
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



16 

Vibration Measurement by Speckle 
Interferometry between High Spatial and  

High Temporal Resolution 

Dan Nicolae Borza 
Institut National des Sciences Appliquées de Rouen 

France 

1. Introduction    

Speckle interferometry is a widely known successor of holographic interferometry. It is 

usually based on the use of a continuous wave laser. The use of temporal phase stepping 

allows obtaining the full-field of vibration amplitudes at the surface of the object under 

study. The simplest method is that of real-time, time-averaged speckle interferometry. It has 

been described for the first time in (Butters & Leendertz, 1971). The vibration amplitude 

map is usually presented as a two-dimensional fringe pattern, whose intensity modulation 

is given by the square of the Bessel function of the first kind and zero order whose argument 

is proportional with the local vibration amplitude. Roughly, the fringes are loci of points 

having the same vibration amplitude. The difference between the vibration amplitudes of 

points situated on adjacent fringes is close to a quarter of the laser light wavelength, which 

is something between 0.12 μm and 0.16 μm.   

The most important general characteristics of this technique are justifying the interest in its 

use. It is a non-contact technique, so the object is not disturbed during the measurement. 

This is very important since there is no added mass or forces applied to the tested object, so 

its dynamic characteristics are not affected by the measurement process. It is a full-field 

technique, so there is no need to use many sensors or scan the surface in order to measure 

the vibration amplitudes of different points. All amplitudes are measured simultaneously. 

Finally, the sensitivity is very high and only small vibration amplitudes, up to a few 

micrometers, are necessary to produce the fringe pattern.  

Along with these very favourable characteristics, a certain number of limitations also exist. 

The most obvious limitation is the noisy aspect of interferograms. Both additive and 

multiplicative speckle noise are affecting the interferograms. Further processing of the 

Bessel-type fringe patterns is difficult because of the speckle noise and of the weak contrast 

of successively increasing order fringes. As will be shown in this chapter, this task may 

become simpler by reducing the high-frequency multiplicative noise in the orthogonal 

components of the interferogram. Another limitation is related to the fact that the fringe 

pattern is obtained by integration, during the 3- or 4-frame bucket, of several cycles of 

vibration. During this time the vibration must be stationary and the temporal phase 

information related to the vibration is lost. In this chapter several advances in this field will 

be shown, allowing to make full-field measurements and resolve temporally the vibration. 

www.intechopen.com



 Holography, Research and Technologies 

 

326 

2. Real-time, time-average speckle interferometry 

The typical setup of a speckle interferometry vibration measurement system is shown in Fig. 1.  
 

 

Fig. 1. Schematic lay-out of an out-of-plane sensitive time-average speckle interferometry 

system for vibrations  

The vibrating object is illuminated by the CW laser beam transmitted by the beamsplitter, 

expanded by a lens and finally redirected by Mirror2 towards the vibrating object. The part 

of the laser beam reflected by the beamsplitter and by Mirror1 is expanded by a spatial filter 

and redirected, through the PZTMirror and the beamsplitter 2, towards the CCD detector. It 

is the reference beam. The PZT actuator placed behind PZTMirror is implementing the 

temporal phase stepping, producing a 4-step reference phase variation given by: 

 ( )1 ; 1, 2, 3, 4...
2

i i i
πϕΔ = − =  (1) 

as first described in (Joenathan, 1991). 

In phase-stepped speckle interferometry, the raw data consist in number (usually 3 or 4) of 

correlograms recorded by the CCD detector. They represent the spatial sampling of the 

interference field between a uniform complex reference wave (usually of constant real 

amplitude R): 

 ( )exp r iR R j ϕ ϕ⎡ ⎤= ⋅ − Δ⎣ ⎦  (2) 
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and a speckled object-wave  

 
( ) ( )
( ) ( ) ( )0

exp exp cos

exp exp cos exp cos

o r o r v

r o r v v

O O j O j t

O j j t O j t

ϕ ϕ ϕ ϕ ω

ϕ ϕ ϕ ω ϕ ω

−

−

⎡ ⎤= ⋅ = ⋅ + + =⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ = ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3)  

able to produce with the help of the camera lens a plane image of the harmonically vibrating 

object under study. The interference field of these waves is integrated by the camera during 

the frame acquisition time over an integer or large number of vibration periods. By putting 
2 2m O R= +   and 2n O R= ⋅ ⋅ , the result may be described by the equation: 

 ( ) ( )0cos , ,i o r vI m n x y J x yϕ α ϕ−⎡ ⎤ ⎡ ⎤= + + ⋅⎣ ⎦ ⎣ ⎦  (4) 

In Eq. (2), ϕo-r is the random phase difference between the uniform reference wave and the 

speckled object wave corresponding to a point (x, y) of the object in the equilibrium position. 

J0(ϕv) is the first kind, zero-th order Bessel function whose argument is the vibration-related 

phase given by the approximate relation: 

 ( ) ( )4
, ,v x y d x y

πϕ
λ

=  (5) 

where d is the vibration amplitude of the (x, y) point. In any speckle interferometry system 
based on 4-frame buckets (Creath, 1985), the four phase-stepped data fields given by Eq. (1) 
are used to calculate (either in real-time or during post-processing) the differences: 

 ( )1 3 02 cos o r vC I I OR Jφ ϕ−= − = ⋅  (6) 

and: 

 ( )4 2 02 sin o r vS I I OR Jϕ ϕ−= − = ⋅  (7) 

These two orthogonal data fields (Borza, 2004) may be used to compute and display the 
usual time-averaged fringe pattern: 

 ( )2 2
02 ,TAV vI S C OR J x yϕ⎡ ⎤= + = ⎣ ⎦  (8) 

They may also be considered as the real and imaginary components, in the detector plane, of 
a reconstructed complex wave (A is a constant): 

 ( ) ( )0 , expR v o rO A O J x y jϕ ϕ −⎡ ⎤= ⋅ ⋅ ⎣ ⎦  (9) 

One should be aware that any individual frame or the corresponding data fields or the 

interferogram itself are time-averaged, even if, as a particular case, the object is immobile 

during the integration time. In this case, Eq. (9) simply becomes: 

 ( )expR o rO A O jϕ −= ⋅ ⋅  (10) 

The maxima (bright fringes) of Eq. (8) correspond to vibration amplitudes of 0 (zero) - for 

the brightest fringes showing the nodal lines, then to amplitudes of  
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  1
2 4

( )d k λ= + ⋅  (k=1, 2, 3 …) (11) 

The minima (dark fringes) correspond to amplitudes: 

 ( )4
 1,  2, 3 d k kλ= ⋅ = …  (12) 

The typical aspect of time-averaged fringes seen either in real-time on the monitor while 

looking at a vibrating object, or saved on the disk, is shown in Fig. 2 (Nistea & Borza, 2010a). 
 

 

Fig. 2. Time-averaged speckle interferogram of an electronic assembled microcontroller card 

excited at one of its resonance frequencies at 841 Hz 

It corresponds to a vibration during which the object reaches periodically the position of 

extreme deflection with regard to the equilibrium position, as shown in Fig. 3. 
 

 

Fig. 3. Vibration amplitude-related phase map corresponding to interferogram in Fig. 2. 

Values are in radians. 

www.intechopen.com



Vibration Measurement by Speckle Interferometry  
between High Spatial and High Temporal Resolution   

 

329 

The interferograms obtained by this method are also called electronic holograms, or, when it’s 

no possibility of confusion with a “classical”  hologram obtained through diffraction of the 

reference beam by the primary fringes recorded on photorecording media, simply holograms.  

To adress one of the limitations already mentioned for the time-average method, the speckle 

noise, one may record several time-average interferograms and eventually rotate the object 

illumination beam between recordings. By averaging a number of N interferograms, the 

speckle noise is reduced by N , as shown in Fig. 4 

 

  

Fig. 4. Time-averaged holograms of a vibrating plane plate: at left a single hologram, at right 

the result of four hologram averaging. 

Filtering a time-averaged hologram by convolution with an average or other low-pass filter 
may reduce the high-frequency noise, but strongly affects the fringe resolution and contrast. 

3. Development of speckle interferometry vibration measurement methods 

3.1 Reference wave modulation 
One of the well-known drawbacks of time-average holograms is the impossibility to obtain 

by an automatic procedure the explicit full-field of vibration amplitudes. This problem was 

adressed (Pryputniewicz & Stetson, 1999) by using the reference wave homodyne 

modulation, in order to record several fringe patterns spatially shifted. Through the use of 

look-up tables, the final result is a wrapped amplitude-related phase fringe pattern. Such a 

fringe pattern is shown in Fig. 5. 
 

 

Fig. 5. Phase image of the vibration mode presented in Fig. 4. 
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The introduction of the homodyne modulation of the reference wave thus allows using 

slightly modified 2d unwrapping procedures in order to unwrap the fringe pattern and 

obtain the explicit amplitude map. 

The method works well, but from the practical point of view is rather cumbersome as it 

implies changing several times the amplitude and the phase of the exciting voltages applied 

to the object and to the modulating mirror.  

Other authors described the possible use of heterodyne phase modulation in time-average 

speckle interferometry. In (Høgmoen and Løkberg, 1977) this type of modulation is used to 

allow measurement of very small vibration amplitudes. 

3.2 Stroboscopic principles 
Apart from the methods based on the modulation of the reference wave, the only possibility 

to obtain phase fringe patterns for vibrating objects is to avoid the temporal averaging, or 

the integration during the recording of a frame. It means the CCD exposure should be much 

smaller than the period of vibration. This may be achieved by using stroboscopic principles 

or pulsed lasers. Several researchers studied the application of stroboscopic techniques to 

speckle interferometry. Stroboscopic techniques are “ freezing”  the vibration for the 

moments when data are recorded, like speckle interferometry with pulsed lasers. The 

correlograms recorded, which are the primary data fields from which interferograms are 

computed, are related only to certain well-defined positions. The temporal integration thus 

disappears, and so does the Bessel-type fringe profile. The simplest interferometric 

reconstructions are double-exposure holograms rather than time-averaged. The use of these 

techniques allows, as described in (Valera et al, 1997), the study of objects which are 

vibrating simultaneously at two frequencies whose ratio is an irrational number. The 

separation of the two vibration modes is made by stroboscopic heterodyned speckle 

interferometry. By choosing the frequency of the strobing pulses equal with one of the two 

frequencies of vibration, only the vibration of the second frequency was measured by the 

interferogram.  

Stroboscopic techniques may also be used for measuring the response of a structure both in 

phase and in quadrature with the exciting force, allowing thus (Van der Auweraer et al, 

2002) to estimate the real part and the imaginary part of the response of the object. This is an 

important step in experimental modal analysis. 

Many other methods and two excellent reviews of the state-of-the-art were published by 

(Doval, 2000; Jacquot, 2008). 

4. Vibration measurement with high spatial resolution  

Several researchers proposed different experimental methods and algorithms based on the 

joint use of correlograms recorded with the object at rest and during vibration.   

(Wang et al, 1996) made a thoroughful analysis of three methods based on the addition or 

subtraction of video signals recorded in such situations. For the particular case of the 

amplitude-fluctuation method, the subtraction between the signals corresponding to two 

different signals during vibration is shown to produce fringes dependent on the Bessel 

function 1[ ( , )]vJ x yϕ   instead of 0[ ( , )]vJ x yϕ . The subtraction of the speckled image of an 

object from that of the object at rest, as in (Nakadate, 1980), produces a fringe pattern given 

by: 
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 2
0 01 2 ( ) [cos( )] ( )v stat vI J Jϕ ϕ ϕ= − ⋅ ⋅ +  (13) 

If the speckle decorrelations are kept to a reasonable level, they might be approximated by: 

 2
0[1 ( )]vI J ϕ= −  (14) 

As underlined in (Creath & Slettemoen, 1985) this type of fringes are equivalent to those 

appearing in real-time holographic interferometry. Their contrast is lower compared to 

time-average fringes, but they offer a valuable tool in studying vibrations of very small 

amplitudes.  

In order to analyze the possibilities for reducing the speckle noise of the time-averaged 

speckle interferograms and advance towards high spatial resolution, one has to look at the 

expression of one of the correlograms recorded in the original 4-frame bucket. It is given by 

Eq. (4). In the expression ( ) ( )0cos[ , ] [ , ]o r vm n x y J x yϕ α ϕ−+ + ⋅  , m (the bias) denotes the sum 

between the speckled image of the object and the uniform intensity of the reference beam, so 

it represents additive noise. The variable n (the modulation) denotes the square root of the 

product of the same terms (the speckled image of the object and the uniform intensity of the 

reference beam). This noisy term is multiplied by ( , )o r x yϕ −  which is the random phase 

difference, of very high spatial frequency, between the object wave and the reference wave. 

The last factor of the product, 0( )vJ ϕ , is the only deterministic factor; the argument of the 

Bessel function is the spatial phase introduced by the object vibration. Unfortunately, with 

the exception of the nodal points where 0vϕ =  and  0( ) 1vJ ϕ = , the product 

0( , ) ( )o r vn x y Jϕ ϕ−⋅ ⋅  is dominated by the multiplicative speckle noise and the Bessel function 

is deeply covered by noise. 

In the (usual) case of 4-frame correlogram buckets of vibrating objects, the additive noise is 

eliminated, as shown by Eq. (6) and (7), by making the differences between the frames 

phase-shifted by π. In the remaining expressions, 02 cos( ) ( )o r vC O R Jϕ ϕ−= ⋅ ⋅ ⋅ ⋅  and 

02 sin( ) ( )o r vS O R Jϕ ϕ−= ⋅ ⋅ ⋅ ⋅  the multiplicative noise is still there. Any attempt to apply a 

low-pass filter to these two orthogonal components of the time-averaged hologram would 

“spread” the high-frequency noise and make impossible the interferogram reconstruction. 

To compensate the speckle noise we can use the similar terms from another 4-frame bucket, 

or, better, from a 4-frame bucket during which the object was at rest. Assuming that 

speckles didn’t decorrelate between the acquisition of the frames with the object at rest and 

the acquisition with the vibrating object, but admitting a small phase difference ,o rϕ −Δ  

which may have as origine, for example,  a small displacement or a thermal drift, these 

terms have the expressions: 

 ( )cos ,i o r o rJ m n x yϕ ϕ α− −⎡ ⎤= + + Δ +⎣ ⎦  (15) 

and they are used to compute:  

 ( )1 3 2 cos o r o rC J J OR ϕ ϕ− −′ = − = + Δ  (16) 

and 

 ( )4 2 2 sin o r o rS J J OR ϕ ϕ− −′ = − = + Δ  (17) 
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Eqs. (6), (7), (16) and (17) may be used to compute: 

 ( ) ( )2 2
0 04 sinv o rS S C S C O R J ϕ ϕ −′ ′= ⋅ − ⋅ = ⋅ ⋅ Δ  (18) 

and 

 ( ) ( )2 2
0 04 cosv o rC S S C C O R J ϕ ϕ −′ ′= ⋅ + ⋅ = ⋅ ⋅ Δ  (19) 

The data fields described by Eqs. (18) and (19) are important because they are almost noise-

free; the high-frequency multiplicative speckle noise has been eliminated.  

As described in (Borza, 2000; Borza, 2002; Borza, 2005) the two quadrature data fields may 

be used for hologram restoration by a procedure equivalent to the synchronous detection. 

Eqs. (18) and (19) allow computing the phase difference by using the arctangent function, 
1

0 0tan ( / ).S C−  

If the 4-quadrant arctangent function is used instead, the sign of the numerator and of the 

denominator are evaluated separately and the result goes in the right quadrant. Then the 

identical factors in these expressions, ( )2 2
04 vO R J ϕ⋅ ⋅ ⋅ , will disappear, with one particular 

remark. The quadrant where the angle will be placed depends on the sign of the Bessel 

function ( )0 vJ ϕ . Each time this factor will change its sign, the result 

 ( )0
0

0

tan2 sgnph o r o r

S
I a J

C
ϕ ϕ− −

⎛ ⎞
⎡ ⎤= = Δ ⋅ Δ⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
 (20) 

will also change sign. If the phase difference between the object at rest and the mean position 

of the vibrating object is close to zero, the fringe pattern is a quasi-binary one, as in fig. 6. 
 

 

Fig. 6. Quasi-binary fringe pattern  

This kind of “quasi-binary”  fringes have also been reported by other authors (Picart et al, 
2005; Singh et al, 2007). 
Since the two orthogonal data fields are noise-free, the whole process may be described by 
the classical description of synchronous detection, as in fig. 7. 

The two noise-free data fields may be low-pass filtered and the resulting quasi-binary 

hologram, showing the sign of the Bessel function (fig. 8a) may be the starting point for a 

procedure aiming at the obtention of the explicit vibration amplitude map. 

Even more important is the reconstruction of the time-averaged hologram presented in fig. 

8b. This becomes possible with the help of the filtered orthogonal components. It is a high 

spatial resolution hologram, allowing to determine the positions of the zeroes of the Bessel 

dark fringes in subpixel resolution. 

www.intechopen.com



Vibration Measurement by Speckle Interferometry  
between High Spatial and High Temporal Resolution   

 

333 

 
Fig. 7. Principle of synchronous detection. 
 

  
a     b 

Fig. 8. (a) Quasi-binary hologram after filtering its orthogonal components; profile grey 

values are normalized between 0 and 1; (b) high spatial resolution time-average hologram 

The paper (Borza, 2006) describes a method, having as starting point this kind of high-

resolution time-average hologram, for automatically indexing in subpixel resolution all the 

dark and bright fringes and then obtaining the vibration amplitude in each point by simply 

inverting the Bessel function on its monotonicity intervals (fig. 9). 

5. A unifying approach for speckle noise reduction in vibration measurement 
by high resolution time-average speckle interferometry  

Since the methods presented in the last Section are using the phase difference between the 

states with the object at rest and with the object in vibration, and the eventual static 

deformation (described by o rϕ −Δ ) between these two instants has been taken into account in 

Eq. (15) and the following,  it is reasonable to try doing a more systematic description in a 

unifying approach. 
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Fig. 9. Partially unwrapped vibration map by regional inverting of the Bessel function 

In the most general situation, the two object states which are compared in the final 

interferogram may be characterized by: 

• The first state: the object in vibration, described by the vibration-related phase 1vϕ ; 

• The second state: the object deformed (or displaced statically), as described by o rϕ −Δ  

and having also a second vibration, described by the vibration-related phase 2vϕ . 

In this case, for the first state the two orthogonal data fields computed from the 4-frame 

buckets acquired are: 

 
( )
( )

1 0 1

1 0 1

cos

sin

v v o r

v v o r

C A O J

S A O J

ϕ ϕ

ϕ ϕ
−

−

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅
 (21) 

and: 

 
( ) ( )
( ) ( )

2 0 2

2 0 2

cos

sin

o r o r v

o r o r v

C A O J

S A O J

ν

ν

ϕ ϕ ϕ

ϕ ϕ ϕ
− −

− −

= ⋅ ⋅ + Δ ⋅

= ⋅ ⋅ + Δ ⋅
 (22) 

 

  

Fig. 10. Time-averaged holograms corresponding to the 2 vibration states. 
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In both cases, the time-averaged holograms obtained by eq. (8) are showing (fig. 10) Bessel-

type fringe patterns which are related only to the vibration-related phase, either 1vϕ  or 2vϕ .  

 ( )2 2
1 0 12 ,TAV vI S C OR J x yϕ⎡ ⎤= + = ⎣ ⎦  (23) 

 ( )2 2
2 0 22 ,TAV vI S C OR J x yϕ⎡ ⎤= + = ⎣ ⎦  (24) 

Several situations may be imagined when combining the data fields from the two object states. 

5.1 Phase difference of data fields - General case 
The two orthogonal data fields which may be calculated from Eqs. (21) and (22) by using the 
formulæ: 

 
1 2 1 2

1 2 1 2

v v v v

v v v v

S S C C S

C C C S S

= −
= +

 (25) 

are given by the expressions: 

 
( ) ( )
( ) ( )

2 2
0 1 0 2

2 2
0 1 0 2

sin

cos

v v o r

v v o r

S A O J J

C A O J J

ϕ ϕ ϕ

ϕ ϕ ϕ
−

−

= Δ

= Δ
 (26) 

The square root of the sum of their squares is expressed by the absolute value of the product 
of the two Bessel functions: 

 ( ) ( )12 0 1 0 2TAV O v vI I J Jϕ ϕ= ⋅ ⋅  (27) 

and their relative phase is: 

 ( ) ( )12 0 1 0 2sgno r v vJ Jϕ ϕ ϕ ϕ− ⎡ ⎤Δ = Δ ⋅⎣ ⎦  (28) 

They are illustrated in fig. 11. 
 

   

Fig. 11. Fringe patterns corresponding to Eqs. (27) and (28) 
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The static term, o rϕ −Δ , may be caused by different phenomena: sometimes it appears 

because of air turbulences or thermal gradients between the two series of exposures, 

sometimes it reflects variations of the optical path in the object-wave due to a mechanical 

movement or the object deformation between the two recordings. If  o rϕ −Δ  is not too large, 

it may be easily compensated by post treatment of data (fig. 12). 

 

 
Fig. 12. Phase difference with compensated o rϕ −Δ  

5.2 Phase difference in a particular case: object at rest in the first state 
This is the most current case; if during the second state there is no static phase difference 

with respect to the first state, one retrieves the situation already described in § 4. If the static 

phase difference is not negligible, then the phase difference is given by eq. (20) and shown 

in fig. 13..  
 

 

Fig. 13. Quasi-binary hologram with an important static phase difference and vibration of 

the object in one of the two states. 
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To fully appreciate the spatial resolution gain of time-average speckle interferometry when 

using the presented method, fig. 14 illustrates the usual time-average hologram and the 

high-resolution one, recorded during the same experience, along with the profiles across 

fringes. The values on the scales of grey levels are conventional values obtained by two 

different normalizations. 
 

 

Fig. 14. Time-average (left), high resolution time-average (middle) interferograms and 

profiles across the fringe patterns (right) 

5.3 Phase difference in a particular case: object vibrating identically in both states 

The vibration amplitude and phase being identical in both states, 1 2v vϕ ϕ= . In this case eq. 

(21) is replaced by: 

 
( )
( )

1 2 0 1

1 2 0 1

cos

sin

v v v o r

v v v o r

C C A O J

S S A O J

ϕ ϕ

ϕ ϕ
−

−

= = ⋅ ⋅ ⋅

= = ⋅ ⋅ ⋅
 (29) 

Eq. (25) become: 

 
( ) ( )

( ) ( )

2 2 2
1 1 1 1 0 1

2 2 2 2 2
1 1 0 1

sin

cos

v v v v v o r

v v v o r

S S C C S A O J

C C S A O J

ϕ ϕ

ϕ ϕ
−

−

= − = ⋅ Δ

= + = ⋅ Δ
 (30) 

Equation (28) becomes: 

 ( )2
12 0 1 mod 2

sgno r v o rJ
π

ϕ ϕ ϕ ϕ− −
⎡ ⎤Δ = Δ = Δ⎣ ⎦  (31) 

This result is shown in fig.15. 

The detailed explanations for this kind of fringe patterns are found in (Borza, 2008). 

6. Speckle interferometry with high temporal resolution 

The spatial resolution of speckle interferometry is in most cases high enough for the needs 

of the measurements, and the vibration amplitude maps found by this technique are used, 

as in (Moreau, 2008) to check and validate the results produced by other techniques (Laser 

Doppler Velocimetry, Near-Field Acoustical Holography).   
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Fig. 15. Non-filtered (left) and filtered (right) patterns showing the static phase difference 

between two vibrating states of the object  

The direction into which speckle interferometry should make the bigger steps is improving 

its temporal resolution, so as to be able to characterize the relative vibration phase between 

different points, the vibration waveform, or to cope with non-stationary phenomena. 

The use of the pulsed laser is partially a solution, but the costs and technical difficulties are 

high, and the repetition rate of laser pulses rather limited. 

The development of high-rate digital cameras and the increasing data transfer speed 

between such devices, memory and disk units in computers encouraged an increasing 

numer of researchers to work in speckle interferometry with high rate cameras. 

Different systems and specific problems have been described in the litterature, allowing to 

appreciate that speckle interferometry is more and more able to study dynamic and non-

periodic deformations with a good temporal resolution. 

In (Aguanno et al, 2003) is presented the Single Pixel Carrier Based Demodulation approach 

with a digital CMOS-DSP camera for full-field heterodyne interferometry. The result is a 

full-field vibration measurement system able to operate, without scanning, like a classical 

scanning Laser Doppler Vibrometer (LDV). In (Asundi & Singh, 2006; Kaufmann, 2003) are 

presented the possibilities of dynamic digital holography, respectively dynamic speckle 

interferometry to measure amplitude and phase.  

(Nistea & Borza, 2010b) presented a speckle interferometry system based on a use of a high-

rate, low-cost CMOS camera and some of their work with this system. The measurement 

system uses a 300 mW CW Nd-YAG laser. It may be configured to work with or without 

temporal phase stepping. If used, phase stepping is implemented by an acousto-optic phase 

modulator. Some of the results obtained with this system are described in the next sections. 

6.1 Object submitted to a mechanical shock: free oscillations, no phase stepping 
The measurements of a small plate clamped along the left side (fig. 16) submitted to a shock 

were made by acquiring at the rate of 15600 frames/ second, without phase stepping,  

correlograms having the dimension 118 x 39 pixels. The temporal history of any pixel 

contains 21840 points. For a randomly chosen pixel, marked with a cross in fig. 16, it is 

possible to determine the amplitude at any moment, the free oscillation frequency, the 

eventual delays between pixels and the damping. 
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Fig. 16. Temporal history of a randomly chosen pixel, sampled at 15600 images/ second 

 

 

 

 

 

Fig. 17. Minima and maxima for each period of the damped temporal history for the chosen 

pixel 
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The frequency (or the period) is found after filtering the signal, fitting a sine function and 

finding, by an automatic procedure, its extrema (fig. 17) for any period considered. It may 

also be found by using the Fourier transform (fig. 18 a) of the signal corresponding to the 

free oscillations following the shock. The values for the period found by the two methods, 

expressed in number of images acquired at a rate of 15600 frames/ second, are very close, 

118.1 in the first case and 117.9 in the second. It corresponds to a frequency of about 132 Hz. 

The damping may be calculated either by Fourier transform followed by a minimum-search 

fit or by fitting exponentials to the envelopes of the signal, shown in fig. 18 b. The values 

found by the different methods are also very close, 0.00545 for the first method and between 

0.0051 and 0.0057 for the second. 
 

 

Fig. 18. (a) Frequency of the damped vibration found by FFT 

 

 

Fig. 18. (b) Envelopes of the free vibration for the considered pixel 

6.2 Object in forced sinusoidal vibration: 2- and 4- step phase stepping 
The measurements were made by acquiring 111 x 41 pixels wide correlograms at the rate of 

26000 frames/ second, with four-step phase stepping. The correlograms were then treated in 

two different ways, either as “classical”  4-step phase-shifted images (6500 

interferograms/ second), or as 2-step phase-shifted images (13000 interferograms/ second). 
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In both cases, the calculated interferograms used two quadrature fields recorded either with 

the object at rest, or with the object in vibration. 

For the 2-step case, one period of object vibration at 142 Hz was sampled by 93 full-field 

interferograms at equal time intervals.  

The acquired data allow obtaining, at that rate, considering 2-step phase stepping, the 

following results: 

• The wrapped phase differences between the reference state and the state corresponding 

to any of the 93 sampling instants (fig. 19); 

 

 

Fig. 19. Temporal history of full-field wrapped vibration amplitude fields 
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• The unwrapped phase differences between the reference state and the state 

corresponding to any of the 93 sampling instants (fig. 20); 

 

 

Fig. 20. Temporal history of full-field unwrapped vibration amplitude fields 
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• The unwrapped phase differences between any pair of phases corresponding to any of 

the 93 sampling instants (fig. 21); 

• As a particular case, the phase differences around the zero-crossing and the extrema of 

a reference signal (the force signal), allowing to compute the complex frequency 
response, as mentioned at §3.2 and necessary for experimental modal analysis; 

 

 

Fig. 21. Temporal history of full-field differences of unwrapped amplitude fields (or 

temporal history of object velocities) 
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• By integration during arbitrary time intervals, the full-field time-averaged holograms 

and the high-resolution time-average holograms (fig. 22). 

Just as a remainder that these temporal histories have been recorded to resolve an harmonic 

vibration by a full-field interferometry system, by computing the sum of the interferograms 

noted from 1 to 93 in fig. 20, we may obtain either the “classical”  time-average hologram in 

the upper part of fig. 22 or the high-spatial resolution time-average hologram in the lower 

part of fig. 22. 
 

  

Fig. 22. Time-average and high-resolution time-average hologram during a vibration period 

6.3 Object subjected to a variable force of arbitrary waveform; 2- and 4- step phase 
stepping 
The object was perturbed with an arbitrary signal of which one period is shown in Fig. 23 

(left) applied to a piezoelectric actuator. The measurements were made at a rate of 26000 

images/ second, in the same conditions as those in § 6.2. At right is presented the 

unwrapped (upper plot) and wrapped (lower plot) temporal history of a randomly chosen 

pixel from the series of 5000 interferograms. It represents the deflection of that point 

between the two moments indicated at left (START, END). 
 

  

Fig. 23. One period of the force of arbitrary waveform applied by the piezoelectric actuator 

to the object (left) and the temporal history of a randomly selected pixel in the 5000 

interferograms (right) 
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Such time histories as the one shown in fig. 23 (right) can be obtained for any of the 111 x 41 

pixels of the 5000 interferograms. A few, randomly selected interferograms, are presented as 

wrapped phase patterns in fig. 24. 
 

 

Fig. 24. A few randomly selected interferograms sampling the variable object deformation 

7. Conclusions 

Speckle interferometry has not stopped developing, in order to overcome its limitations.  

Important progress has been made towards higher temporal resolution measurements so as 

to give an adequate answer to the complex problems existing in vibration measurement and 

in vibracoustics. Higher spatial resolution has also been obtained in spite of the additive and 

multiplicative noise that covers the interferometric signal. 

Many valuable results have been already obtained, and much work still have to be done in 

the algorithmics and data processing. New challenges appear, related to the manipulation 

and storage of massive data blocks characterizing high-rate multipoint temporal histories. 
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