotes the one-dimensional probability density of the component ξi, ξ̃(zi) is an n −

1-dimensional random vector distributed according to ξ̃(zi) ∼ N (µ̂, Σ̂), µ̂ results from the vector
µ + σ−1

ii (zi − µi) σi by deleting component i and Σ̂ results from the matrix Σ − σ−1
ii σiσ

T
i by deleting

row i and column i, where σi refers to column i of Σ.

In the next theorem, we generalize Lemma 0.5 to the case of probability functions Fξ defined
by rectangles. In particular, the presented formula allows to again reduce the derivative of
Fξ to the calculus of values of a similar function induced by a different normally distributed
random vector. The proof of the theorem can be found in van Ackooij et al. (2010c)
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Theorem 0.6. Assume that ξ ∼ N (µ, Σ) with some positive definite covariance matrix Σ. Then, for
i = 1, . . . , n,

∂

∂bi
Fξ(a, b) = fξ i

(bi) Fξ̃(bi)
(ã, b̃) (20)

∂

∂ai
Fξ(a, b) = − fξ i

(ai) Fξ̃(ai)
(ã, b̃). (21)

Here, fξ i
is as in Lemma 0.5, ξ̃(bi), ξ̃(ai), are n − 1-dimensional random vectors distributed according

to ξ̃(bi), ξ̃(ai) ∼ N (µ̂, Σ̂) such that µ̂ results from the vector µ + σ−1
ii (bi − µi) σi (in case of bi) or

from the vector µ + σ−1
ii (ai − µi) σi (in case of ai) by deleting component i and Σ̂ is defined as in

Lemma 0.5. Moreover ã and b̃ result from a and b by deleting the respective component i.

In order to demonstrate the impact of the derived formula, we consider the optimization
problem (18). Given that ξ (and so Lξ too) has a multivariate normal distribution, we know
from Prékopa (1995) that the function

x �→ log P(Ax ≤ Lξ ≤ Bx) (22)

is concave. This allows to rewrite the optimization problem as a convex one:

min{cT x | − log P(Ax + a ≤ Lξ ≤ Bx + b) ≤ − log p}

Now one can apply, for instance, a supporting hyperplane type method as described in
Prékopa (1995) in order to solve this problem. This requires, apart from functional values,
also to calculate gradients of the function (22) which amounts to determine partial derivatives
of the function Fξ(Ax, Bx) introduced above. The latter task can efficiently be realized with
the aid of the formula given in Corollary 0.8. It resides in the fact that we rely on the same
algorithm as used for determining values of Fξ .

5.2.2 Convexity of rectangular constraint problems?

When looking at the definition of the function h in (4), we can see that we are dealing here
with the special case

h(x, ξ) := Ax + Bξ − c, (23)

of separated linear constraints. In (23), A and B may represent matrices which describe how
releases x and inflows ξ accumulate over time and how reservoirs are interconnected. The
vector c provides certain lower and upper levels in the reservoirs which have to be respected
(possibly time-dependent).
Defining the linearly transformed random variable η := −Bξ, we may rewrite the
probabilistic constraint associated with (23) as

P (Ax + Bξ ≥ c) ≥ p ⇐⇒ P (Ax − c ≥ η) ≥ p ⇐⇒ Fη (Ax − c) ≥ p, (24)

where Fη refers to the (multivariate) distribution function of η. This means, the probabilistic
constraint is equivalent to a single inequality in the decision vector x which can be evaluated
(e.g., in the framework of a nonlinear optimization code) if one is able to cope with
multivariate distribution functions.
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Clearly, problem (18) can be cast into the equivalent problem

min
{

〈d, x〉 |Fη (u) ≥ p, u = Ax − c
}

. (25)

The key observation for a numerical treatment of (25) in the framework of convex optimization
is that many prominent multivariate distribution functions (e.g., regular and singular normal,
Dirichlet, Gamma, Wishart uniform etc.) share the property of log-concavity:

log Fη (λ1u1 + λ2u2) ≥ λ1 log Fη (u1) + λ2 log Fη (u2) ∀u1, u2 ∀λ1, λ2 ≥ 0 : λ1 + λ2 = 1.

The verification of log-concavity for distribution functions is based on the celebrated Theorem
by Prékopa (see Prékopa (1973)) stating that a distribution function is log-concave if and
only if the density function has this property (see Henrion & Strugarek (2008)), for these
distributions one may pass to the equivalent (by monotonicity of log) optimization problem

min
{

〈d, x〉 | log Fη (u) ≥ log p, u = Ax − c
}

. (26)

5.2.3 A cutting planes algorithms for joint chance constrained programming

Being that log Fη is a concave function, (26) becomes a convex optimization problem2. This
can be solved, for instance, by means of the cutting plane method. As it is well-known, the
following ingredients are required for the application of the cutting plane method:

• a Slater point (x̂, û) satisfying Fη (û) > p, û = Ax̂ − c

• a procedure to calculate the distribution function Fη in order to determine in each iteration
k a point ũk on the line segment [uk, û] satisfying Fη (ũk) = p. Here, uk is part of the current
iterate (xk, uk).

• a procedure to calculate the gradient ∇Fη in order to add in each iteration k a cut
〈

∇Fη (ũk) , u − ũk

〉

≥ 0.

• a linear programming solver for solving (26) but with the nonlinear constraint log Fη (u)
replaced by the accumulated cuts (linear constraints) from the previous item.

The last requirement being standard, we adress the first three items in the following
subsections. From now on we restrict our considerations to the - most important case
- of normally distributed random vectors. For the calculation of other distributions like
t-distribution, Gamma-distribution, Dirichlet-distribution or Exponential distribution, we
refer to Genz (2002), Szántai (1996), Gouda & Szántai (2004) and Olieman & van Putten (2006).

5.2.3.1 Calculation of multi-variate normal distribution functions

As mentioned before, we assume from now on that η obeys a multi-variate normal
distribution. We write η ∼ N (µ, Σ) to say that the expectation of η equals µ and the
covariance matrix equals Σ. Codes for calculating the associated distribution function Fη

typically assume that η be standardized, such that µ = 0 and Σii = 1 (i.e., Σ is actually a
correlation matrix). This standardization is easily carried out by introducing the transformed
random vector

η̃ := T (η − µ) ,

2 alternatively we may impose (u, x) to be in some general convex set and problem (26) remains a convex
optimization problem
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where T is a diagonal matrix with entries Σ−1/2
ii . Then, η̃ ∼ N (0, R), where R is the correlation

matrix associated with Σ. Then, the relation between the values of the original and the
standardized distribution functions is given by

Fη (u) = P (η ≤ u) = P (η̃ ≤ T (u − µ)) = Fη̃ (T (u − µ)) .

Therefore, it is sufficient to have access to algorithms calculating standardized distribution
functions. For algorithms doing this job we refer as examples to Szántai (2000) or Genz (1992);
Genz & Kwong (2000). The difference between the two approaches is that the first one relies
on a combination of simulation and efficient probability bounds from modern graph theory,
whereas the second one employs a clever scheme of numerical integration. There is one
peculiarity to be respected in our model: the random vector η was already obtained from
the original random vector ξ via a linear transformation: η = −Bξ (see (24)). Of course,
assuming that already ξ had a multi-variate distribution, say ξ ∼ N (µ′, Σ′) we know that so
has η and we even know how the parameters of η’s distribution are related to those of ξ:

µ = −Bµ′ and Σ = BΣ′BT. (27)

Many algorithms for calculating multi-variate normal distributions (such as Szántai (2000))
assume that this distribution is regular, i.e., the covariance matrix is positive definite. There is
not much loss of generality to assume that original random vectors in practical applications,
such as our ξ, follow indeed a regular normal distribution. However, in our optimization
problem (26), we deal with the transformed random vector η rather than with ξ and it is clear
that the transformation of covariance matrices in (27) destroys the regularity of the covariance
matrix whenever B does not have full rank. But such is typically the case in network problems
and it will turn out to be also the case in our application to water reservoirs due to considering
lower and upper reservoir levels simultaneously. Then, one may benefit from the algorithm
presented in Genz (1992) (see also Genz & Kwong (2000)). We mention that algorithms for
calculating regular normal distributions can also be applied to problems with singular normal
distributions (by using some efficient inclusion-exclusion formula presented in Bukszár et al.
(2004)) and then turn out to be very fast but they require the determination of all vertices of a
polyhedron which limits its use to small dimensions.

5.2.3.2 Calculation of gradients to multi-variate normal distribution functions

By combining the results of Theorem 0.6 with those from Corollary 0.8, computing the
gradients of the chance constraint in problem (18) comes down to evaluation normal densities
in dimension one and multi-variate normal density functions. The same remarks as those
made in Section 5.2.3.1 apply however.

5.2.3.3 Determination of a Slater point

Given the probability level p one actually does not know in advance whether or not the
optimization problem (25) has a feasible solution at all. Indeed, choosing a too large safety
level p may lead to an empty feasible set. Much less one has direct access to a Slater point
which strictly satisfies the probabilistic constraint. In order to get more information here, one
may solve the following auxiliary problem which is also called ’max p’-problem:

max
{

p|Fη (u) ≥ p, u = Ax − c
}

. (28)
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This looks pretty much the same as (25) but the difference is that the objective now is to
maximize the safety level (rather than minimize some cost function) and that optimization
takes place with respect to variables (x, u, p) (whereas in (25) p was fixed). Nevertheless,
one may transform (28) again into a convex optimization problem. First, apply the same
logarithmic transformation as above:

max
{

p| log Fη (u) ≥ log p, u = Ax − c
}

. (29)

Here, the mapping log Fη (u)− log p defining the inequality constraint is not concave in both
variables (u, p) simultaneously. However, (29) is easily seen to be equivalent with

max
{

p′| log Fη (u) ≥ p′, u = Ax − c
}

. (30)

Indeed, (x∗, u∗, p∗) is a solution of (29) if and only if
(

x∗, u∗, ep∗)

is a solution of (30). On
the other hand, (30) is a convex problem because the mapping log Fη (u) − p′ defining the
inequality constraint now is concave in both variables (u, p′) simultaneously. Of course, now
one is formally faced again with the four items required for a cutting plane method mentioned
above. However, the last three items are covered by the same arguments as before (calculus
of Fη , ∇Fη and linear optimization solver). Concerning the first item, the Slater point, this
problem is solved very easily for (29) or (30), respectively, because the safety level is no longer
fixed but becomes a variable. So it suffices to put in (30)

(

x̂, û, p̂′
)

:=
(

0,−c, log Fη (−c)− ε
)

for some sufficiently small ε > 0 to see that

log Fη (û) > p̂′ and û = Ax̂ − c.

Once, (30) (and thus (29)) is solved, the optimal solution (x∗, u∗, p∗) of (29) can be used to
derive a Slater point for the original optimization problem (25). Indeed, if it turns out that
the maximum possible probability level p∗ is smaller than the level p chosen by the decision
maker in (25), then this latter program will not have any feasible solution at all and the
decision maker will have to adjust (reduce) his safety level. Otherwise, if p∗ > p, then
(x∗ , u∗) may obviously be used as a Slater point for the original problem (25). A part from
the meaning of the ’max p’-problem for the determination of a Slater point in the original
problem, its solution provides useful additional insight: indeed, the associated part x∗ of its
solution indicates the most robust decision possible. In the application to water reservoirs
it will represent the most robust release control in order to keep the level constraints of the
reservoir with maximum possible probability. Of course, this robust control will come at a
significantly higher price (in terms of the cost function cTx in (25)).

5.2.4 Second order derivatives

If one is interested in applying second order solution methods to increase the efficiency of
the solution process, one has to work out second derivatives of the probability function ϕ
(where notations are as in corollary 0.8) on the basis of the gradients obtained in theorem 1
of van Ackooij et al. (2010c). The results (van Ackooij et al. (2010b)), which follow from a
straight-forward second application of theorem 1 in van Ackooij et al. (2010c) are collected in
the following lemma.
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Lemma 0.7. Let ξ be a Gaussian random vector with mean µ and variance-covariance matrix Σ. We
define the mapping Fξ(a, b) = P[a ≤ ξ ≤ b] for any rectangle, i.e., a ≤ b. Let Di

n denote the

n dimensional identity matrix from which the ith row has been deleted. Define µc(i,z) = Di
n(µ +

Σ−1
i,i (z − µi)Σi) and Σc(i) = Di

n(Σ − Σ−1
i,i ΣiΣ

T

i )(D
i
n)

T, where Σi is the ith column of Σ. We define

ξc(i,z) as the Gaussian random variable with mean µc(i,z) and covariance matrix Σc(i). The following
holds:

∂2

∂aj∂ai
Fξ(a, b) = f

µc(i,ai),Σ
c(i)
j,j

(aj) fµi,Σi,i
(ai)F

(ξ c(i,ai))
c(j,aj)

(D
j
n−1Di

na, D
j
n−1Di

nb) ∀j �= i

∂2

∂bj∂ai
Fξ(a, b) = − f

µc(i,ai),Σ
c(i)
j,j

(bj) fµi,Σi,i
(ai)F

(ξ c(i,ai))
c(j,bj)

(D
j
n−1Di

na, D
j
n−1Di

nb) ∀i, j

∂2

∂bj∂bi
Fξ(a, b) = f

µc(i,bi),Σ
c(i)
j,j

(bj) fµi,Σi,i
(bi)F

(ξ c(i,bi))
c(j,bj)

(D
j
n−1Di

na, D
j
n−1Di

nb) ∀j �= i,

where fµ,σ(x) is the standard gaussian density. Moreover, whenever j = i and z is a or b we have:

∂2

∂z2
i

Fξ(a, b) = −
zi − µi

Σ2
i,i

fµi,Σi,i
(zi)Fξ c(i,zi)

(Di
na, Di

nb)

+ fµi,Σi,i
(zi)(D

i
nΣ−1

i,i Σi)
T(∇Di

naFξ c(i,zi)
(Di

na, Di
nb) +∇Di

nbFξ c(i,zi)
(Di

na, Di
nb))

The following corollary follows trivially from lemma 0.7 and theorem 1 of van Ackooij et al.
(2010c).

Corollary 0.8. Let ξ be a Gaussian Random variable of dimension n. Let x, A,B,a,b be vectors and
matrices of appropriate dimension. Define furthermore, α = Ax + a and β = Bx + b. Now consider
the mapping ϕ : x �→ P[a + Ax ≤ ξ ≤ Bx + b]. We have:

∇ϕ = ∇αFξ(α, β)TA +∇βFξ(α, β)TB

△ϕ = AT△ααFξ(α, β)A + AT△αβFξ(α, β)B + BT△βα Fξ(α, β)A + BT△ββ Fξ(α, β)B.

6. Illustration : Feasibility of CCP for EMOP

In this section we will consider the hydro reservoir management example from van Ackooij
et al. (2010b). We will consider a discretized time horizon. To this end let τ denote the set of
(homogeneous) time steps. Let ∆t be this time step size expressed in hours.

6.1 Topology

A hydro valley can be seen as a set of connected reservoirs. We can therefore represent this
with a directed graph. Let N be the set of nodes and let A (of size |N |× |N |) be the connection
matrix, i.e., An,m = 1 whenever water released from reservoir n will flow into reservoir m. We
will assume that D is the flow duration matrix, i.e., Dm is the amount of time (measured in

time steps) it takes for water to flow from reservoir m to its child. Let T :=
{

gi , i = 1, ..., NT

}

denote the set of turbines and P :=
{

pi, i = 1, ..., NP

}

denote the set of pumping stations. We

furthermore introduce the mapping σT : {1, ..., NT } → N (σP : {1, ..., NP} → N ) attributing
to each turbine (pumping station) the reservoir number to which it belongs. We will also
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introduce the sets A(n) = {m ∈ N : Am,n = 1} and F (n) = {m ∈ N : An,m = 1}. The set
A(n) is empty for top reservoirs and the set F (n) for bottom reservoirs.

6.2 Controls

We will assume that each turbine (and pumping station) can be controlled for each time step.
To this end we introduce the variables xi(t) for each t ∈ τ and i = 1, ..., NT . In a similar way
we introduce the variables yi(t) for the pumping stations. The units are in m3/h. Furthermore
we assume that each of these variables are bounded from below by zero and from above by xi

(yi respectively).

6.3Water values

Let πn(V) be a given discretization of the water levels of reservoir n, i.e., πn(V) =
{

Vn
0 = Vn

min, ..., Vn
Kn

= Vn
max

}

. We assume that a water value Wn
i (t) (in e/m3) is attributed

to each interval [Vn
i−1, Vn

i ), i = 1, ..., Kn. We introduce two real variables zn
x,i(t) and γn

x,i(t)
for each time step t ∈ τ, each i = 1, ..., Kn and for each reservoir. We similarly introduce
zn

y,i(t) and γn
y,i(t) for turbining. In fact zn

i (t) represents the part of the water turbined (zn
x,i(t))

/ pumped (zn
y,i(t))that falls in the interval [Vn

i−1, Vn
i ). We impose the following constraints for

each n ∈ N and t ∈ τ:

Kn

∑
i=1

zn
x,i(t) = ∆t ∑

j∈σ−1
T [n]

xj(t) ,
Kn

∑
i=1

zn
y,i(t) = ∆t ∑

j∈σ−1
P [n]

yj(t)

(zn
x,i(t)− E (Vn(t))−Vn

i−1 + γn
x,i(t))z

n
x,i(t) ≤ 0 ∀i = 1, ..., Kn

(zn
y,i(t)− Vn

i + E (Vn(t)) +γn
y,i(t))z

n
y,i(t) ≤ 0 ∀i = 1, ..., Kn

0 ≤ zn
u,i(t) ≤ (Vn

i − Vn
i−1) ∀i = 1, ..., Kn u ∈ {x, y} (31)

γn
u,i(t) ≥ 0 ∀ ∀i = 1, ..., Kn u ∈ {x, y}

In fact zn
x,i(t) represents the part of the water turbined that falls in the interval [Vn

i−1, Vn
i ).

A natural constraint is zn
x,i(t) ≤ max(Vn(t) − Vn

i−1, 0). However, in our example, Vn(t)
is random. Fortunately, when combining this with an objective function that we wish to
optimize in expectation, the constraint becomes zn

x,i(t) ≤ max(E (Vn(t))−Vn
i−1, 0), hence

erasing randomness from the objective function. The quadratic constraints arise as it is
easily seen that the following problems are equivalent minx

{

f (x) : g(x) ≤ [h(x)]+
}

and
minx,λ≥0 { f (x) : (g(x)− h(x) + λ)g(x) ≤ 0}. In our numerical example (Section 6.7) we use
a constant watervalue, removing the quadratic constraints.

6.4 Random inflows

We will assume that inflows (in m3/h) in reservoirs are the result of some stochastic process.
Let An(t) denote this stochastic process for reservoir n. Not all reservoirs will have stochastic
inflows, some of them will have deterministic inflows (typically zero). This can be explained
by the fact that top reservoirs have random inflows due to the melting of snow in the high
mountains, whereas rain can be neglected for lower reservoirs. Let N r ⊆ N denote the set of
reservoirs receiving random inflows. We will assume that the stochastic inflow process is the
sum of a deterministic trend sn

t and a causal process (Shumway & Stoffer (2000)) generated
by Gaussian innovations. To this end let ζn(t) be a gaussian white noise process, where
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(ζk1(t), ..., ζkl ) is a Gaussian random vector of zero average and variance-covariance matrix
Σ(t) ({k1, ..., kl} = N r). We will assume independence between time steps of the ζ vector.
Since An(t) is a causal process, we can write it as follows

An(t) = sn
t +

∞

∑
j=0

ψn
j ζn(t − j) = sn

t +
∞

∑
j=t

ψn
j ζn(t − j) +

t−1

∑
j=0

ψn
j ζn(t − j),

for some coefficient vector ψn. We will assume that randomness before t = 0 is known and as
such we can assume WLOG that the random inflow process can be written as

An(t) = sn
t +

t−1

∑
j=0

ψn
j ζn(t − j).

6.5 Flow constraints and volume bounds

Each reservoir is subject to flow constraints induced by pumping and turbining. The following
equilibrium constraint applies

Vn(t) = Vn(t − 1) + ∑
m∈A(n)

∑
i∈σ−1

T [m]

xi(t − Dm)∆t − ∑
i∈σ−1

T [n]

xi(t)∆t (32)

+ ∑
m∈F (n)

∑
i∈σ−1

P [m]

yi(t)∆t − ∑
i∈σ−1

P [n]

yi(t)∆t + sn
t ∆t +

t−1

∑
j=0

ψn
j ζn(t − j)∆t.

The above equation is entirely deterministic except for the reservoirs n ∈ N r. In order to deal
with this randomness and reservoir bounds we will therefore add the following constraints

P[Vn
min(t) ≤ Vn(t) ≤ Vn

max(t) ∀t ∈ τ, n ∈ N r] ≥ p (33)

Vn
min(t) ≤ Vn(t) ≤ Vn

max(t) ∀t ∈ τ, n ∈ N \N r, (34)

this is a joint chance constraint.

6.6 Objective function

Often, in reality, each reservoir only has a single turbine. The power output of turbining x
m3/s is given by a function ρ(x). This function is strictly increasing and concave, i.e., ρ′(x) ≥ 0
and ρ′′(x) ≤ 0. In our model we have split this range into several subsections (hence several
turbines), each with efficiency ρi = ρ′(s∗i )/3600 (MWh/m3) for some s∗i in each section. We
can thus remark that for any two turbines i1 and i2 belonging to the same reservoir we either
have ρi1

≥ ρi2
or vice versa. This approximation comes down to approximating ρ(x) by a

piece-wise linear function.
We assume given a time dependent price signal λ(t) (in e/MWh). The following objective
function has to be minimized:

∑
t∈τ

∑
n∈N

Kn

∑
i=1

(Wn
i (t)(z

n
x,i(t)− zn

y,i(t))− ∑
t∈τ

λ(t)∆t(
NT

∑
i=1

ρi(t)x
i(t)−

NP

∑
i=1

1

θi(t)
yi(t)),

where the first part corresponds to the cost of using water expressed by the water-values, and
θi(t) is the efficiency of pumping.
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6.7 Numerical example

Plugging some numerical values in the problem defined in this section 6. We can consider
for example 24 time steps of 2 hours each, the valley 2 (Left) and AR(3) uncertainty on
inflows. More importantly that the actual numerical values (which can be found in van
Ackooij et al. (2010b)), is a comparison of the individual chance constrained model (5) and
the joint constrained model (4).
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Fig. 2. (Left) The hydro Valley. (Right) : Water trajectories for reservoir "Saut Mortier". From
top left to bottom right, solutions of problems (11), (4), (5) and (28).

Table 1 shows optimal costs and number of violations. Figure 2 shows simulations of
water trajectories. Clearly we observe the advantage of using joint chance constrained
programming. The additional cost with respect to the deterministic solution is only small,
but robustness can be fine tuned. A full robust solution (max-p problem) turns out quite
costly. Finally individual chance constrained programming can not be used to mimic joint
chance constraints as we have no control over the number of violations over a period of time.

Item / Problem (11) (4) (5) (28)
nbViolation 100 20 35 2

Cost (e) −1.0478e5 −1.0340e5 −1.0422e5 −9.9176e4

Table 1. Comparison of costs and number of violations

One can come up with a robust counterpart of problem (10), by defining an elipsoidal
uncertainty set E for η. It can be easily seen that constraints (18) (derived from (33)) can be
transformed in Ax + a ≤ inf E and Bx + b ≥ sup E , where the latter has to be understood in
the partial order of R

n. Unfortunately, even when the uncertainty set E is very well calibrated,
i.e., P(E) = p, the solution is often over-robust. Even worse, for larger values of p this often
leads to an empty feasible set of the robust problem, even though solutions of (4) exist.
We can observe that the speed of Genz’ code is not independent of the "nature" of a and b (see
Lemma 0.7). The "shape" of the covariance matrix of ξ is pointed downwards. It seems that
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whenever a and b mimic this shape, i.e., a1 ≤ ... ≤ an, that evaluating Fξ(a, b) is about 20 times
faster than having a uniform a and b.
Since this valley is a realistic example from Energy management exact joint-CCP can be
tractable for problems. Moreover clearly the interest has been shown over an individual
chance constraint formulation.

7. Perspectives / transgressing frontiers

Perspectives contain three main axis: The first axis is concerned with improved bounds for
approximate chance constrained programming. Currently we have used Hoeffding’s bound,
but far better bounds exists. One could think of the bounds derived in Ben-Tal et al. (2009).
By combining different bounding techniques and different levels of available information we
can derive a whole class of approximate algorithms, much in the style of the MIO algorithm
exposed here. A second important question to answer is that of classification of the solution.
Is the approximate solution far from the optimal one?
A second axis is concerned with working on exact joint chance constraint programming for
the separated linear setting. In particular efficient derivative formulae have to be derived for
the case of a random matrix. Further clear extensions concern such questions for the case of
other laws. Often laws in a problem are of a different nature and such special cases have to
be considered. From an algorithmic perspective, instead of using a cutting planes idea, one
could use a bundle method to hopefully improve computation times and stability. A second
point that needs investigations is an improved use of Genz’ code by using preconditioning
and exploiting the observed shaping/computation time effect. Finally we could combine the
use of Genz’ code with Prekopa’s LP estimation method for probability measures to increase
the size of the model or improve the speed.
A third axis consists of considering the mixed integer formulation of (10). If the relaxed
problem has good properties (convexity, etc..). We could, in theory apply a branch and bound
technique combined with cuts, lift&projects, etc... But one could equally consider this a special
case of discrete randomness.
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