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1.Introduction

Holographic interferometry is a powerful experimental technique for analysis of structural
vibrations, especially if the amplitudes of those vibrations are in the range of micrometers
(Caponero et al. (2000); Fagan et al. (1972); Fein (1997); Ganesan et al. (2000); Rastogi (2000);
Vest (1979)). Recent advancements in optical measurement technology and development of
hybrid numerical-experimental techniques require application of computational algorithms
not only for post-processing applications like interpretation of experimental patterns of
fringes, but embedding real time algorithms into the measurement process itself (Ragulskis
& Saunoriene (2007)).
Computation and plotting of patterns of time average holographic fringes in virtual numerical
environments involves such tasks as modelling of the optical measurement setup, geometrical
and physical characteristics of the investigated structure and the dynamic response of the
analysed system (Ragulskis et al. (2003)). Calculation of intensity of illumination at any point
on the hologram plane requires computation of definite integrals over the exposure time. If
the analysed structures perform harmonic oscillations that do not impose any complications
– there exist even analytical relationships between the intensity of illumination, amplitude
of oscillation, laser wavelength, etc. But if the oscillations of the investigated structures are
non-harmonic (what is common when structures are non-linear) and the formation of patterns
of fringes is implemented in the real time mode, the calculation of definite integrals becomes
rather problematic. One of the objects of this study is to propose an order adaptive algorithm
which could be effectively applicable for calculation of definite integrals in different real time
holography applications.
Another goal of this study is to show that holographic interferometry, being a non-destructive
whole field technique capable of registering micro oscillations of micro electromechanical
systems (MEMS) components, cannot be exploited in a straightforward manner (Ostasevicius
et al. (2005)). There exist numerous numerical methods and techniques for interpretation of
patterns of fringes in the registered holograms of different oscillating objects and surfaces.
Unfortunately, sometimes straightforward application of these motion reconstruction
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methods (ordinary fringe counting technique, etc.) does not produce acceptable results. A
typical example is holographic analysis of a MEMS switch dynamics which will be described
in this chapter.

2. Hybrid numerical-experimental optical investigation of non-linearity in MEMS

dynamics

2.1 Technological features of the MEMS cantilever

Investigation of dynamics of micro electromechanical systems (MEMS) is an important
problem of engineering, technology and metrology. Specifically, recent interest in applying
MEMS technology to miniaturization of relays, sensors, actuators for variety of applications
requires design of appropriate testing and measurement tools for investigation of dynamic
properties of those systems. Though MEMS technology offers great promise in addressing the
need for smaller dynamical systems, the development of new types of MEMS structures is
very costly and complicated procedure. On the other hand, straight application of principles
of design of macro-mechanical systems is rather limited in MEMS applications. Therefore,
application of measurement technologies capable of detecting the dynamic properties of micro
scale systems may help to understand and evaluate the functionality of the systems.
Hybrid numerical-experimental optical techniques are applied for investigation of
micro-mechanical relays, in particular their cantilevers. The apparent simplicity of the
problem is misguiding due to non-linear interaction between the cantilever and the bottom
electrode. Therefore the results of optical measurements of the cantilever dynamics are
inaccurate due to the shift of the fringes in time average laser holographic interferograms.
Numerical modelling helps to solve non-uniqueness of the inverse problem and to validate
the interpretation of the pattern of fringes.
The fabrication sequence of the micro-electromechanical switch begins with the patterning
and reactive ion etching of silicon using SF6/N2 gas chemistry in the cantilever source
(support) area fabricating microstructures to increase the cantilever bond strength either
durability of the device. After treatment of the substrate in the O2/N2 gases mixture plasma
chrome layer of about 30 nm thickness and gold layer of about 200 nm thickness were
deposited. Patterning of the source, gate and drain electrodes were performed using lift-off
lithography. Electron beam evaporation was performed to deposit a sacrificial copper layer
with thickness of about 3000 nm. Copper layer covered the whole area of the substrate.
Patterning of the copper layer was performed in two steps. First of all, the copper layer
was partially etched (etchant: H2SO4:CrO3:H2O) to define the contact tips for the cantilever
and etching duration directly determined the spacing between tip’s top and drain electrode.
Next, the copper layer was etched away to uncover the source cantilever support area. The
next step was photo resist patterning on the top of the sacrificial layer to define the mask
for the cantilever sector and lift-off lithography of the evaporated gold layer with thickness
of about 200 nm was performed. Afterwards, the photoresist was spun and patterned once
again in the same sector and thick nickel layer was electroplated (sulfamate electrolyte:
Ni(NH2SO3)2:4H2O) fabricating cantilever structure. Finally, the sacrificial layer was removed
away using the same wet copper etchant to release the free-standing cantilever. The general
view of MEMS cantilever is presented in Fig.1.
Figure 2 presents time average holograms of the previously described cantilever. The method
used for registering optical holograms is described in Ostasevicius et al. (2004). Figure 2 (a)
presents a hologram of acoustically excited cantilever. Figure 2(b) presents a hologram of
cantilever excited by oscillating charge of the drain electrode.
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Fig. 1. Microscopic photo of MEMS cantilever

(a) (b)

Fig. 2. Holograms of cantilever: (a) acoustically excited cantilever; (b) excited by oscillating
charge

Interpretation of hologram in Fig. 2(a) is straightforward – white fringes are regularly
distributed on the surface of cantilever and ordinary fringe counting techniques can be
applied for the reconstruction of the field of vibration amplitudes. The interpretation of
pattern of fringes in Fig. 2(b) is much more complicated – one white and several dark fringes
are distributed on the surface of cantilever and it is quite difficult to understand the dynamics
of the cantilever. Moreover, longer exposure times produce dark images when the cantilever
is excited by oscillating charge and the pattern of fringes is sensitive to exposure time. Such
effects probably are caused by specific dynamical properties of the system.
Difficulties in interpretation of the generated patterns of fringes in holograms of MEMS
cantilevers excited by oscillating charge originated the necessity for developing hybrid
numerical-experimental models of analysed systems. Simulation of the dynamic as well as
optical processes taking place in the analysed systems could help understanding experimental
results.

2.2 Phenomenological model of MEMS cantilever

First step in analysing complex MEMS cantilever system is developing of simple
one-dimensional phenomenological model which is presented in Fig. 3.
Governing equation of motion of the system presented in Fig. 3 takes the following form:

mẍ + hẋ + kx = Fe (x) , (1)

where m, h, k – mass, viscous damping and stiffness coefficients; x – coordinate; Fe –
electrostatic force; top dots denote full derivatives by time t. It is assumed that the charged

305Hybrid Numerical-Experimental Holographic Interferometry
for Investigation of Nonlinearities in MEMS Dynamics

www.intechopen.com



Fig. 3. One degree of freedom model of MEMS cantilever

contact plane is motionlessly fixed at coordinate L (Fig. 3). Mass m is negatively charged,
while the charge Q of the contact plane varies harmonically in time:

Q = q sin (ωt) , (2)

where q – maximum charge of the contact plane; ω – frequency of charge oscillation. Then the
electrostatic force Fe acting to mass m is

Fe = C
Q

L− x
, (3)

where constant C depends from the charge of mass m, density of air, etc.
Harmonic oscillation of the charge of the contact plane can excite strongly non-linear response.
That is a natural result as the governing equation of motion is non-linear. The non-linearity of
the motion of the mass m is especially clear when the frequency of charge oscillation is around
the natural frequency of the mechanical system (Fig. 4). In practical applications the frequency
of charge oscillation very rarely reaches the fundamental frequency of the MEMS cantilever
only due to the fact that it is very high. Usually the excitation frequencies are of magnitude
lower than fundamental frequencies.
The presented one degree of freedom cantilever model is analysed when the excitation
frequency is much lower that the fundamental frequency. It can be noted that the differential
equation turns to be stiff and special care is required applying direct time marching integration
techniques. First the system is integrated until the transient processes cease down. Then the
attractor in phase plane x − ẋ is drawn. Repetition of such procedure at different values of
maximum charge q produces an array of attractors as shown in Fig. 5. It can be noted that
the motion of the mass m is almost linear at small excitation. The form of the stable attractor
gradually deforms at increasing excitation what is a natural result for a non-linear system.
One of the classical techniques used for experimental analysis of MEMS cantilevers is time
average laser holography. It is a non-destructive whole field technique capable of detection
microscopic dynamic displacements of the objects performing harmonic vibrations. How
could the experimental results be interpreted if the analysed object would oscillate not
harmonically, but as shown in Fig. 5.
One-dimensional system is considered for simplicity. Then the intensity of illumination I in
the hologram plane will be:
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Fig. 4. Chaotic motion of mass m in phase plane x− ẋ at m = 1; k = 1; h = 0.003; ω = 0.73;
q = 0.1; L = 2

Fig. 5. Stable attractors at m = 0.25; k = 20; h = 0.1; ω = 1; L = 2; q = 1, 2, . . . 13
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where T – exposure time; λ – laser wavelength; ζ – scalar time process; j – imaginary unit.
When ζ (t) = u sin (ωt+ ϕ) where u, ω, ϕ – amplitude, angular frequency and phase of
oscillations, the intensity of illumination takes the form:

I =
∣
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(
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λ u

)
∣

∣

∣

2
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1
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(
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dt

)2

≈
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1
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,

(5)

where J0 – zero order Bessel function of the first kind. It can be noted that

lim
T→∞

T
∫

0

sin
(

2π
λ u sin (ωt+ ϕ)

)

dt = 0 due to evenness of the sine function, and that the angular

frequency and phase have no effect to the intensity of illumination. The second approximate
equality builds the ground for numerical modelling of the relationships governing the
formation of interference fringes.
If ζ(t) is not a harmonic process the intensity of illumination can be numerically reconstructed
from Eq. (4), but the calculation is more complex than in Eq. (5) due to the fact the integral

lim
T→∞

T
∫

0

sin
(

2π
λ ζ (t)

)

dt does not converge to zero. If ζ(t) is a periodic process and Tp is the

time length of the period, the approximate numerical calculation scheme takes the following
form:
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, (6)

where t0 – arbitrary selected time moment. If ζ(t) is a process characterising time history of a
dynamical system setting to a stable limit cycle type attractor, time moment t0 must be selected
large enough so that the transient processed are ceased. Such calculations are performed for
an array of attractors shown in Fig. 6. One hundred separate solutions of Eq. (1) are analysed
at intermittent values of q in the range from 0 to 13. The produced intensities of illumination
are presented in Fig. 6 (x axis denotes 100 separate problems).
Remarkable is the fact that the relationship between the intensity of illumination and
parameter q holds the same character as the square of Bessel function in Eq. (5). In other
words, the inverse problem of the reconstruction of dynamic displacements does not have
a unique solution. Interference fringes can be formed when the analysed object performs
harmonic vibrations. Very similar interference fringes will be formed when the object will
perform non-linear periodic oscillations. Thus though time average laser holography is a
very attractive technique for analysis of MEMS cantilever vibrations, the interpretation of
experimentally produced interference fringes is rather complex procedure if one cannot
be sure if the vibrations are harmonic. This effect is illustrated in Fig. 7. The presented
non-linear periodic oscillation and harmonic vibration will both generate the same intensity
of illumination corresponding to the centre of the sixth interference fringe. It can be noted
that time average laser holography is insensitive to static shifts of harmonic oscillations. That
follows from the property of Bessel function:
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Fig. 6. Relationship between intensities of illumination and parameter q
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where C – constant. Results presented in Fig. 7 are remarkable not for the difference between
the averages of non-linear and harmonic vibrations. Interesting is the fact that two different
trajectories generate same intensity of illumination.
The problem of reconstruction of dynamic displacements from a pattern of interference fringes
is even more complicated when the oscillations are chaotic. In that case the illumination
of intensity can be calculated for certain stochastic time series approximating process ζ(t).
If a time series ζi is normally distributed with variance σ2 then, the decay of intensity of
illumination can be calculated as follows:
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The following identities are used in Eq. (8). If ζ ∼ N(0, σ2), then
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Fig. 7. Two different trajectories generating same intensity of illumination

Eζ2k−1 ≡ 0, k = 1, 2, 3, ...;

Eζ2k ≡ 1 · 3 · ... · (2k− 1) σ2k = (2k− 1)!!σ2k, k = 1, 2, 3, ....
(9)

It can be noted, that in this case no interference fringes will be formed at all – the intensity of
illumination will gradually decrease at increasing variance σ2.
This is a classical example of an ill-posed inverse problem. The problem of reconstruction
of motion from a pattern of interference fringes has a unique solution only if the vibration
of the analysed structure is harmonic. When the oscillations are non-linear (what is likely in
MEMS cantilever dynamics) the interpretation of pattern of fringes can be complicated. Next
sections address questions related to numerical construction of time averaged holographic
interferograms and computational aspects of the calculation of definite integrals in real time
applications.

3. Order adaptive quadrature rule for real time holography applications

As mentioned previously, computation of the intensity of illumination at any point on
the hologram plane requires computation of definite integrals over the exposure time. But
standard higher order Newton-Cotes quadrature formulas (Davis & Rabinowitz (1984))
require that the number of nodes must be a divisible numeral. For example the second order
Newton-Cotes rule already requires that the number of nodes must be odd. Such conditions
mean that a significant number of nodes at the end of an experimental time series must be
deleted and the integration interval artificially shortened for higher order Newton-Cotes rule,
if the number of nodes is not known at the beginning of the experiment. Therefore there
exists a definite need for a high order integration rule with a constant time step without any
requirement for the number of time steps. Such quadrature formula is proposed in Ragulskis
& Saunoriene (2008):
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t0+(k−1)h
∫

t0

f (t) dt =

(

m

∑
i=1

ai fi +
k−2m

∑
i=1

fm+i +
m

∑
i=1

am−i+1 fk−m+i

)

h, (10)

where ai are the weights and fi are the discrete values of sampled function f at time moments
t0 + (i− 1) · h, i = 1, . . . , k. It has been proved that this integration rule is exact when the
integrated function is a polynomial of the m-th order, if only m is odd (Ragulskis & Saunoriene
(2008)). The numerical values of the weights ai are presented in the Table 1 at different
values of m. The parameter p in this table denotes the maximum order of exactly integrated
polynomials; l is the order of the error term expressed in the form O(hl).

m 2 3 4 5 6 7

a1 0.5 0.37500000 0.33333333 0.32986111 0.31875000 0.30422454

a2 1 1.1666667 1.2916667 1.3208333 1.3763889 1.4603836
a3 0.95833333 0.83333333 0.76666667 0.65555556 0.45346396

a4 1.0416667 1.1013889 1.2125000 1.4714286
a5 0.98125000 0.92569444 0.73939319

a6 1.0111111 1.0824735

a7 0.98863261
p 1 3 3 5 5 7

l 2 4 4 6 6 8

Table 1. Nodal weights of the integration rule

It can be noted that finite element method was used for the derivation of the proposed
quadrature rule which can be interpreted as a new variant of Gregory type formulas (Davis
& Rabinowitz (1984)). Unfortunately, the proposed quadrature rule (also Gregory type rules)
can be used only when the order is predefined before the experiment and does not change
over the integration process. This paper proposes a multi-processor parallel algorithm with
full order adaptability in real time calculation mode.

3.1 The basic real time integration rule

Let’s suppose that function f is sampled starting from t0 at equally spaced time steps; the
length of a time step is h. Due to the real time process the number of nodes is not predefined
before the experiment and process continues until the end of the sampling. Let’s suppose that
the terminal moment of the sampling occurs at t0 + 7h (8 function values fi, i = 1, . . . , 8 are
produced during the sampling process). Order of the integration rule is predetermined to be
m = 3.

1. The first sum on the right side of Eq. (10) is computed:

Sum1 = a1 f1 + a2 f2 + a3 f3, (11)

where a1 = 0.375, a2 = 1.1666667, a3 = 0.95833333 (Table 1).

2. Starting from the fourth node, the following sum is computed until the end of the time
series:

Sum2 = f4 + f5 + f6 + f7 + f8. (12)
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3. When the sampling is terminated, reverse computation of the third sum of eq. (10) is done:

Sum3 = (a3 − 1) f6 + (a2 − 1) f7 + (a1 − 1) f8. (13)

4. Finally, the definite integral
t0+7h
∫

t0

f (t) dt is calculated according to eq. (10):

I = (Sum1 + Sum2 + Sum3) h. (14)

The process can terminate at any time step, if only k ≥ 2m, but the last three values of the
sampled function must be saved at every time moment in order to calculate Sum3.
Now we will generalize the presented example for m-th order integration rule, if only the
minimum number of nodes is 2m. The algorithm is based on Master-Worker paradigm
(Mattson et al. (2004)). Schematic graphical representation in Fig. 8 helps to interpret the
computation process.

Fig. 8. Schematic representation of the basic model:(a) signal diagram; (b) time diagram; (c)
flow chart diagram

Several notations used in Fig. 8 can be explained in more detail. Order of the integration rule
m is predefined before the experiment. Calculation of Sum1 is performed by Master processor
(grey right arrow in signal diagram; block n in time diagram and node n in flow chart
diagram). After m terms are included into Sum1, the Master processor continues summation
of nodal values of the integrand until the sampling process is terminated (white right arrow

in signal diagram; block n(1) in time diagram and node n(1) in flow chart diagram). When the
sampling is over, Worker processor performs reverse calculation of Sum3 (grey left arrow in
signal diagram; block n̄ in time diagram and node n̄ in flow chart diagram).
It can be noted that the last m values of the sampled function must be remembered at every
time node in order to calculate Sum3.
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3.2 Order adaptive algorithm for real time applications

The presented basic real time integration rule copes well with integrands which can be
approximated by a polynomial of a definite order in the domain of integration. But if the
variation of the integrand is fast in some regions and slow in another regions, then order
adaptability should be used to increase the accuracy of a definite integral. One can suggest
to select very large m at the beginning of the experiment, but then we may face the risk that
k < 2m.
We assume that there exists a detector which measures the values of the integrand and
recommends the order of integration rule at any time moment in the domain of integration.
Let’s assume that the present order is m1 and the detector recommends order m2. Then two
different situations may occur. If the number of sampled nodes since m1 was declared is
higher than or equal to 2m1, the transition to order m2 can be performed fluently. The Master
processor starts calculating Sum1 for order m2, while Worker processor takes care for reverse
calculation of Sum3 for terminated m1.
But if the number of sampled nodes since m1 was declared is less than 2m1, the Worker
processor cannot start reverse calculation of Sum3 without damaging Sum1. Therefore a much
more complex transition to order m2 takes place in this situation. If m2 is higher than m1 the
Worker processor must return to the point where order m1 was declared and must recalculate
Sum1 with order m2. But the simplicity is misleading – the Master processor has already
summated Sum1 with orderm1 to the total sum! Therefore the Worker processor must evaluate
different weighting coefficients for orders m1 and m2. Moreover, the length of the queue where
the last function values are stored must be already not mi, but 2mi (here mi is the current
order).
If m2 is lower than m1, but the number of sampled nodes since m1 was declared is less than
2m1, the integration with order m1 must be continued until the number of nodes is equal to
2m1, and only after that the order m2 can be accepted.
Finally, we may comment what would happen if the sampling process is terminated and the
number of sampled nodes since mi was declared is lower than 2mi. Unfortunately, there will
be no any possible techniques to preserve order mi (time step is constant and reverse sampling
with smaller time step is impossible in real time mode). The only solution is to select maximum
possible order for the available number of time steps (floored half of the number of time steps).
We will illustrate the described situations with the following example (Fig. 9 and Fig. 10).
One Master processor and two Worker processors are necessary for full real time mode.
Algorithm control, integrand sampling and summation of sums Sum1 and Sum2 is performed
by Master processor. The Worker processors run only when the order is changed. Worker
processors send back the results to the Master processor.
As an extreme situation we describe the transition from order m3 to order m4 (Fig. 9) where
the second Worker processor is necessary for real time integration. Master processor starts
calculating Sum1 (with weights corresponding to order m3) as soon as the order m3 is declared.
The number of discrete time nodes necessary for this procedure is m3. As soon as Sum1

is finished, Master processor starts summing non-weighted discrete function values. This
process continues until order m4 is declared. But the order detector has sensed a burst in
the digital time series, so m4 is much higher than m3. In this particular situation we have that
m4 is even greater than k3 (Fig. 9). Thus, the Worker processor must recalculate both the old

Sum1 and the rest non-weighted part (n3 and n
(1)
3 in time diagram). Moreover, at the same

time Sum3 for order m2 must be accomplished (n̄2 in time diagram). Thus Worker-2 processor
is unavoidable for real time computation (n̄2 and n̄3 overlap in time diagram).
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Fig. 9. Real time integration, general case: (a) signal diagram; (b) time diagram

Fig. 10. Real time integration, general case: flow chart diagram

The presented procedure for real time calculation of definite integrals can be effectively
applied in hybrid numerical-experimental techniques where time average intensities of
illumination are reconstructed in virtual computational environment. Implementation of the
proposed integration rule enables full real time computations with minimal data queue
lengths and effective management of integration order.

4. Plotting holographic interferograms for visualisation of dynamic results from

finite element calculations

The amount of data produced by finite element calculation places a particular challenge
to scientific visualization. Meaningful and accurate visualization is an important task of
computer modeling, especially when hybrid numerical-experimental techniques are used to
construct digital holographic interferograms of such objects as non-linear MEMS cantilevers.
Procedures plotting computer generated interferograms from the results of FEM analysis
based on the principles of optical holography can provide realistic view of dynamic processes
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taking place in such structures. Detailed description of the formation of digital holographic
interferograms applicable for hybrid numerical-experimental techniques will be given in this
chapter.

4.1 The coupling of FEM model with optical relationships

Let the planes A and B be defined in the 3 dimensional space (Fig. 11). Let the triangle defined
by points 1, 2 and 3 be located in the plane A. This triangle is interpreted as an elementary
body surface unit meshed using the Finite Element Method. Let the coordinates of the point
r1 define the observation point and the projection plane be defined by the points r2, r3 and r4:

ri = (xi, yi, zi), i = 1, 2, 3, 4, (15)

where r2 is the origin of the projection plane and the vectors (r3 − r2), (r4 − r2) form the
ortho-normal base of the projection plane. The L – coordinates of the point of intersection
of the line defined by the point of the structure (x, y, z) and the observation point with the
projection plane can be obtained using the relationship in Appendix A, where the system
matrix is substituted by:

⎡

⎢

⎢

⎢

⎢

⎣

x2 x3 x4 −x1 −x
y2 y3 y4 −y1 −y
z2 z3 z4 −z1 −z
1 1 1 0 0
0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎦

. (16)

Fig. 11. Determination of the intensity of the surface: A – plane of the structure, B – projection
plane, C – the incident laser beam

Then the spatial coordinates of the point of intersection (x̃, ỹ, z̃) are:

x̃ = L4x1 + L5x,
ỹ = L4y1 + L5y,
z̃ = L4z1 + L5z.

(17)
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The coordinates of the point (X,Y) in the projection plane can be obtained:

X = (x̃− x2) (x3 − x2) + (ỹ− y2) (y3 − y2) + (z̃− z2) (z3 − z2) ,
Y = (x̃− x2) (x4 − x2) + (ỹ− y2) (y4 − y2) + (z̃− z2) (z4 − z2) .

(18)

Assuming the projection plane corresponds to the computer graphical screen and contains n
rows and m columns of pixels, the calculations are performed for every pixel of the mapped
interferogram:

X = Xmin + (j− 1) (Xmax − Xmin)
/

(m− 1),
Y = Ymax − (i− 1) (Ymax − Ymin)

/

(n− 1),
i = 1, ...,n; j = 1, ...,m,

(19)

where the subscripts min and max indicate the minimum and maximum values of the
corresponding quantities.
The unit normal vector of the projection plane is:

x0 = (y3 − y2) (z4 − z2) − (z3 − z2) (y4 − y2) ,
y0 = (z3 − z2) (x4 − x2) − (x3 − x2) (z4 − z2) ,
z0 = (x3 − x2) (y4 − y2)− (y3 − y2) (x4 − x2) .

(20)

Finally the spatial coordinates (x∗, y∗ , z∗) of the point in the projection plane can be
determined from:

⎡

⎣

x3 − x2 y3 − y2 z3 − z2

x4 − x2 y4 − y2 z4 − z2

x0 y0 z0

⎤

⎦

⎧

⎨

⎩

x∗

y∗

z∗

⎫

⎬

⎭

=

⎧

⎨

⎩

X + x2 (x3 − x2) + y2 (y3 − y2) + z2 (z3 − z2)
Y + x2 (x4 − x2) + y2 (y4 − y2) + z2 (z4 − z2)

x2x0 + y2y0 + z2z0

⎫

⎬

⎭

.

(21)

It is assumed that the analysed structure is located in the plane z = 0 in the status of
equilibrium, and (x̂i , ŷi), i = 1, 2, 3 are nodal coordinates of a linear triangle element. Then
the L-coordinates can be determined using the relationship in Appendix A, where the system
matrix is substituted by:

⎡

⎢

⎢

⎢

⎢

⎣

x̂1 x̂2 x̂3 −x1 −x∗

ŷ1 ŷ2 ŷ3 −y1 −y∗

0 0 0 −z1 −z∗

1 1 1 0 0
0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎦

. (22)

Thus the approximate coordinates of the intersection point (α, β, 0) between the line through
the observation point and the pixel (i, j) and the surface of the analysed structure are obtained
by interpolation.
It is assumed that the laser rays are coherent and parallel to each other.
The unit vector L from the point of the structure in the state of equilibrium to the isophase
cross section of the laser beam in the direction of the beam is predefined.
The normal vector N coincides with the unit vector of the z axis:

N = [Nx, Ny, Nz]
T = [0, 0, 1]T, (23)
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The relationship between the direction to the light source and the direction of reflection can
be described by the following equation (Ivanov & Batrakov (1995)):

R =

⎡

⎣

2N2
x − 1 2NxNy 2NxNz

2NxNy 2N2
y − 1 2NyNz

2NxNz 2NyNz 2N2
z − 1

⎤

⎦ · L, (24)

where R is the direction of reflection. The vectors L, N, R (Fig. 11) are complanar, the angle
between L and N is equal to the angle between N and R.
Higher order elements can be subdivided into triangles and the approximate local coordinates
of the element can be obtained by interpolation from the local coordinates of the nodes of the
triangle.
For the three dimensional problem the calculations are performed for a sequential number of
values of the local coordinates (ξ, η) in the current finite element:

ξ = −1 + 2
n−1 (i− 1) , i = 1, ...,n,

η = −1 + 2
n−1 (j− 1) , j = 1, ...,n.

(25)

The spatial orthogonal Cartesian coordinates of these points can be calculated using the shape
functions of the analysed finite element. Afterwards the corresponding values X and Y are
obtained from Eq. (18).
The reconstructed digital image consists of the matrix of pixels where the columns are indexed
from 0 to mx and the rows – from 0 to my. Thus the point (X,Y) is mapped to the pixel (ix , iy):

ix = round
(

X−Xmin
Xmax−Xmin

mx

)

,

iy = round
(

my −
Y−Ymin

Ymax−Ymin
my

)

.
(26)

The rounding operation in Eq. (26) can distort the quality of the reconstructed image,
especially when the resolution of the digital image is low, or the density of interference bands
is high. Therefore, the shift operation to the coordinates of the center of the corresponding
pixel (ix, iy) is introduced:

X = ix
Xmax−Xmin

mx
+ Xmin,

Y = Ymin −
(

iy −my
) Ymax−Ymin

my
.

(27)

Now, the spatial coordinates of the center of the pixel (x∗, y∗, z∗) can be calculated from
Eq. (21). As the projection of the analysed point on the surface of the structure does not
necessary coincide with the center of the pixel, the further calculations are dedicated for the
location of a point on the surface corresponding to the center of that pixel.
The tangential vectors to the surface of the analysed finite element

[

xξ yξ zξ

xη yη zη

]

(28)

are determined by multiplying the derivatives of the shape functions (with respect to the
local coordinates) by the nodal coordinates of the corresponding finite element. Subscripts in
Eq. (28) denote partial derivatives.
The L–coordinates of intersection of the line (guided through the observation point and the
center of the pixel) with the plane tangential to the analysed finite element are obtained from
the relationship in Appendix A, where the system matrix is substituted by:
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⎡

⎢

⎢

⎢

⎢

⎣

x x + xξ x + xη −x1 −x∗

y y + yξ y + yη −y1 −y∗

z z + zξ z+ zη −z1 −z∗

1 1 1 0 0
0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎦

. (29)

Thus the calculations are performed for the corrected local coordinates (ξ + L2, η + L3). It can
be noted that such modifications make the procedure more precise and lowers the noise effects
in the reconstructed interferograms.
The normal vector N for the analysed three-dimensional structure is obtained as a normalised
vector product of the rows of Eq. (28). Other relationships used in the process of calculations
coincide with the previously described ones for planar structures.

4.2 Determination of the interference bands in holographic interferograms

The distribution of intensity of the laser beam a2(x, y) is assumed (Vest (1979)):

a2 (x, y) = IL
(

kd (N · L) + ks (V · R)n
)

, (30)

where IL is the intensity of the incident laser beam, kd is the diffuse reflection coefficient, ks –
the specular reflection coefficient, n is a coefficient describing the smoothness of the surface,
V is the direction to the viewer, dot in parenthesis denotes a scalar product.
When the surface of the plate performs harmonic oscillations according to an appropriate
eigenform, the intensity can be calculated on the basis of Eq. (4):

I =
(

cos
(

4π (u · L) sin ωt
/

λ
)

)2
a2 (x, y) , (31)

where u is the amplitude of harmonic oscillations, λ is the laser wavelength, the top line
denotes averaging by time.
The first term of Eq. (31) corresponds to the direct calculation of the real part of Eq. (5); the
imaginary part is infinitesimal:

lim
T→∞

1

T

T
∫

0

sin

(

4π

λ
(u · L) sin ωt

)

dt = 0. (32)

Numerical averaging of Eq. (31) can be performed using a certain number of intermediate
state positions of the surface during one cycle of oscillations. The averaged term takes the
form:

cos
(

4π (u · L) sin ωt
/

λ
)

=
1

n

n

∑
i=1

cos

(

4π

λ
(u · L) sin

2π (i− 1)

n

)

. (33)

It can be noted that such averaging procedure enables to generalise the calculation of intensity
for more complex (not only harmonic) dynamic processes. The convergence of the square of
Eq. (33) to the square of Eq. (6) can be analysed numerically. It can be noted that when n = 16
the precision of calculations is acceptable for the first three interference bands, when n = 32 –
for the first five bands, when n = 64 – for the first 8 bands.
The intensity levels decrease rapidly with the number of the intereference band due to the
qualities of Bessel functions. As a limited number of intensity levels is used for the digital
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representation of images for better visualisation of the results of calculations a sigmoidal
mapping function is used to distort the intensity scale:

F (I) =
tanh (kI)

tanh (k)
, (34)

where parameter k characterises the level of distortion, 0 < k < ∞ (Fig. 12). It can be noted,
that

F (0) = 0,
F (1) = 1,
lim
k→∞

F (I) = sign (I) ,

lim
k→0

F (I) = I.

(35)

Fig. 12. The decay of intensity for the time averaged method without (solid line) and with
intensity mapping at k = 5 (dashed line)

In fact,

lim
k→0

dF (I)

dI
= lim

k→0

ek + e−k

ek − e−k

d

dI

(

ekI − e−kI

ekI + e−kI

)

= lim
k→0

2k

ek − e−k
= 1. (36)

Optical stroboscopic method is used for better interpretation of micro vibrations (Vest (1979)).
The structure is lightened two times per period of oscillations at the moments of extreme
deflections.
The term cos (4π (u · L) sin ωt/λ) is interpreted as the average value of the two extreme
deflections of the structure, corresponding to the moments ωt = π/2 and ωt = 3π/2, so the
averaged term takes the form cos (4π (u · L) /λ) due to the evenness of the cosine function.
The Eq. (31) is transformed to:
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I = cos2
(

4π (u · L)
/

λ
)

IL
(

kd (N · L) + ks (V · R)n
)

. (37)

The decay of intensities for the time averaged and stroboscopic models are presented in
Fig. 13. It can be noted that the locations of the centers of dark interference bands for the
stroboscopic method (dashed line) do not coincide with the time averaged ones (solid line).

Fig. 13. The decay of intensity for the time averaged method (solid line) and for the
stroboscopic method (dashed line)

The stroboscopic method does not produce a fast decay of the intensities and thus enables
to interpret the higher interference bands from the interferogram. Thus the visualisation of
higher amplitudes (higher interference bands) requires either the intensity mapping of the
time averaged interferograms, or application of the stroboscopic method of analysis.
The problem of visualisation of microvibrations is important in engineering of precise
mechanical systems. The plotting of interference bands from the results of finite element
analysis has clear physical background compared to other visualisation techniques. Also that
is important because of the ability of direct comparisons with the experimental results of
holographic optical analysis. Presented methodology for plotting holographic interferograms
is scalable in parallel computations and applicable to a wide variety of problems.

5. Computational visualization of time averaged holographic interferograms of the

MEMS cantilever

The presented procedure for real time calculation of definite integrals can be effectively
applied in hybrid numerical-experimental techniques where time average intensities of
illumination in a holographic interferogram are reconstructed in virtual computational
environment. Implementation of the proposed integration rule enables full real time
computations with minimal data queue lengths and effective management of integration
order.
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These simulation results are illustrated for the dynamics of the MEMS cantilever under
oscillating charge excitation what provides rather complex dynamic response of the tip
of the cantilever. Figure 14 presents interferograms for the first eight eigenmodes. The
displacement of the tip of the cantilever is presented in Fig. 15. Computations of the intensity
of illumination for different time exposures for the MEMS cantilever are used to construct
numerical approximations of holographic interferograms; the results are presented in Fig. 16.

Fig. 14. Time average interferograms of the first eight eigenmodes of MEMS cantilever

Fig. 15. Chaotic dynamics of the tip of MEMS cantilever and times of exposure T1 − T5

Numerical results validate the theoretical predictions and help to explain the complexity of
the dynamical processes taking place in the analysed MEMS systems, especially when the
analysed system oscillates chaotically.
Though time average holography is a powerful experimental technique for analysis of MEMS
dynamics, the interpretation of produced patterns of fringes in holograms must be performed
with care. Complex physical and non-linear dynamical processes taking place in MEMS
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Fig. 16. Time avegare interferograms of the MEMS cantilever at different times of exposure

systems may influence the results produced by optical methods. This book chapter provides
insight in the complexity of the MEMS dynamics and the problems of its optical analysis based
on holographic interferometry.

6. Concluding remarks

The validation of experimental investigations versus numerical analysis provides the
necessary background to analyse the dynamical characteristics of MEMS elements in virtual
numerical environments. Direct application of fringe counting techniques for reconstruction
of motion from time average holograms cannot be straightforward if the analysed MEMS
system performs chaotic oscillations. Modifications of a classical time average holographic
technique enable qualitative analysis of MEMS and can be applied for investigation of
dynamical properties of much broader classes of MEMS systems.
Is well known that non-linear systems can exhibit periodic, quasiperiodic, and even chaotic
responses under periodic forcing. Therefore it is important to understand what time averaged
image would be produced if time average holographic interferometry is used to explore a
chaotically oscillating elastic structure.
The ability to interpret such holographic interferograms would help to improve the
uncertainty of the inverse problem and to distinguish malfunctions of the optical setup and
also physical reasons causing specific optical effects.

7. Appendix A

Denoting shape functions L1, L2 and L3 as L-coordinates of the triangle (Zienkiewicz &
Morgan (2006)), and L4 and L5 as L-coordinates of the line, the following relationships are
true:

x = L1x1 + L2x2 + L3x3,
y = L1y1 + L2y2 + L3y3,
z = L1z1 + L2z2 + L3z3,
L1 + L2 + L3 = 1,

(38)
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and

x = L4 x̃1 + L5 x̃2,
y = L4ỹ1 + L5ỹ2,
z = L4z̃1 + L5z̃2,
L4 + L5 = 1,

(39)

where xi , yi, zi, i = 1, 2, 3 – coordinates of three points in a plane, x̃1, x̃2, x̃3 and ỹ1, ỹ2, ỹ3 –
coordinates of two points lying on the line. Then the L-coordinates of the point of intersection
between the line and the plane are given by the solution of the following system of equations:

⎡

⎢

⎢

⎢

⎢

⎣

x1 x2 x3 −x̃1 −x̃2

y1 y2 y3 −ỹ1 −ỹ2

z1 z2 z3 −z̃1 −z̃2

1 1 1 0 0
0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎦

⎧









⎨









⎩

L1

L2

L3

L4

L5

⎫









⎬









⎭

=

⎧









⎨









⎩

0
0
0
1
1

⎫









⎬









⎭

. (40)

The line intersects the plane inside the triangle when the conditions

Li ∈ [0, 1], i = 1, 2, 3 (41)

are satisfied.
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