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1. Introduction 

Discrete optics and digital optics are fast becoming a classical chapter in optics and physics 

in general, despite their relative recent arrival on the scientific scene. In fact their spectacular 

blooming began precisely at the time of the computer revolution which made possible fast 

discrete numerical computation. Discrete mathematics in general and discrete optics in 

particular although predated digital optics, even by centuries, received a new impetus from 

the development of digital optics. Formalisms were designed to deal with the specific 

problems of discrete numerical calculation. Of course, these theoretical efforts were done not 

only for the benefit of optics but of all quantitative sciences. Diffractive optics in general and 

the newly formed scientific branch of digital holography, turned out to be especially suited 

to benefit from the development of discrete mathematics. One reason is that the optical 

diffraction in itself is a mathematical transform. An ordinary optical element such as the lens 

turned out to be a genuine natural optic computer, namely one that calculates the Fourier 

transform (Goodman, 1996, chapter 5).  

The problem is that the discrete mathematics is not at all the same thing as continuous 

mathematics. For instance for the most common theoretical tool in diffractive optics, the 

continuous (physical) Fourier transform (CFT) we have a discrete correspondent named 

discrete Fourier transform (DFT). We need DFT because the Fourier transform rarely yields 

closed form expressions and generally can be computed only numerically, not symbolically. 

Of course, no matter how accurate, by its very nature DFT can be only an approximation of 

CFT. But there is another advantage offered by DFT which inclines the balance in favour of 

discrete optics. The reason is somehow accidental and requires some explanation. It is the 

discovery of the Fast Fourier transform, for short FFT, (Cooley & Tukey, 1965), which was 

followed by a true revolution in the field of discrete optics because of the reduction with 

orders of magnitude of the computation time, especially for large loads of input data. FFT 

stirred also an avalanche of fast computation algorithms based on it. The property that 

allowed the creation of these fast algorithms is that, as it turns out, most diffraction 

formulae contain at their core one or more Fourier transforms which may be rapidly 

calculated using the FFT. The method of discovering a new fast algorithm is oftentimes to 

reformulate the diffraction formulae so that to identify and isolate the Fourier transforms it 

contains. We contributed ourselves to the development of the field with the creation of an 

www.intechopen.com



 Holography, Research and Technologies 

 

4 

improved algorithm for the fast computation of the discrete Rayleigh-Sommerfeld transform 

and a new concept of convolution: the scaled linearized discrete convolution (Nascov & 

Logofătu, 2009). The conclusion is that we want to use DFT, even if CFT would be a viable 

alternative, because of its amazing improvement of computation speed, which makes feasible 

diffraction calculations which otherwise would be only conjectures to speculate about.  

Here is the moment to state most definitely the generic connection between the digital holography 

and the DFT, more specifically the FFT, as was outlined in the pioneer work of (Lohmann & 

Paris, 1967), and since then by the work of countless researchers, of which, for lack of space 

and because it is not our intent to write a monography about the parallel evolution of digital 

holography and DFT, we will mention only a few essential works that deal both subjects in 

connection to each other. There is, of course, a vast deal of good textbooks and tutorials 

dedicated to the fundamentals of the Fourier transform, continuous or discrete (Arfken & 

Weber, 2001; Bracewell, 1965; Brigham, 1973; Bringdahl & Wyrowsky, 1990; Collier et al., 

1971; Goodman, 1996; Lee, 1978; Press et al., 2002 and Yaroslavsky & Eden, 1996), but in our 

opinion a severe shortcoming of the textbooks listed above is the fact that, in our opinion 

none offers a complete and satisfactory connection between the two formalisms, such as the 

expression of DFT in terms of CFT. We use DFT in place of CFT but we do not know exactly 

what is the connection between them! In Yaroslavsky & Eden, 1996, chapter 4 and Collier, 

1971, chapter 9, a correspondence is worked out between DFT and CFT, namely that the 

value of the DFT is equal to the value of the CFT at the sample points in the Fourier space, 

but this is valid only for band-limited functions and it is not rigorous. (Strictly speaking DFT 

can be applied only to band-limited functions, but this is an unacceptable restriction; many 

of the functions of interest are not band-limited. In general we have to approximate and to 

compensate for the assumed approximations.) Generally those textbooks fail to link in the 

proper manner the fertile but inapplicable in practice in itself field of discrete optics, to 

continuous, physical optics, where the experiments take place and we can take advantage of 

the progress of the discrete optics. In our own scientific research activity in the field of 

digital optics we encountered the difficulty almost at every step [Apostol & al., 2007 (a); 

Apostol et al., 2007 (b); Logofătu et al., 2009 and Logofătu et al., 2010]. In two previous 

occasions (Logofătu & Apostol, 2007 and Nascov et al., 2010)  we attempted to express the 

physical meaning of DFT, to put it in the terms of CFT using the Fourier series as an 

intermediary concept. Together with the present work this continued effort on our part will 

hopefully prove useful to all those who undertake projects in discrete optics and they are 

hampered by the gap between DFT and CFT, discrete mathematics, digital computers on the 

one hand and real physical experiments on the other hand. 

With the above rich justification we did not exhaust by far the uses of DFT and the need to 
rigorously connect it to CFT. Apart from all virtual computation, which also requires the 
connection between DFT and CFT to be worked out, digital holography present special 
hybrid cases where a discrete and a continuous character are both assumed. For instance the 
recording of holograms can be made using Charged Coupled Devices (CCD) which are 
discrete yet they work in the real continuous physical world. The same is valid for the other 
end of holography, the reconstruction or the playback of the holograms. For this purpose 
today are used devices such as Spatial Light Modulators (SLM) of which one can also say 
they are hybrid in nature, digital and analogous in the same time. For such devices as CCDs 
and SLMs one has to switch back and forth between CFT and DFT and think sometimes in 
terms of one of the formalisms and some other times in terms of the other. Here we should 
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mention the pioneer work of Lohmann and Paris for the compensation of the “digital” 
effect, so to speak, in their experiments with digital holograms (Lohmann & Paris, 1967).  
For physical reasons in optics, when dealing with images, a 2D coordinate system with the 
origin in the center of the image is used. However, FFT deals with positive coordinates only, 
which means they are restricted to the upper right quadrant of the 2D coordinate system. In 
order to work in such conditions one has to perform a coordinate conversion of the input 
image before the calculations, and also the final result of the calculations has to be converted 
in order to have the correct output image. The conversion involves permutations of 
quadrants and sign for the values of the field. The positive coordinates are necessary for the 
application of the FFT algorithm, which makes worthwhile the complication by its very fast 
computation time. It is possible to work only with positive coordinates because the discrete 
Fourier transform assumes the input and the output being infinite and periodic (Logofătu & 
Apostol, 2007). The disadvantage of this approach is its counterintuitive and artificial 
manner. The correspondence to the physical reality is not simple and obvious. In our 
practically-oriented paper we used a natural, physical coordinate system, (hence negative 
coordinates too), and we performed a coordinate conversion of the images only immediately 
before and after the application of the FFT. In this way, the correspondence to the physical 
reality is simple and obvious at all times and this gives to our approach a more intuitive 
character. Precisely for this reason in chapter 4 we present an alternative method for 
converting the physical input so that can be used by the mathematical algorithm of FFT and 
for converting the mathematical output of FFT into data with physical meaning, a method 
that do not use permutation of submatrices, which may be preferable for large matrices, a 
method based on the shifting property of the Fourier transform applied to DFT.  
In order to keep the mathematics to a minimum the equations were written as for the 1D 
case whenever possible. The generalization to 2D is straightforward and the reader should 
keep in mind at all times the generalization to the 2D case, the real, physical case. The 
equations are valid for the 1D case too, of course, but the 1D case is just a theoretical, 
imaginary case.  

2. The translation of DFT in the terms of CFT or the top-down approach  

2.1 Short overview of the current situation  

In our efforts to bridge the two independent formalisms of CFT and DFT first we used more 
of a top-down approach, working from the principles down to specific results (Logofătu & 
Apostol, 2007). In mathematics there are three types of Fourier transforms: (I) CFT, (II) the 
Fourier series and (III) DFT. Only the first type has full physical meaning, and can be 
accomplished for instance in optics by Fresnel diffraction using a lens or by Fraunhofer 
diffraction. The third type is a pure mathematical concept, although it is much more used in 
computation than the previous two for practical reasons. These three types of Fourier 
transforms are independent formalisms, they can stand alone without reference to one 
another and they are often treated as such, regardless of how logic and necessity generated 
one from another. Because only CFT has physical meaning, the other two types of 
transforms are mathematical constructs that have meaning only by expressing them in terms 
of the first. In order to be able to do this we have to present the three transforms in a 
unifying view. To our knowledge no mathematics or physics textbooks present such a 
unifying view of the three types of Fourier transforms, although all the necessary 
knowledge lies in pieces in the literature. An integrated unifying presentation of the three 
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types of Fourier transforms has then the character of a creative review, so to speak. In this 
paper such a unifying view is presented. The Fourier transform of type II, the Fourier series, 
besides its own independent worth, is shown to be an intermediary link between the Fourier 
transforms of types I and III, a step in the transition between them. Also some concrete cases 
are analyzed to illustrate how the discrete representation of the Fourier transform should be 
interpreted in terms of the physical Fourier transform and how one can make DFT a good 
approximation of CFT. In the remainder of this chapter such a unifying view is presented. 
The Fourier transform of type II, the Fourier series, besides its own independent worth, is 
shown to be an intermediary link between the Fourier transforms of types I and III, a step in 
the transition between them. Also some concrete cases are analyzed to illustrate how the 
discrete representation of the Fourier transform should be interpreted in terms of the 
physical Fourier transform and how one can make DFT a good approximation of CFT.  

2.2 Fourier transforms 

Suppose we have a function g(t) and we are interested in its Fourier transform function G(f). 
Here t is an arbitrary variable (may be time or a spatial dimension) and f is the 
corresponding variable from the Fourier space (like time and frequency or space and spatial 
frequencies). We work in the 1D case for convenience but the extrapolation to 2D, (i.e. the 
optic case, the one we are interested), is straightforward.  
The three types of Fourier transforms are defined as following: (I) continuous, i.e. the 
calculation of the transform G(f) is done for functions g(t) defined over the real continuum, 

that is the interval (–∞…+∞), and the transformation is made by integration over the same 
interval 

  ( ) ( ) ( ) ( )G f {g} f g t exp i 2 f t dt
+∞

−∞

= = − π∫F  (1) 

F being the operator for Fourier transform, with G being also generally defined over the real 
continuum, (II) Fourier series, where the function to be transformed is defined over a 

limited range (0…Δt) of the continuum, and instead of a Fourier transformed function 

defined over (–∞…+∞) we have a series which represents the discrete coefficients of the 
Fourier expansion 

 ( ) ( )
t 2

n

t 2

1
G g t exp i 2 n t / t dt, n ,...,

t

Δ

−Δ

= − π Δ = −∞ ∞
Δ ∫  (2)  

and (III) the purely discrete Fourier transform where a list of numbers is transformed into 
another list of numbers by a summation procedure and not by integration 

 ( )
N 2 1

q p
p N 2

G g exp i 2 q p /N , q N 2 ,...,N 2 1
−

=−

= − π = − −∑  (3) 

(For clarity purposes, in this chapter we use consistently m and n to indicate the periodicity, 
and p and q to indicate the sampling of g and G respectively.) Although these three types of 
Fourier transforms can be considered independent formalisms, they are strongly connected. 
Indeed, the second may be considered a particularization of the first, by restricting the class 
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of input functions g to periodic functions only and then to take into consideration for 

calculation purposes only one period from the interval (–∞…+∞) over which g is defined. 
The third can be considered a particularization of the second, by requesting not only that the 

functions g to be periodic, but also discrete, to have values only at even spaced intervals δt. 
Therefore the third type of Fourier transform may be considered an even more drastic 
particularization of the most general Fourier transform I.  
That is the top-down approach. It is possible another approach, a bottom-up one, in which 
the second type of Fourier transform is considered a generalization of the third type, or a 
construct made starting from the third type, and the same thing can be said about the 
relation between the first and the second type. In order to pass from the Fourier transform 

type III to type II, in the list gm which is a discrete sampling made at equal intervals δt we 

make δt → 0 and N → ∞, which results in the list gm becoming a function of continuous 
argument and the numbers Gn are not anymore obtained by summation as in Eq. (3) but by 
integration as in Eq. (2). Now we are dealing with the Fourier transform type II. Making the 
function g periodic, by imposing 

 g(t m t) g(t)+ Δ =  (4) 

where m is an arbitrary integer, and making the period Δt → ∞, the discrete coefficients Gn 
become a continuum and we are back to the Fourier transform of type I. But we will deal 
with this approach in more detail in chapter 3.  

2.3 From continuous Fourier transform to Fourier series  

Since the formalism of the Fourier transform of type I is the most general and the only one 
with full physical meaning, we will express the two other formalisms in its terms. As we 
said before, if the input function g is periodic, then the corresponding output function G 

degenerates into a series. Indeed, if g has the period Δt as in Eq. (4) then the corresponding G 
can be written as 

 

( ) ( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )

m 1 2 t t 2

m mm 1 2 t t 2

t 2

mt 2

G f g t exp i 2 f t dt g t exp i 2 f t m t dt

g t exp i 2 f t dt exp i 2 m f t

+ Δ Δ+∞ +∞

=−∞ =−∞− Δ −Δ

Δ +∞

=−∞−Δ

= − π = ⎡− π + Δ ⎤ =⎣ ⎦

= − π − π Δ

∑ ∑∫ ∫

∑∫

 (5) 

Without rigorous demonstration we will state here that the infinite sum of exponentials in 
the uttermost right hand side of Eq. (5) is an infinite sum of delta functions called the comb 
function, 

 ( ) ( )comb

m n

1 n
exp i 2 m f t f t f

t t

+∞ ∞

=−∞ =−∞

⎛ ⎞− π Δ = δ − ≡ Δ⎜ ⎟Δ Δ⎝ ⎠
∑ ∑  (6) 

Indeed, one may check that the sum of exponentials is 0 everywhere except for f of the form 

n/Δt when it becomes infinite. When f is of the form n/Δt all the members of the infinite sum 

are equal to 1. When f differs however slightly from n/Δt, the phaser with which we can 
represent the exponentials in the uttermost left hand side of Eq. (6) in the complex plane 

runs with incremental equidistant strokes from 0 to 2 π when the index m of the sum grows 
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incrementally with the result that the contributions of the terms to the sum cancels each 
other out, although not necessarily term by term. (One should not confuse the delta function 

δ(t) with the sampling interval δt.) Introducing (6) into (5) one obtains 

 ( ) ( ) ( )
t 2

n
n nt 2

1 n n
G f f g t exp i 2 n t / t dt G f

t t t

Δ∞ ∞

=−∞ =−∞−Δ

⎛ ⎞ ⎛ ⎞= δ − − π Δ = δ −⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠ ⎝ ⎠
∑ ∑∫  (7) 

where Gn were defined in Eq. (2). One can see from Eq. (7) that the Fourier series are a 

particular case of CFT, namely the Fourier transform G of a periodic function g of period Δt 

is a sum of delta functions of arguments shifted with 1/Δt intervals and with coefficients Gn 

that are the same as the coefficients defined in Eq. (2). Actually it is the coefficients from Eq. 

(2) that are the Fourier series, and not the function defined in Eq. (7), but the correspondence 

is obvious.  

In optical experiments one may see a good physical approximation of the Fourier series 

when a double periodic mask, with perpendicular directions of periodicity, modulates a 

plane monochromatic light wave and the resulting optical field distribution is Fourier 

transformed with the help of a lens. In the back focal plane of the lens, where the Fourier 

spectrum is formed, we have a distribution of intensely luminous points along the directions 

of periodicity. The luminous points do not have, of course, a rigorous delta distribution, 

they are not infinitely intense and they have non-zero areas. This departure from ideal is 

due to the fact that neither the mask nor the plane wave are ideal. The image that is Fourier 

transformed is neither infinite nor rigorously periodic, since the intensity of the plane wave 

decreases from a maximum in the centre to zero towards the periphery. But such an 

experiment is a good physical illustration of the mathematics involved in Eq. (7) 

The difference between CFT and the Fourier series can be seen also from the inverse 
perspective of the Fourier expansion of g,  

 

( ) ( ) ( ) ( )

( ) ( )

1

n n
n n

g t {G} t G f exp i 2 f t dt

n
G f exp i 2 f t dt G exp i 2 n t / t

t

+∞
−

−∞
+∞ ∞ ∞

=−∞ =−∞−∞

= = π =

⎛ ⎞= δ − π = π Δ⎜ ⎟Δ⎝ ⎠

∫

∑ ∑∫

F

 (8) 

The difference is that in the case of a periodic function the Fourier expansion is a sum and 

not an integral anymore. 

2.4 The discrete Fourier transform  

For computation purposes we cannot use always a function g defined over the continuum 
but a sampled version instead. There are many reasons that make the sampling of g 
necessary. It is possible that the function g, representing a physical signal, an optical field for 
instance, is not known a priori and only a detected sample of it can be known. It is possible 
that the function g cannot be integrated because it is too complicated or it cannot be 
expressed in closed form functions or it causes numerical instabilities in the calculation of 
CFT. A very important reason might be the fact that the function g may be the result of 
calculations too as in the case of computer-generated Fourier holograms. In this case, g is 
known only as a 2D matrix of numbers. (For simplicity, however, we will continue to work 
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with 1D functions as long as possible.) Then we have to sample the input function, and we 
can do that with the help of the comb function; this type of sampling will yield the value of 

g at evenly spaced intervals of chosen value δt and it can be written as 

 ( ) ( ) ( ) ( ) ( )s
p

p m p

g t g(t) t t p t t g p t t p t t g t p t
∞ ∞ ∞

=−∞ =−∞ =−∞
= δ δ − δ = δ δ δ − δ = δ δ − δ∑ ∑ ∑  (9) 

where gp are the sampled values g(p δt) and p is an arbitrary integer. The superscript “s” 

stands for “sample”. One may notice that when δt → 0 we have gs → g.  
Now in order to obtain G we may apply CFT to g, but we may prefer to apply instead DFT 
defined in Eq. (3) for the reasons already mentioned in section 1. A sampled Fourier 
spectrum does not mean necessarily that the Fourier transform has to be performed 
discretely; we may perform it continuously and then sample the resulting continuous 
spectrum. But this would be a waste of effort. It is preferable to compute the Fourier 
spectrum discretely. But what physical correspondence has the discrete transform in reality, 
where the transform is continuous? To find out one needs to express DFT in terms of CFT. 
In other words using CFT of the sampled function we try to obtain the Fourier spectrum 
also under a sampled form. Here we can make use of the Fourier series, which now prove to 
be, as we stated before, an intermediary link between CFT and DFT.  
We know from subsection 2.2 that the CFT of a periodic function is a discrete even spaced 
function. Since we want G to be discrete, then we have to make g periodic. The input 
function g is not generally periodic but in most practical cases it has values only over a finite 

domain of arguments. Suppose g is non-zero only for arguments in the interval t∈(–Δt/2 

…Δt/2). We define a periodic function gp as  

 ( ) ( )p

m

g t g t m t
∞

=−∞
= + Δ∑  (10) 

The superscript “p” means that gp is the periodic version of g. A function that is non-zero 

only in the interval (–Δt/2 …Δt/2), does not have to be sampled to infinity, but only where 

has non-zero values. Sampling g over the interval (–Δt/2 …Δt/2) gives us the same quantity 

of information as sampling gp to infinity if, for simplicity, we choose the sampling interval δt 
so that  

 t N tΔ = δ  (11) 

where N is an integer. To make the input function both discrete and periodic, we have to 
combine the forms (9) and (10) of g together, and, taking into account (11), we obtain 

 ( ) ( )
N 2 1

sp
p

m p N 2

g t t g t m t p t
−∞

=−∞ =−
= δ δ + Δ − δ∑ ∑  (12)  

Here the superscript “sp” means that the function gsp is both sampled (discrete) and 
periodic. We know from the general properties of CFT of its reciprocal character (Bracewell, 
1965; Goodman, 1996) and that the inverse CFT is very similar to CFT itself [see Eqs. (1) and 
(8); DFT has a similar property]. A double CFT reproduces the input function up to an 
inversion of coordinates. Therefore, if the CFT of a periodic function is an even-spaced 
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discrete sampling, then the CFT of an even-spaced discrete sampling has to be a periodic 
function. Let us check this assertion by calculating the CFT of (12) 

 

( ) ( ) ( )

( ) ( )

N 2 1
sp

p
m p N 2

N 2 1

p
p N 2 m

G f t g t m t p t exp i 2 f t dt

t g exp i 2 f p t exp i 2 f m t

∞ −∞

=−∞ =−−∞
− ∞

=− =−∞

= δ δ + Δ − δ − π =

= δ − π δ π Δ

∑ ∑∫

∑ ∑
 (13) 

We make use again of the property (6) and obtain 

 

( ) ( )

( )

N 2 1
sp

p
p N 2 q

N 2 1

p
q p N 2

1 q
G f t g exp i 2 f p t f

t t

1 q
f g exp i 2 qp /N

N t

− ∞

=− =−∞

−∞

=−∞ =−

⎛ ⎞= δ − π δ δ − =⎜ ⎟Δ Δ⎝ ⎠

⎛ ⎞= δ − − π⎜ ⎟Δ⎝ ⎠

∑ ∑

∑ ∑
 (14) 

We notice that Gsp is periodic with the period Δf = 1/δt, because adding n/δt to the 

argument f this causes only a reindexation with nN of the infinite sum of delta functions that 

does not cause any modification to Gsp precisely because the sum is infinite. We also notice 

that the coefficients of the delta functions are, up to a multiplication constant, the DFT of Eq. 

(3). We may rewrite then Gsp as 

 ( )
N 2 1

sp
q

n q N 2

1 q n
G f G f

N t t

−∞

=−∞ =−

⎛ ⎞= δ − −⎜ ⎟Δ δ⎝ ⎠
∑ ∑  (15) 

In the expression (15) the periodic character of Gsp, namely of period 1/δt, is more clearly 

visible than in Eq. (14). Also Gsp is sampled at intervals of δf = 1/Δt. Both gsp and Gsp are 

discrete and periodic. This is connected with the property of the function comb that it is 

invariant to CFT (Bracewell, 1965; Goodman, 1996), in other words the CFT of the comb 

function is also the comb function. The sampling of g is made with a comb function and it 

was to be expected to retrieve the comb function in the expression of Gsp. One may say that 

the DFT of a sampled function g is the CFT of the comb function weighted with gp and the 

result is a comb function weighted with Gp. It should be noted that Gsp has the same number 

of distinct elements as gsp, N. This is to be expected since through Fourier transform no 

information is lost but only represented differently. We should be able to retrieve the same 

amount of information from G as from g, therefore the number of samples should be the 

same for both functions. It is also noteworthy the inverted correspondence between the 

sampling intervals and the periods of gsp and Gsp. The sampling interval of Gsp is the inverse 

of the period of gsp, and the period of Gsp is the inverse of the sampling interval of gsp.  

One may see now that the correspondence between CFT and DFT given in references 

(Collier et al., 1971; Yaroslavsky & Eden, 1996) is of a different kind than that shown above. 

In those references the output function G is not discrete. Only the sampled values of G 

correspond to the DFT of only the sampled values of g. Also our relation between CFT and 

DFT has the advantage of illustrating better some properties of DFT such as its cyclic or 

toroidal character (Collier et al., 1971).  
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Eqs. (12,15) represent the physical equivalent of DFT. Only for a function like gsp, periodic 
and consisting of evenly spaced samples, can one calculate the Fourier transform as in Eq. 
(3), i.e. discretely, and such functions do not exist in reality, and one may wonder what is 
the usefulness of it all. There is usefulness inasmuch as gsp relates to g and Gsp to G, and they 
are related because we built gsp starting from g. But constructing gsp we adapted g for the 
purpose of discrete computing and we departed from the original g and consequently from 
G. Now we have to find how close are the CFT and the physical equivalent of DFT 
performed on g and how we can bring them closer. But before that we think we should try 
the reciprocal approach, the bottom-up approach as one can call it, starting from the 
simplest formalism, the DFT and arriving at CFT, of course, again via the Fourier series, 
which seem to be the accomplished intermediary.  

3. The translation of CFT in the terms of DFT or the bottom-up approach  

The Fourier (or harmonic) analysis is a methodology used to represent a periodic function 
into a series of harmonic functions. The harmonic functions are well known elementary 
functions. Fourier analysis is applicable only for linear systems, where the principle of linear 
superposition is valid.  
Let g(t) be a real or complex periodic function, having the period ∆t. The set of functions 

 ( )k k k

kψ (t) exp i 2 f t , f , k , ,
t

= π = = −∞ +∞
Δ

…  (16)  

are the harmonic functions of g. Except for the constant function ψ0(t)=1, all the other 
functions in the set exhibit oscillations with quantized frequencies fk, which are integer 
multiples of f1=1/∆t, called the fundamental frequency. These functions repeat periodically 
over the whole real axis. The real and imaginary parts of g are identical, but they are phase 

shifted: the real part has a phase delay of π/2 (a quarter of a period) relative to the 
imaginary part. This infinite set of harmonic functions is an orthonormal set over the range 

of t∈[–∆t/2, ∆t/2]: 

( )
t/2 t/2def

*
m n m n m n mn

t/2 t/2

0, m n1 1ψ ,ψ ψ (t)ψ (t)dt exp i2 f f t dt δ
1, m nt t

Δ Δ

−Δ −Δ

≠⎧
= ⋅ = ⎡ π − ⎤ = = ⎨⎣ ⎦ =Δ Δ ⎩

∫ ∫  (17) 

The Sturm-Liouville theorem proves that a function f respecting the Dirichlet conditions can 
be expressed as a linear combination of the harmonic functions (Arfken & Weber, 2001, 
chapter 9).  

 ( )
t/2 t/2

*
k k k k k k

k t/2 t/2

1 1
g(t) c ψ (t), c g,ψ g(t)ψ (t)dx g(t)exp i2 f t dt

t t

Δ Δ∞

=−∞ −Δ −Δ

= = = = − π
Δ Δ∑ ∫ ∫  (18) 

This expansion is called Fourier series and the coefficients ck are called Fourier coefficients.  

Theoretically, there is an infinite number of Fourier coefficients. However, above a certain 
cut-off order, their amplitudes become very small and we can neglect them. The abscissa of 
the spectrum is proportional to the frequency. The frequencies corresponding to the spikes 

are multiples of the fundamental spatial frequency 1/Δt. At the same time, the multiples 
order is the index of the coefficient. For example, if we notice a strong spectral component at 
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the 10th position, we say that the 10th harmonic, of frequency f10=10 f1, is one of the dominant 
harmonics of the spectrum. Since only a few number of spectral harmonics have significant 
amplitudes, we say that the given function g can be well approximated by a superposition of 
a few Fourier harmonics.  
The bidimensional (2D) Fourier series extends the regular Fourier series to two dimensions 
and is used for harmonic analysis of periodic functions of two variables. If ∆x and ∆y are the 
periods of the g(x, y) function along the directions defined by the x and y variables, we 
define two fundamental angular frequencies: fx=1/∆x and fy=1/∆y. The basis of 2D Fourier 
series expansion is built up from 2D Fourier harmonics, which are products of two simple 
1D harmonics: 

 ( ) ( )mn x yψ (x,y) exp i 2 mf x exp i 2 nf y , m,n 0, 1, 2, ,= π π = ± ± ±∞…  (19) 

The Fourier series of the function g(x, y) is double indexed, and the Fourier coefficients form 
a matrix.  

 

( ) ( ) ( )

mn mn
m n

x 2 y 2

mn mn x y

x 2 y 2

g(x,y) c ψ (x,y),

1
c g,ψ dxexp i2 mf x dyg x,y exp i2 nf y

x y

∞ ∞

=−∞ =−∞
Δ Δ

−Δ −Δ

=

= = − π − π
Δ Δ

∑ ∑

∫ ∫
 (20) 

The continuous Fourier transform (CFT) may be understood by analyzing how the spectrum 
of the periodic function gchanges as a result of enlarging its period or the gradual change of 

the spectrum. The larger the period ∆t of g, the smaller the fundamental frequency δf=2π/∆t 

is, and the quantized set of angular frequencies fk=kδf are bunching together. When defining 
the function g for an infinite period, reproducing its characteristic pattern only once, without 
reproducing it periodically, while outside we set it to equal zero, the function g is no more 

periodic, or we can say that we have extended its period to infinity, ∆t→∞. In this limit case 
the spectrum is no more discrete, but it becomes continuous. Related to the continuous 
spectrum, we mention some facts: 
a. The difference between two consecutive quantized frequencies turns infinitesimal:  

fk+1–fk=1/∆t=δf→0, so we replaced the discrete values fk by a continuous quantity f.  
b. All the Fourier coefficient amplitudes shrank to zero. For this reason we replaced the 

Fourier coefficients by the quantities ∆t ck, which do not shrank to zero but remain finite 
and they became the new instruments of practical interest for describing the function g. 

( ) ( )
t/2 t/2

*
k k k k k

t
t/2 t/2

t c g(t)ψ (t)dt g(t)exp i2 f t dt, lim t c g(t)exp i2 f t dt
Δ Δ ∞

Δ →∞
−Δ −Δ −∞

Δ = = − π Δ = − π∫ ∫ ∫  (21) 

c. The integer index k turns into a continuous variable when ∆t→0, hence it is more 
appropriate to denote the Fourier coefficients replacements ∆t ck by a continuous 
function G(f), that we call Fourier transform of the g function: 

 ( )k
t

G(f) lim t c g(t)exp i2 f t dt
∞

Δ →∞
−∞

= Δ = − π∫  (22) 
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d. The Fourier series from Eq. (18) approximates an integral, and on the limit ∆t→∞ the 
series converge to that integral: 

 ( ) ( )k k
t

k

g t lim c ψ (t) G(f)exp i2 f t df
∞∞

Δ →∞ =−∞ −∞

= = π∑ ∫  (23) 

The rationale shown above for the transition from Fourier series to CFT is similar to the one 
shown elsewhere (Logofătu & Apostol, 2007). Therefore, if the function g is not periodic, it 
cannot be decomposed into a series of Fourier harmonics, but into a continuous 
superposition of Fourier harmonics, called Fourier integral. The Fourier integral 
decomposition is possible providing that the modulus of the non periodic function g can be 

integrated over the whole real axis, that is the integral g(t)dt
∞

−∞
∫  should exist (and be finite). 

Very common types of functions that fulfil this condition, largely used in practical 
applications are the functions with finite values over a compact interval and with zero 
values outside that interval. We implicitly assumed that the function g considered above is 
of that type. 
Now let us consider the definition of CFT (22) and the relation used to decompose the non-
periodic function g into the Fourier integral (23). We notice that each transform is the inverse 
of each other: 

 ( ) ( ) FourierG(f) g(t)exp i2 t dt, g(t) G(f)exp i2 f t dt, g(t) G(f)
∞ ∞

−∞ −∞

= − π = π ←⎯⎯⎯→∫ ∫  (24) 

We say the functions g and G form a pair of Fourier transforms. The function G is obtained 
by applying the direct Fourier transform to the function g, while the function g is obtained 
by applying the inverse Fourier transform to the function G.  
The bidimensional (2D) Fourier transform extends the Fourier transform to two dimensions 
and is used for two variables functions, which should satisfy a similar condition: the integral 

g(x,y) dxdy
∞ ∞

−∞ −∞
∫ ∫  should exist and be finite. The Fourier integral is double:  

 

( )

( )

x y x y

x y x y x y

G(f , f ) g(x,y)exp i2 f x f y dxdy,

g(x,y) G(f , f )exp i2 f x f y df df

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

⎡ ⎤= − π +⎣ ⎦

⎡ ⎤= π +⎣ ⎦

∫ ∫

∫ ∫
 (25) 

While the 1D Fourier transform can be used as an illustration, or as an approximation of the 
2D Fourier transform, in the special cases where the input function g does not depend on 
one or two coordinates, but three or more, although mathematically treatable, they present 
no interest for the physicist, because the 3D limitation of the world restricts practical interest 
to maximum 2D Fourier transform.  
DFT has the purpose to approximate the CFT, and it is used for reasons of computation 
speed convenience. Although DFT is an independent formalism in itself, it was formulated 
so that it converges to the genuine CFT. DFT needs the function g(t) as a set of a finite 
number N of samples, taken at N equidistant sample points, within a ∆t length interval:  
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 m m mt m t N , g g(t ), m N 2 , N 2 1, ,N 2 1= Δ = = − − + −…  (26) 

In practical applications the function g is only given as a set of samples, and even if one 
knows its analytical expression, in most cases it’s not possible to determine its Fourier 
transform by analytical calculus.  
The definition of DFT can be established after a series of approximations. First, one 
approximates the Fourier transform by a Fourier series, which is defined as a set of 
coefficients associated to a set of equidistant frequencies. For this purpose we extend the 
domain of the sampled function to the whole real axis, making the function periodic, with 
the period of ∆t which contains the entire initial definition domain of the function, in order 
to be able to expand it in Fourier series. The harmonic functions used as a decomposition 
basis are sampled functions too:  

 ( ) ( )nm n m n mψ ψ (t ) exp i 2 f t exp i 2 m n N , m,n Z= = π = π ∈  (27) 

We modify the definition of the scalar product of these functions replacing the integral by a 
sum that approximates it:  

t/2 N/2 1 N/2 1
* * *

m n m k n k mk nk
k N/2 k N/2t/2

N/2 1 N/2 1def
(N)*

m n mk nk mn
k N/2 k N/2

1 1 t 1ψ (t)ψ (t)dt ψ (t )ψ (t ) ψ ψ ,
t t N N

0, m n pN,1 1 m nψ ,ψ ψ ψ exp i 2 k δ p
1, m n pN,N N N

Δ − −

=− =−−Δ

− −

=− =−

Δ
≈ =

Δ Δ

− ≠⎧−⎛ ⎞= = π = = ∈⎨⎜ ⎟ − =⎝ ⎠ ⎩

∑ ∑∫

∑ ∑ Z

 (28) 

There are only N distinct discrete harmonic functions, which are linear independent and can 
build up an orthonormal basis, because they repeat periodically: ψn±N(t)=ψn(t). The Fourier 
coefficients will be calculated in the same way, approximating the integral by a sum:  

 
t/2 N/2 1 N/2 1

* *
n n k n k k

k N/2 k N/2t/2

n k1 1 t 1
c g(t)ψ (t)dt g(t )ψ (t ) g exp i 2

t t N N N

Δ − −

=− =−−Δ

Δ ⎛ ⎞= ≈ = − π⎜ ⎟Δ Δ ⎝ ⎠
∑ ∑∫  (29) 

There are only a limited set of N Fourier coefficients, because they reproduce themselves 
with the N period too, cn±N=cn. The original discrete function g can be expanded into a series 
of N discrete harmonic functions:  

 
N/2 1 N/2 1 N/2 1

m m k k m k km k
k N/2 k N/2 k N/2

k m
g g(t ) c ψ (t ) c ψ c exp i 2

N

− − −

=− =− =−

⎛ ⎞= = = = π⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (30) 

At this point we can define the discrete Fourier transform: it is a sampled function G whose 
samples are the set of N Fourier coefficients approximately calculated by sums in Eq. (29): 
Gn=Ncn, n=–N/2, –N/2+1,..., N/2–1. The samples of G are obtained applying a transform to 
the samples of g and they can be inverted in order to yield back the samples of g from that of 
G as shown below in Eq. (31).  

 

N/2 1 N/2 1

n m m n
m N/2 n N/2

DFT

mn 1 mn
G g exp i 2 , g G exp i 2 ,

N N N

m,n N 2 , N 2 1, ,N 2 1 g G

− −

=− =−

⎛ ⎞ ⎛ ⎞= − π = π⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − − + − ←⎯⎯→

∑ ∑

…

 (31) 
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The two sets of samples from g and G form a pair of discrete Fourier transforms. The 

transform is a linear one and can be expressed by means of a square matrix of N×N 
dimensions:  

 ( )1 mn 1 mn
mn N mn N N

ˆ ˆ ˆ ˆG W.g, g W .G, W w , W w N , w exp i 2 N− − −= = = = = − π
G GG G

 (32) 

where for clarity we used the arrow and the triangular hat over-scripts to designate vectors 
and matrices respectively; also, the dot signifies dot product or matrix multiplication. To 
make possible the matrix multiplication we assume that the vectors are columns, matrices 
with N rows and 1 column, a practice we will continue throughout the subsection. Actually 
the convention is that in any indexed expression the first index represents the row and the 
second the column. The absence of the second index indicates we deal with a column or a 
vector. More than three indexes means we deal with a tensor and this cannot be intuitively 
represented easily. Of course the values Gn do not equal the corresponding samples of the 
continuous Fourier transform, but they approximate them. The greater the N, the better the 
approximation will be.  
The 2D discrete Fourier transform may be obtained easily by generalizing Eqs. (30-32). 
Namely, 2D DFT has the form  

 
M 2 1 N 2 1 M 2 1 N 2 1

pm qn
pq mn mn M N

m M 2 n N 2 m M 2 n N 2

pm qn
G g exp i2 g w w

M N

− − − −

=− =− =− =−

⎡ ⎤⎛ ⎞= − π + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑  (33) 

where M×N is the dimension of the matrix of samples gmn and, consequently, the dimension 
of the matrix of the Fourier coefficients, or of the DFT Gpq, with M and N completely 
unrelated, and we also have the short hand notations 

 ( ) ( )M Nw exp i 2 M , w exp i 2 N= − π = − π  (34) 

The inverse discrete Fourier transform has, of course, the form  

 
M 2 1 N 2 1 M 2 1 N 2 1

pm qn
mn pq mn M N

p M 2 q N 2 p M 2 q N 2

1 pm qn 1
g G exp i2 g w w

M N M N M N

− − − −
− −

=− =− =− =−

⎡ ⎤⎛ ⎞= π + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑  (35) 

The linearity of the Fourier transform in Eq. (32) permits the matrix formulation of the direct 
and inverse 1D DFT. However the generalization to the 2D DFT leads us to a 
multidimensional matrix formulation:  

 ( ) ( ) ( ) ( ) ( ) ( )
pm mp nqqn1 1

pqmn mnpqN M N2 4 2 2 4 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆG W .g , g W .G , W w M w N , W w w− −− −= = = =  (36) 

where ( )2ĝ  and ( )2Ĝ  are tensors of rank 2 (ordinary 2D matrices) and ( )4Ŵ  and ( )
1

4Ŵ−  are 

tensors of rank 4. The direct and the inverse Fourier transforms are dot products of the 

tensors ( )4Ŵ  and ( )
1

4Ŵ−  with the 2D matrices ( )2ĝ  and ( )2Ĝ . The dot product of two tensors 

results in tensors with the rank equal to the sum of the tensors rank minus 2. Eqs. (33-36) are 

actually those with which one deals when operating 2D discrete Fourier transforms and not 

Eqs. (29-32). Eqs. (33-36) may seem complicated but the mastery of Eqs. (29-32) leads easily 

to the multidimensional forms. The term “tensor” was introduced for the sake of 

completeness but it does not change the simple elementary aspect of Eqs. (29-32) that are 
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expressed in tensor form in Eq. (36). For instance one may notice that the 2D DFT is 

actually two 1D DFTs applied first to the rows of the input matrix then to the resulted 

columns, although the order of the operations does not matter because the end result is 

the same.  
The direct computation of all the samples Gn requires an amount of computation 
proportional to N2. However, the Ŵ  matrix has some special properties that enable massive 
reduction of the operations required to perform the matrix multiplication Ŵ.g

G
. As far back 

as 1965 a method to compute the discrete Fourier transform by a very much reduced 
number of operations, the FFT algorithm, which allows computing the discrete Fourier 
transform with a very high efficiency is known. Originally designed for samples with the 
number of elements N being powers of 2, now FFT may be calculated for samples with any 
number of elements, even, what is quite astonishing, non-integer N. A fast algorithm for 
computing a generalized version of the Fourier transform named the scaled or fractional 
Fourier transform was also designed. The normalization factors from (29-32) of the direct 
and the inverse transforms are a matter of convention and convenience, but they must be 
carefully observed for accurate calculations once a convention was chosen.  
Since subroutines for FFT calculations are widely available, there is no need to discuss here 
in detail the FFT formalism. For the interested reader we recommend (Press et al., 2002), 
chapter 12. We will only mention that the algorithm makes use of the symmetry properties 
of the matrix multiplication by the techniques called time (or space) decimation and 
frequency decimation, techniques that can be applied multiple times to the input in its 
original and the intermediary states, and with each application the computation time is 
almost halved. The knowledge of the FFT algorithm in detail may help the programmer also 
with the memory management, if that is a problem, because it shows one how to break the 
input data into smaller blocks, performs FFT separately for each of them and reunites them 
at the end.  

4. Conversion of the input data for use by the FFT and conversion of the data 
generated by the FFT in order to have physical meaning  

4.1 The transposition method  

As we said, one does not need to know in detail the FFT algorithm in order to use it. The 
FFT subroutines can be used to a large extent as simple black boxes. There is, however, one 
fact about FFT that even the layman needs to know it in order to use the FFT subroutines. 
Namely, for mathematical convenience the DFT is not expressed in a physical manner as in 
Eqs. (29-32) where the current index runs not from –N/2 to N/2–1 but from 0 to N–1:  

 
N 1

mn
n m

m 0

G g w , n 0,1, ,N 1
−

=
= = −∑ …  (37) 

 
N 1

mn
m n

n 0

1
g G w , m 0,1, ,N 1

N

−
−

=
= = −∑ …  (38) 

This shifting of the index allows the application of the decimation techniques we talked 
about, but also has the effect of a transposition of the wings of the input and as a 
consequence the, say, “mathematical” output is different than the “physical” output, the one 
that resembles what one obtains in a practical experiment, although the two outputs are, of 
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course, closely connected. The reference (Logofătu & Apostol, 2007) shows that in order for 
formulae (37,38) to work the wings of the input vector should be transposed before the 
application of the FFT procedure and then the wings of the output vector should be 
transposed back all in a manner consistent with the parity of the number of samples. 
Namely for even N the input and the output vectors are divided in equal wings. However, 
for odd N the right wing of the input starts with the median element, therefore is longer 
with one element; but in the case of the output it is the left wing which contains the median 
element and is longer. This transposition of the wings is the same thing as the rotation of the 
elements with N/2 when N is even, and (N–1)/2 when N is odd. For the case of odd N the 
direction of the rotation is left for the input and right for the output. For even N the direction 
does not matter.  
In a 2D case when both M and N are even the phase change due to the “mathematical” 
transpositions is just an alternation of signs, in a chess board style. In other situations the 
phase change is more complicated. It is true that in most cases it is the amplitude spectrum 
that matters most, but sometimes the phase cannot be neglected and the transposition or 
rotation operations mentioned above have to be performed. In the 2D case the transpositions 
do not have to be a double series of wing transpositions for rows and columns. One can 
make just two diagonal transpositions of the quadrants of the input and output matrices. 
The division of the input and output matrices depends on the parity of M and N. For even M 
and N things are simple again. The matrices are divided in four equal quadrants. When one 
of the dimensions is odd the things get complicated, but here again we have a simple rule of 
thumb. If the number of rows M is odd, then the left quadrants of the input matrix have the 
larger number of rows (one more) while the left quadrants of the output matrix have the 
smaller number (one less). For odd N the lower quadrants of the input matrix have the 
larger number of columns (one more) while the lower quadrants of the output matrix have 
the smaller number (one less). And viceversa.  

4.2 The sign method 

In addition to the procedure with the transposition of the input before the FFT and the 
inverse transposition of the output after the FFT, there is another solution for reconciling the 
results of the mathematical calculation with the physics. It can be done by substituting the 
indexes of DFT with the indexes used by FFT, thus expressing DFT in the terms preferred by 
FFT. The expression of DFT that we use is the one from Eq. (31)  

 
N/2 1

n m
m N/2

mn
G g exp i 2

N

−

=−

⎛ ⎞= − π⎜ ⎟
⎝ ⎠

∑  (39) 

We need to make a reindexation of (39) so that it looks like (37). Let the integer indexes p 
and q be so that 

 
p m N 2 or m p N 2 , p 0,1, ,N 1

q n N 2 or n q N 2 , q 0,1, ,N 1

= + = − = −
= + = − = −

…
…

 (40) 

which means we can introduce two similar sets of samples g’ and G’, having the indexes 
shifted by N/2 

 p p N 2 m q q N 2 ng g g , G G G− −′ ′= = = =  (41) 
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Introducing (40) and (41) in (39) we obtain 

( )( ) ( ) ( ) ( )
N 1 N 1

N 2 q p
n q p p

p 0 p 0

p N 2 q N 2 pq
G G g exp i 2 1 1 1 g exp i 2

N N

− −

= =

⎡ ⎤− − ⎛ ⎞⎡ ⎤′ ′ ′= = − π = − − − − π⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦
∑ ∑  (42) 

Therefore, in order to obtain physically meaningful results all we need to do is to multiply 

the input data with an array consisting in alternating signs and starting with +1, perform the 

FFT and then multiply the result again with the same sign array and an overall (-1)N sign. 

Then we can identify the G’q element of the final output with Gn, the desired element.  

For odd N the sign method cannot be applied as such. Instead of signs we have exponentials 

with imaginary arguments. Although it has a more messy appearance the conversion 

method is still simple for odd N too. The new indexes are 

 
( ) ( )
( ) ( )

p m N 1 2 or m p N 1 2 , p 0,1, ,N 1

q n N 1 2 or n q N 1 2 , q 0,1, ,N 1

= + − = − − = −

= + − = − − = −

…
…

 (43) 

The conversion formula is 

 
( )2 N 1

n q p
p 0

N 1 N 1 N 1 pq
G G exp i exp i q exp i p g exp i 2

2N N N N

−

=

⎡ ⎤− ⎡ ⎤− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′⎢ ⎥= = − π π π − π⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦
∑  (44) 

Instead of sign array one has to use an array with the complex unitary elements exp[iπp(N–

1)/N] with p running from 0 to N–1. One has to multiply the input data with this array 

before feeding it to the FFT procedure. The outcome must be multiplied again with this 

array and with an overall constant factor exp[–iπ(N–1)2/(2N)]. The generalization to 2D is 

straightforward in both cases. This method, although somewhat similar to the one shown in 

(Logofătu & Apostol, 2007) is actually better and simpler.  

5. Correspondences to reality 

A particular case in which we may talk in a sense of “naturally” sampled input functions is 
the case of binary masks (transmittance 0 or 1) that are formed out of identical squares. A 1D 
grating as in Fig. 1.a (mask A), or a 2D grating as in Fig. 1.b (mask B) are such examples. We 
chose those masks because our purpose is to compare the discrete and the continuous 
Fourier transforms and for those masks CFT can be calculated analytically. The masks are 
not sampled functions in the sense of Eq. (9), there are no delta functions in their expression. 
They are, however, sampled in the sense that for evenly spaced rectangular areas the 
transparency functions are constant, hence, the functions can be represented, as discrete 

matrices of samples. We chose masks with a low number of samples, only 32×32, not 
because DFT is difficult or time-consuming (actually, due to the existence of the FFT 
algorithm DFT can be done very quickly for quite a large number of samples), but to make 
easier the calculation of CFT, which is indeed considerably time-consuming. Also, at small 
number of samples the differences between the discrete and the continuous spectrum can be 
more easily seen. The period of the gratings, both horizontally and vertically, was chosen to 
be 7 squares, so that it does not divide 32; in this way the Fourier spectrum gets a little 
complicated and we avoid symmetry effects that may obscure the points we want to make.  
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                                      (a)                                                                              (b) 

Fig. 1. Binary masks: a) 1D grating and b) 2D grating. Both gratings consist in 32×32 squares, 

black or white, of equal dimension δl. We labelled the two masks “A” and “B”. It is assumed 
that outside the represented area of the masks the input light is completely blocked, i.e. the 
transparency function is zero. 

It seems natural to represent the masks from Fig. 1, for DFT calculations, as 32×32 matrices 
with values 1 or 0 corresponding to the transmission coefficient of the squares of the masks. 
The squared absolute values of the DFT of the previously discussed type of matrix for mask 
A and the CFT of mask A are shown together in Fig. 2. The square absolute value is the 
power or the luminous intensity, the only directly measurable parameter of the light field. 
The CFT of mask A has the expression 

 ( ) ( ) ( ) ( )sinc sinc 32 

32

x y x y p x
p 1

G f ,f l f l 32 l f l g exp i 2 f p 1 l
=

=δ δ δ δ ⎡− π − δ ⎤⎣ ⎦∑  (45) 

where  

 ( ) ( )
sinc

sin t
t

t

π
≡

π
 (46) 

and obviously N is here 32. Since mask A is 1D [in a limited sense only; if it were truly 1D 

then the dependence on fy of G would be of the form δ(fy)] in the calculation of |G|2 in Fig. 2 
and the following figures that represent |G|2 for mask A, we discarded the dependence on 
fy and the entire contribution of the integration over y and we used only the part 
corresponding to the integration over x. The DFT calculations were rescaled (multiplied 
with N1/2) so that they could be compared to the CFT calculations. All the CFT spectra 
represented in this article are computer calculations, hence they are simulations. A correctly 
done experiment of Fourier optics would yield, of course, the same results.  
Two types of discrepancies can be noticed in Fig. 2 between CFT and DFT. First they have 
different values for the same spatial frequency, sometimes there is even a considerable 
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difference. Second, the discrete spectrum does not offer sufficient information for the 
domain of spatial frequencies in between two discrete values, and the interpolation of the 
sampled values does not lead always to a good approximation. The structure of the 
continuous spectrum is much richer than that of the discrete spectrum. There are of course 
many reasons why the discrete Fourier spectrum |Gsp|2 is different than the genuine 
spectrum |G|2. One reason is the periodicity. The g input functions are not generally 
periodic or at least they are not infinitely periodic. The input functions illustrated in Fig. 1 
are periodic in the sense they have a limited number of periods, but rigorously periodic 
means an infinity of periods.  
 

 

Fig. 2. The continuous (solid line) and the discrete (dots) Fourier power spectra for mask A 
vs. the spatial frequency shown together. For DFT calculations the “natural” sampling was 
used. Only the central part of the continuous spectrum for which DFT provides output 

values is represented. The spatial frequency is expressed in δl–1 units.  

Corresponding to the two types of discrepancies there are also two ways of improving the 
discrete spectrum. One way is to increase the sampling rate. We can do that by “swelling” 
the sampling array, inserting more than once the value corresponding to a square. The 
increased sampling rate improves the agreement between DFT and CFT. We illustrated in 
Fig. 3 only the calculations for the same spatial frequencies as those represented in Fig. 2, 
not just to ease the comparison but also because the spectrum outside is very weak and, 
hence, negligible. One big the difference between the CFT and DFT version represented in 

Fig. 2 is the sinc(fx δl) function, that is the Fourier transform of the rectangular function. 
Because for Fig. 3 by allotting more samples for each square we had a higher sampling rate, 
the rectangular shape was felt in the DFT calculations. We increased the sampling rate 10 
times and, as one can see in Fig. 3, the continuous and the discrete spectrum are now closer, 
they are almost on top of each other. Because there are now 10 times more elements than in 
the “natural” sampling, and actually in this new sampling the same elements are just 
repeated 10 times, in order to be able to compare DFT and CFT we had to divide the DFT 
spectrum by 102.  
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Fig. 3. The continuous (solid line) and the discrete (dots) Fourier power spectra for mask A vs. 
the spatial frequency shown together. For the DFT calculations was used a higher (10 times) 
sampling rate of mask A than that used for the DFT calculations shown in Fig. 2. Only the 
portion of the both spectra corresponding to the spatial frequency range of Fig. 2 is shown.  

 

 

Fig. 4. The continuous (solid line) and the discrete (dots) Fourier power spectra for mask A 
vs. the spatial frequency shown together. The sampling of mask A was extended so that to 
include part of the surrounding darkness shown together, maintaining the same sampling 
rate as the “natural” sampling. Compared to the original sampling used for the calculations 
of Fig. 2, the sampling was now extended 10 times, which accounts for the higher density of 
dots of the DFT output, which now numbers 320 samples. Although in the figure 320 points 
are represented, the spatial frequency range is the same as that of Figs. 2 and 3.  
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Another way to improve the conformity of the DFT to CFT is to increase the sampled area. 
Since outside the area of mask A there is no structure, only darkness, and g is just zero, 
when making the sampling of g we are generally tempted to discard this surrounding 
darkness. But when we express DFT in terms of CFT, as we saw in section 3.2, we consider 
that the structure of mask A is periodically repeated back to back in what we know to be just 
darkness. Therefore, in order to improve the similarity of DFT to reality (which is CFT), it is 
a good idea to pad the original sampled function with zeros to the left and to the right to 
account for the surrounding darkness. We padded with zeros so that the original sampled 
array of values was increased 10 times. In Fig. 4 the squared absolute values of the DFT and 
CFT for the new sampled function are again compared, and, although their values are still 
different, now DFT offers more information, enough for interpolation. We did not need here 
another type of rescale of DFT than that done in Fig. 2 in order to have a meaningful 
comparison to CFT, because the new elements added to the input sampling were just zeros.  
The two procedures for improving the similarity of DFT to CFT described above and 
illustrated in Figs. 3 and 4 may be combined and the result is shown in Fig. 5. The sampling 
array used for the calculation of DFT is now both “swollen” and extended, having 100 times 
more elements than the “natural” sampling. Now DFT is both closer to CFT and richer in 
information. Now DFT is both accurate and able to provide enough information for a correct 
interpolation. 
It should be noted that in Figs. 2-5 only the discrete spectrum changes, the continuous 
spectrum is a constant reference.  
 

 

Fig. 5. The continuous (solid line) and the discrete (dots) Fourier power spectra for mask A 
vs. the spatial frequency shown together. For DFT calculations the sampling was both 

extended and its rate increased. An array of 32×10×10 points was used, but only the 32×10 
points corresponding to the spatial frequency range of Figs. 2-4 were shown. 

The similar procedure applied to mask A was also applied to mask B. We found appropriate 
to illustrate the procedure for mask B because optics is generally about images and these are 
2D, not 1D, which is just a particular case, useful mostly for the easiness of the graphic 
representation than for practical purposes. The Fourier spectrum of a 2D mask is more 
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difficult to represent. We chose to represent the spectrum as levels of grey. Moreover, to 
simulate the vision of the eye we represented the logarithm of the luminous intensity. 
Another reason for using the logarithmic representation is the fact that the Fourier spectrum 
decreases quite sharply with the spatial frequency and only the representation of the 
logarithm allows the fine shades to be visible. 
In Fig. 6 the represented continuous Fourier spectrum is the logarithm of the squared 
absolute value of the function 

 ( ) ( ) ( ) ( ) ( )( )sinc sinc

32 32
2

x y x y pq x y
p 1 q 1

G f ,f l f l f l g exp i 2 f p 1 f q 1 l
= =

⎡ ⎤=δ δ δ − π − + − δ⎣ ⎦∑∑  (47) 

In Fig. 7 it is represented the discrete Fourier spectrum of the “natural” sampling of mask B, 
that is of a 32×32 matrix with each element having the value of the corresponding square 
element of mask B, 0 or 1. The comparison of Figs. 6 and 7 shows marked differences. Just as 
in the case of mask A we tried next to compensate for the shortcomings of the “natural” 
sampling by extending the sampling and increasing the sampling rate. The result is right on 
top of Fig. 6, so we did not consider necessary to represent it graphically.  
 

 

Fig. 6. The central high intensity portion of the continuous Fourier spectrum of mask B, 
chosen so that to match the spatial frequency ranges of the DFT of the “naturally” sampled 
input of mask B (see Fig. 7 below). The abscissa and the ordinate are the spatial frequencies 
and the light intensity of the spectrum is coded as levels of grey.  
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Fig. 7. The discrete Fourier spectrum of the “natural” sampling of mask B. The abscissa and 
the ordinate are the spatial frequencies, and the light intensity is codes as levels of grey, just 
as in Fig. 6. 

As a side comment, one may notice that all the spectra shown in this article are symmetric. 
The 1D plots are symmetric with respect to the origin, and the 2D plots are symmetric with 
respect to the vertical axis. There is a redundancy of information. The 1D plots contain in 
one horizontal half all the information, and the 2D plots contain all the information in any of 
the 4 quadrants. This is due to the fact that we calculated the spectra of transmission masks 
that do not modify the phase of the input optical fields and we assumed the input wave to 
be a plane wave, which is actually a common situation in Fourier analysis. It is this property 
of the masks that causes the spectra to be symmetric. Rigorously speaking they are not 
symmetric, the phase differ in the two halves of the 1D plots and in the 2D plots the phase of 
two diagonal quadrants differs from that of the other two diagonal quadrants. But the 
difference is just that they have conjugate complex values. The absolute values of two 
conjugate complex quantities is the same, hence the 4-fold symmetry of the 2D power 
spectra. 
To give some dimensional perspective to the considerations presented in this subsection, it 

might be instructive to give a value to δl and to specify the experimental conditions in which 
the Fourier transform is performed. We need very small masks in order to make the Fourier 
spectrum macroscopic, but also large enough so that sufficient light passes through and the 

Fourier spectrum is visible. 100 μm is such a value for δl. Then the masks A and B would be 
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squares of 3.2 mm dimension. The Fourier spectra (continuous or discrete) represented in 
Figs. 2-8 are segments for the 1D case and squares for the 2D case having the dimension  

Δf = 1/δl = 10 mm-1 in spatial frequency units. If the Fourier transform is performed by a 

lens of focal length F = 1 m and the light source is a He-Ne laser of wavelength λ = 632.8 nm, 
then dimensions of both spectra in the Fourier plane (back focal plane of the lens) are 

identical λ F Δf = 6.328 mm. 

6. Conclusion 

The problem of the relation between DFT and CFT is investigated in this article. In order to 
understand the physical meaning of DFT we expressed it in terms of CFT. The Fourier series 
was a useful tool in this endeavour, because it is an intermediary link between CFT and 
DFT. Namely, the two properties of both the input function and the Fourier spectrum of 
DFT, periodicity and discrete character, are present in the Fourier series, except that the 
input function is just periodic and the Fourier spectrum is just discrete. The connection 
between periodicity and the discrete character is stressed, namely it is shown that the 
periodicity of the input/output implies a discrete character of the output/input and vice-
versa. For convenience the derivations were made for 1D input functions but they can be 
easily and straightforwardly extended to 2D input functions, if the sampling is done over 
two mutually perpendicular directions and the sampled area is rectangular. It is shown that 
DFT is the CFT of a periodic input of delta functions in which case the output is also 
periodic and composed of delta functions. The incongruence between DFT and CFT 
indicates that DFT may not be a good approximation of CFT, and some numerical examples 
prove it. Two masks, first 1D and the second 2D were studied with respect to the agreement 
of their discrete with their continuous Fourier spectra. It has been shown that if the 
sampling rate and the extension of the masks are properly chosen (large enough) DFT is a 
good approximation of CFT. No generally valid criterion for the agreement between DFT 
and CFT is given, only the ways of improving it are indicated and shown to be sufficient for 
the particular cases studied in this article.  
Our previous attempts to bridge the gap between CFT and DFT, between physics and 
mathematics (Logofătu and Apostol, 2007; Nascov et al, 2010) were by no means a closed 
and shut subject but rather were intended as an opening of new avenues of research. Some 
details, usually left out by other authors, such as the transposition of the input data done for 
the application of the FFT algorithm are explained and two solutions for dealing with the 
problem are presented. The second solution, presented in subsection 4.2 even shows how 
the transposition of the input leaving the amplitude unchanged modifies the phase with a 
linear progressive phase function.  
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