
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

14

A Fast and Smooth Walking
 Pattern Generator for Biped Robots

Han-Pang Huang and Jiu-Lou Yan
National Taiwan University

Taiwan

1. Introduction

In order to solve inverse kinematics of a multi-DOF (degree of freedom) mechanism, many
methods have been proposed with the Jacobian linearization method. When solving inverse
kinematics problems of the biped robot with this method, long computation time is required
since the Jacobian matrix should be updated in order to solve the configuration for each
different end-effector trajectory knot. In this chapter, two smooth trajectories are generated
as target positions, one for swing leg’s ankle, and the other for center of gravity (COG).
These generated knot points in the task space with appropriate distance to each other are
used to solve inverse kinematics by the proposed modified Jacobian method—Fixed Leg
Jacobian. It can guarantee that only one iteration is required to solve the configuration when
it is away from singularity with a small position error (0.0712% of leg length). The proposed
algorithm can generate the gait in real-time including singularity avoidance and joint limit
avoidance. Simulations have been carried out. The results showed that the proposed method
can generate a smooth gait for robot walking on real-time implementation.
Compared with wheeled robots, legged robots have the advantage of being able to traverse
uneven or sharp-height-changing environments. Nowadays, many vehicles, buildings and
environments are designed for humans. Simple robots cannot enter and adapt to these
places. Therefore, we must design complicated humanoid robots to do it. But when the
designs become more complicated and with more DOFs, it is getting harder to control and
generate the trajectories of them. The proposed algorithm can quickly generate smooth
trajectories of the ankle and COG and solve inverse kinematics in order to achieve real-time
control of biped robots. In this chapter, the focus is how to coordinate the swing leg, the
fixed leg and the COG of the robot, and generate the gait in real-time. In the simulation, the
robot has 24 DOFs, 6 in each leg (12 in two legs), 4 in each arm (8 in two arms), 2 in the torso
and 2 in the head. The most important DOFs for balancing and walking are the twelve DOFs
in the legs. DOFs in the fixed leg dominate the position of the COG, and the position of the
ankle of the swing leg is given relative to the position of the ankle of the fixed leg in order to
guarantee that the swing leg is in a proper position that it will not hit the fixed leg and touch
the ground. The trajectories of the end-effectors planned with desired constraints are
inputted to solve inverse kinematics, as shown in Fig. 1.
Many researchers have proposed the solutions to the problem while solving Jacobian
linearized inverse kinematics. They include the damped least square method (DLS)
(Wampler, 1986) and the robust damped least square method (RDLS) (Nakamura &

www.intechopen.com

 Biped Robots

284

Fig. 1. Solving robot walking gait using inverse kinematics

Hanafusa, 1986), which are used for singularity avoidance. The weighted least-norm
method (WLN) (Chan & Dubey, 1995) is used for joint limit avoidance. These two methods
(RDLS and WLN) are used in this chapter to improve the performance of the algorithm.
Many other methods are proposed, such as the selectively damped least squares methods
(SDLS) (Buss & Kim, 2004), the gradient projection method (GPM) (Liegeois, 1997) and the
extended Jacobian method EJM (Klein et al.,1995; Tevatia & Schaal, 2000).
On the other hand, the target positions that are one-by-one inputted to solve the inverse
kinematics should also be planned appropriately. If the target positions are not planned
close enough, many iterations will be wasted since the end-effectors are not in the desired
positions and directions. Non-smooth target positions make the robot’s joints oscillate.
Regarding the generation of the trajectories, many methods were proposed, such as
Lagrange interpolations, cubic spline, conventional tension spline (CTS) and modified
tension spline (MTS) (Huang & Liu, 2005). Each method has its limitation. In this chapter,
MTS is applied in order to generate smooth trajectories in position, velocity, acceleration,
and jerk.

2. Robot kinematics

2.1 Inverse kinematics with pseudo inverse

The pseudo inverse method and two improving methods, RDLS, WLN, are used in this
chapter to construct the inverse kinematics solver. By using forward kinematics method
(DH method), the relationship between the position of the end-effectors and the joint angles
can be found as Equation (1).

 ()x f θ= (1)

The Jacobian linearized relationship between the velocities of the end-effectors and the joint
angles are defined as Equation (2).

 x Jθ= $$ (2)

www.intechopen.com

A Fast and Smooth Walking Pattern Generator for Biped Robots

285

where J denotes the Jacobian matrix; if there are redundant DOFs in the system, J is a

rectangle matrix. Pseudo inverse method can be used to solve θ$ with given x$:

 J xθ +=$ $ (3)

2.2 Robust damped least squares methods (RDLS)

If the determinant of JJT is zero or close to zero, singularity occurs. In order to avoid the
singularity, robust damped least square method (RDLS) is applied. The idea of the damped

least square method (DLS) is to minimize 2 2|| || || ||x Jθ α θ− +$ $$, the sum of the square of

the residual error and the joint velocities. Here α is a positive damping factor. Thus, the
pseudo inverse with DLS method is shown as Equation (4).

 1()T T
mJ J JJ Iα+ −= + (4)

where Im is an identity matrix with the same dimension as JJT matrix. The damping factor α

helps to avoid singularity, but it also affects the solved θ$. Thus, α should not be applied at

nonsingular configurations. Nakamura et al. proposed a robust DLS method to solve this

problem. A factor h is defined as Equation (5).

 () det()Th JJ=θ (5)

When h approaches to zero, it is getting closer to singularity. Then α is adjusted
automatically with Equation (6).

 0(1),

0,

s sh h if h h

otherwise

αα
⎧ − <⎪= ⎨
⎪⎩

 (6)

where hs denotes the threshold value, α0 is the value of damping factor at singular points.

With the equation above, α is effective only when the configuration is near singular
configuration.

2.3 Weighted least-norm method

The weighted least-norm method is designed from the idea of null space. The general

solution of θ$ for solving inverse kinematics can be written as Equation (7).

 ()J I J J+ += + −θ x φ$ $ (7)

where φ is an arbitrary vector. J x+ $ is the particular solution, and (I-J+J)φ is the

homogeneous solution. Joint limit avoidance is important for humanoid robots in order to

act like human beings. A weighted least-norm (WLN) solution based scheme for avoiding

joint limits is proposed by Chan & Dubey. In this method, a performance criterion H(θ) is

defined as Equation (8).

2

,max ,min

1 ,max ,min

()1
()

4 ()()

n
i i

i i i i i

H
θ θ

θ θ θ θ=

−
=

− −
∑θ (8)

www.intechopen.com

 Biped Robots

286

When any joint approaches its limit, the value of H(θ) grows very fast, and so is its partial

differentiation ∂H(θ)/∂θi. Thus, the weighting matrix is defined as Equations (9) and (10).

1

2

0 0

0

0

0 0 n

w

w

W

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A A
B

B D B
B D

A A

 (9)

()

1i
i

H
w

θ
∂

= +
∂
θ

 (10)

The WLN method can be expressed as Equations (11) and (12).

 1/2
WJ JW −= (11)

 1/2 1/2()W WW J W J J− + − + += + −θ x x$ $ $ (12)

2.4 RWLN method

The RWLN method (Yu, 2006) is the combination of the RDLS method and the WLN

method. The equation used to solve inverse kinematics with the RWLN method is shown as

Equations (13) and (14).

 1/2 1/2
, ,()W WW J W J Jα α α

− + − + += + −θ x x$ $ $ (13)

 1
, ()T T

W W W W W mJ J J J Iα α+ −= + (14)

It can avoid the singularity of J+, and can also avoid the singularity of WJ+ with auto-

adjusting α and α W.

3. Gait generation algorithm

The solving process of inverse kinematics is described in the following.
1. The D-H forward kinematics of each limb and head is constructed independently. All

limbs have the same base point which is at the middle point of the two hips.

2. Determine the trajectory of the end-effector of the swing leg using MTS method and the

trajectory of the COG using preview control method (Kajita et al., 2006). The

relationship between the swing leg and fixed leg is discussed in the following

discussion “Relative Input”.

3. Construct the conventional Jacobian matrix and the COG Jacobian matrix.

4. Construct the proposed F-Jacobian matrix and then combine it into the conventional

Jacobian matrix.

5. Solve inverse kinematics using the proposed F-Jacobian method with the inputs, the

trajectories of the swing leg and COG.

www.intechopen.com

A Fast and Smooth Walking Pattern Generator for Biped Robots

287

3.1 Relative input

If the trajectories of the end-effectors of the swing leg and the fixed leg are assigned
independently, the swing leg may touch the fixed leg or even be lower than the fixed leg to
break the balance of the robot if there is no any other good checking method to check it. So
the position of the ankle of the swing leg should be dependent upon the position of the
swing leg, as shown in Fig. 2 and Equation (15).

 ,swing fixed n bl traj ir r R r r= + +j j j j
 (15)

Fig. 2. Relative input trajectory of the swing leg

where swingr
j

 denotes the position vector from “Base” to the ankle of the swing leg, fixedr
j

denotes the position vector from “Base” to the ankle of the fixed leg, blr
j

 denotes the position

vector from the ankle of the fixed leg to the ankle of the swing leg, Rn denotes the rotation

matrix that expresses the rotation between the base coordinate frame and the ground. The

magnitude of blr
j

 is a constant. And the ,traj ir
j

 denotes the i-th planned trajectory point of the

ankle of the swing leg. It can control how the swing leg moves in each stride. The Rn is not

an identity matrix when the orientation of the robot is not the same as the world

coordinates. In this chapter, in order to simplify the system, the orientation of the robot is

the same as the world coordinates and the Rn is an identity matrix. With dependent position

input of the ankle of the swing leg, we can give a trajectory easily that the swing leg will not

lower than the fixed leg to avoid breaking the balance of the robot and touching the fixed leg.

3.2 Modified Tension Splines (MTS)

It is also important that we should input smooth and well-defined trajectories to our system.
MTS method is based on conventional tension splines (CTS), and the tension factor can be

www.intechopen.com

 Biped Robots

288

arbitrarily assigned in this method. MTS method also generates trajectories with smooth
position, velocity, acceleration and jerk. Trajectory planned by MTS is defined as Equation (16).

()
()

()
()

, 1 ,

, , , 12 2
, ,, ,

1
, , , 1 , 12 2

, ,

sinh sinh1 1
()

sinh sinh

1 1

j i i j i i

j i j i j i
j i j ij i i j i i

i i
j i j i j i j i

i ij i j i

t t t t
q t q q

h h

t t t t
q q q q

h h

σ σ

σ σσ σ

σ σ

+
+

+
+ +

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦= +

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟+ − + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

$$ $$

$$ $$

 (16)

where hi = ti+1-ti, the time interval of the i-th CTS segment, αij denotes the tension factor of

the ith CTS segment. The acceleration ijq$$ can be found as Equation (17). After solving the

ijq$$, the knots q can be found by Equation (16).

()

()

2 21
, , , , , ,

2
, 1 , , 1 1

() ()

,

i
j i j i j i j i j i j i

i

i
j i j i j i i i

i

t t
q t q t q q

h

t t
q q t t t

h

σ σ

σ

+

+ + +

−
− = −

−
+ − ≤ ≤

$$ $$

$$
 (17)

3.3 Fixed Leg Jacobian (F-Jacobian)

After constructing the DH parameters, the Jacobian matrix can be found by the cross

product method, and then the limbs and the head can be controlled independently with the

Jacobian matrix. The ankles, the fingertips and the head are chosen as end-effectors. But if

we solve inverse kinematics of the limbs and the head of the robot independently, it is very

difficult to decide where the positions of the end-effectors should be because DH forward

kinematics method constructs the joint positions and orientations in its own coordinates

instead of the world coordinates, and all positions of the end-effectors in the world

coordinates are influenced by the movements of the fixed leg. Equation (18) describes the

conventional Jacobian matrix that is used while solving inverse kinematics independently.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

LL LL LL

RL RL RL

LA LALA

RA RARA

H H
H

d J

d J

Jd

Jd
Jd

θ
θ
θ
θ
θ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

$ $
$ $
$ $

$$
$$

 (18)

where d$ denotes the vector from the current end-effector position to the desired end-

effector position in its own coordinates; LL, RL, LA, RA, and H denotes left leg, right leg, left

arm, right arm, and head, respectively. If we just want to control the limbs and the head of

the robot independently, it is enough to solve inverse kinematics with the equation above in

one iteration if d$ is given appropriately (not too large).
In fact, it is not enough to control the end-effectors independently. Relative input should be

used to prevent the swing leg from hitting the fixed leg or touching the ground. The velocity

of the ankle of the fixed leg in the world coordinates is zero because it is fixed on the

www.intechopen.com

A Fast and Smooth Walking Pattern Generator for Biped Robots

289

ground. The velocities of all other end-effectors in the world coordinates can be found by

subtracting the velocity of the fixed leg from them. In world coordinates, the velocities of the

end-effectors are shown in Equation (19) – (21).

 , ,0, 0fixed world fixed worldV ω= = (19)

 , , , , , ,, swing world swing local fixed local swing world swing local fixed localV V V ω ω ω= − = − (20)

 , , , , , ,, other world other local fixed local other world other local fixed localV V V ω ω ω= − = − (21)

where fixedV and fixedω denote the velocity and the angular velocity of the fixed leg; the

subscript “world” denotes the variable is in the world coordinates, and the subscript “local”

denotes the variable is in its own body-fixed coordinates.
Since the “Base” of the legs and arms are the same, the Jacobian matrix expressing the

influence of the fixed leg to all other end-effectors can be calculated as follows. It is

calculated using the cross product method, as shown in Equation (22) – (24).

 Translational
F

Rotational

J
J

J

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (22)

It is called “F-Jacobian” (Fixed Leg Jacobian) method. Note that RotationalJ is given as

Equation (23).

 ,1 ,2 , ,... ...Rotational e e e j e nJ ω ω ω ω⎡ ⎤= −⎣ ⎦ (23)

where n denotes the total number of joints of the fixed leg, ωe,j are unit normal vectors of the

joints of the fixed leg. The minus sign is multiplied since when a joint in the fixed leg rotates

clockwise in its coordinates, the body rotates counterclockwise in the world coordinates. On

the other hand, the JTranslational is calculated as Equation (24).

,1 1, _

,2 2, _

, , _

, , _

...

...

e F end eff

e F end eff

T
Translational

e j j F end eff

e n n F end eff

r

r

J
r

r

ω

ω

ω

ω

→

→

→

→

×⎡ ⎤
⎢ ⎥

×⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥×
⎢ ⎥
⎢ ⎥
⎢ ⎥×⎣ ⎦

j
j

j

j

 (24)

where , _j F end effr →
j

 denotes the vector from the j-th joint of the fixed leg to the end-effector

affected by the movement of the motion of the fixed leg.

www.intechopen.com

 Biped Robots

290

Fig. 3. Build the F-Jacobian

The F-Jacobian matrix is written as Equation (25).

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

fixed fixed fixed

f s swingswing swing

f LA LA LALA

f RA RA RARA

Hf H HH

d J

J Jd

J Jd

J Jd

J Jd

θ

θ

θ
θ
θ

→

→

→

→

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

$ $
$ $
$ $

$$
$$

 (25)

where Jf→X denotes the F-Jacobian matrices; the subscript “X” denotes the end-effector
affected by the movement of the joints of the fixed leg, such as the swing leg and the
fingertips.
Recall the Equation (15).

 ,swing fixed n bl traj ir r R r r= + +j j j j
 (15)

The 3-by-1 column vector swingd$ is given by:

 , ,swing swing next swing nowd r r= −j j$ (26)

To achieve the desired position of the fixed leg, the fixedr
j

 term converges to the target

position after iterations of inverse kinematics algorithm. The swingd$ term also changes with

www.intechopen.com

A Fast and Smooth Walking Pattern Generator for Biped Robots

291

the fixedr
j

 term. Here the F-Jacobian method can be used to describe and compensate the

effect of the motion of the fixed leg in the Jacobian matrix in order to reduce the total

iterations while solving inverse kinematics. Equation (27) can be obtained by multiplying

the second row and the θ$ column of the matrices in Equation (25) as

 swing f s fixed swing swingd J Jθ θ→= +$ $ $ (27)

The f s fixedJ θ→
$ term means the effect of the fixed leg in the world coordinates, and serves as

the compensation term. The swing swingJ θ$ term means the affection of the joints of the swing

leg itself. Without the compensation of F-Jacobian term, the end-effectors will oscillate and

then converge to the desired position slower.

3.4 COG Jacobian (Center of Gravity Jacobian)

The position, velocity and acceleration of COG are highly related with whether the robot

falls or not. The position of COG can be computed by averaging the sum of the product of

the linkage masses and their position vectors, as shown in Equation (28). Note that the COGr
j

is a 3-by-1 vector described in Cartesian coordinates.

 ,
1 1

1 n n

COG i m i i
i i

r m r m
n = =

= ⋅∑ ∑j j
 (28)

where “Base” denotes the start point of forward kinematics, ,m ir
j

 denotes the vector from

base to the COG of linkage i , and mi denotes the mass of linkage i.

Fig. 4. Position of the COG of a linkage

When a joint rotates, only parts of the whole body are rotated, while the others are not
rotated. Separating the rotated parts and the fixed parts (without rotating), we obtain

www.intechopen.com

 Biped Robots

292

 , , , ,

joint

COG a h a h ua k ua k
h k j

M r m r m r

=

⎛ ⎞
⋅ = ⋅ + ⋅⎜ ⎟

⎝ ⎠
∑ ∑j j j

 (29)

where M denotes the total mass of the robot, subscript “a” denotes the parts that are affected

by the rotation, subscript “ua” denotes the parts that are unaffected by the rotation, the ma,h

and mua,k denote the mass that are affected and unaffected by the joint j, and the vectors ,a hr
j

and ,ua kr
j

 denote the position of the COG of each affected part and each unaffected part. The

equation can also be written as

 () , , , ,jointCOG a a ua ua a j a j ua j ua jj
M r M r M r M r M r

=
⋅ = ⋅ + ⋅ = ⋅ + ⋅j j j j j

 (30)

where Ma,j denotes the total mass of the parts affected by joint j, and Mua,j denotes the total

mass of the parts unaffected by joint j, ,a jr
j

 and ,ua jr
j

 denote the position vector of the COG

of the affected and unaffected parts. Note that the members of affected and unaffected parts

change with different joint j, and they also depend upon each different control system. The

position change of COGr
j

 caused by the rotation of joint j can be approximated as

, ,

, , ,
a j ua j

COG j a j ua j

M M
r r r

M M
Δ = ⋅ Δ + ⋅ Δj j j

 (31)

Since uar
j

 is unaffected by the rotation, uarΔj
 is always equal to zero. ,COG jrΔj

 denotes the

displacement of the whole robot’s COG caused by the rotation of the j-th joint. Thus, the

COG Jacobian can be obtained as

,

, , ,
a j

COG j a j COG j j

M
r r J

M
θΔ = Δ = ⋅j j $ (32)

where the JCOG,j denotes the COG Jacobian of joint j, jθ$ denotes the angular speed of joint j.

The COG Jacobian matrix of the joints on the limbs except the joints on the fixed leg can be

found as Fig. 5 and Equation (33).

 ω →= ×j j
, ,

a
COG j e j c j

M
J r

M
 (33)

where ,a jωj denotes the unit vector along the z-direction of the j-th axis, c jr →
j

 denotes the

vector from the j-th joint to the COG of the affected parts. We can also use this concept to get

the COG Jacobian of the fixed leg, as shown in Fig.6 and Equation (34).

 , , ,
a

COG j COG j j e j c j j

M
r J r

M
θ ω θ→Δ = ⋅ = − × ⋅j j j$ $ (34)

In the coordinates of the fixed leg, the rotation of a joint rotates the parts that are lower than
it. But in the world coordinates, the rotation causes the parts higher than the joint to rotate
with the same angular velocity in negative direction.

 ω →= − ×j j
, ,

a
COG j a j c j

M
J r

M
 (35)

www.intechopen.com

A Fast and Smooth Walking Pattern Generator for Biped Robots

293

Fig. 5. Construction of COG Jacobian—swing leg

Fig. 6. Construction of COG Jacobian—fixed leg

The Jacobian matrix with COG Jacobian can be written as

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

fixed fixed

fixed
f s swingswing

swing
f LA LALA

LA
f RA RARA

RA
f H HH

H
f C s C LA C RA C H CCOG

d J

J Jd

J Jd

J Jd

J Jd

J J J J Jd

θ

θ

θ
θ
θ

→

→

→

→

→ → → → →

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

$
$$
$

$
$

$
$

$ $
$

 (36)

www.intechopen.com

 Biped Robots

294

where fixedd$ is a 3-by-1 matrix, it controls the three orientations of the fixed leg. The other

three DOFs of the fixed leg are used to control the position of the COG, COGd$ is a 3-by-1

matrix that controls the position of COG, JX→C denotes the COG Jacobian, the “X” denotes

the limbs that their movements affect the position of the COM.

4. Simulation

All the input trajectories of the swing leg in the simulations below are generated with
“Relative input” method, and the position of the swing leg is given relative to the fixed leg
in order to guarantee the swing leg is in a proper position, as shown in Fig. 7. The COG
trajectory is generated smoothly and fits the COG/ZMP (zero moment point) inverted
pendulum constraint with the preview control method, as shown in Fig. 8.

Fig. 7. Planned trajectory of the ankle of the swing leg

Fig. 8. Planned trajectory of the COG

The inputs above are inputted to the robot walking system in the simulation. The
computation times of the same robot model with conventional Jacobian matrix and
proposed F-Jacobian matrix will be compared. Each gait configuration should be solved as
soon as possible in order to gain more CPU resources in each time period, and then each gait

www.intechopen.com

A Fast and Smooth Walking Pattern Generator for Biped Robots

295

configuration will be sent to the robot within the desired time interval to control the robot
walking speed. Human walks about 90 to 110 steps in a minute. It means 0.55 to 0.67 second
per step. The robot should walk faster than at least 1.0sec/step to simulate human walking.
The simulation results are shown below. All the simulations below are done with a personal
computer equipped with Intel Core2Duo E6300 1.83GHz and 2GB RAM.

Fig. 9. Simulation results of computation time

Fig. 10. Simulation results of iterations

The graphics above show the computation time and the iterations per step of the pseudo
inverse method with and without F-Jacobian method. Step 1 and step 2 are initial steps, so
they are with different computation time and iterations per step. The red bar is the
0.55sec/step reference line of human walking speed. Inverse kinematics with F-Jacobian
solves the planned 9 steps in 3.07 second and 232 iterations (average 0.341 second and 25.8
iterations), and inverse kinematics without F-Jacobian solves the planned 9 steps in 4.62
second and 677 iterations (average 0.513 second and 75.2 iterations). Clearly, the proposed
method, F-Jacobian, saved 33.55% computation time and 65.73% iterations per step. Except
initial steps, each step contains 27 configurations. In the 27 configurations, the first three and
last three points need no iteration because they are at the same position. The proposed
method, F-Jacobian, can solve each configuration in only one computation when the
acceptable error is 0.2mm (0.0712% of the length of legs). “Acceptable error” means the
acceptable position error value when solving inverse kinematics. If the position error is
smaller than the acceptable error, the next trajectory knot will be inputted to the inverse
kinematics solver. If the position error is still larger than the acceptable error, the same
trajectory knot will be inputted to the solver again. Since the input to the inverse kinematics
are close and smooth enough, the proposed method can get smooth trajectories and solve
each configuration in one iteration. But for the same input, inverse kinematics without F-

www.intechopen.com

 Biped Robots

296

Jacobian makes the joints oscillate and needs about 3 iterations to solve one configuration.
Fig. 11 and Fig. 12 show the solved trajectories of the left ankle (end-effector) with and
without F-Jacobian.

Fig. 11. Solved trajectory with F-Jacobian

Fig. 12. Solved trajectory without F-Jacobian

Without F-Jacobian, the solved trajectories are not all useable. Only points that are in the
acceptable error range are useable. We can reduce the number of useless points with F-
Jacobian method. The robot walks from 0 to -400mm in the simulation. Only some
configurations in the initial steps are not solved in one computation since the home
configuration of the robot is near singularity. After initial steps, the robot has bent its knees,
and hence keeps the robot away from the singular configurations. All the configurations after
initial steps are solved in one computation. Fig.13 and Fig.14 show the position error after each
inverse kinematics computation (conventional Jacobian vs. the proposed F- Jacobian).
In the figures, the max error of conventional Jacobian method is about fifteen times larger than
F-Jacobian method. Fig.15 shows the acceptable error versus the total iterations of the inverse
kinematics computation (for 232 trajectory knots) with and without F-Jacobian method.
From the figure, we can see the number of total iterations for conventional Jacobian method
grows much faster than the F-Jacobian method when we choose the acceptable error from
2mm to 0.0002mm.

www.intechopen.com

A Fast and Smooth Walking Pattern Generator for Biped Robots

297

Fig. 13. Position error--conventional Jacobian

Fig. 14. Position error F-Jacobian

Fig. 15. Acceptable error vs. total iterations

www.intechopen.com

 Biped Robots

298

5. Conclusions

Cooperation of the swing leg and the fixed leg is important for a humanoid robot. In this
chapter, the position of the swing leg is dependent upon the position of the fixed leg. In
order to solve inverse kinematics faster, F-Jacobian method is applied. The F-Jacobian
method can compensate the displacements of the other end-effectors that are caused by the
rotation of each joint in the fixed leg. F-Jacobian method can save computation time and
generate knots more smoothly and effectively than the conventional Jacobian method. F-
Jacobian method can be extended to construct COG Jacobian and other Jacobian matrices in
order to describe and compensate the effect of the fixed leg. Simulations are done and justify
that the F-Jacobian has better performance than conventional Jacobian method.

6. References

Buss, S. R. & Kim, J. S. (2004). Selectively damped least squares for inverse kinematics.
Journal of Graphics Tools, Vol. 10, pp. 37-49

Chan, T. F. & Dubey, R. V. (1995). A Weighted Least-Norm Solution Based Scheme for
Avoiding Joint Limits for Redundant Joint Manipulators. IEEE Trans. On Robotics
and Automation, Vol. 11, No. 2, pp. 286-292

Huang, H. P. & Liu, C. P. (2005). A Novel Trajectory Optimization and Workspace
Boundary Singularity Solution for Industrial Robots. Proceedings of Automation the
Eighth International Conference on Automation Technology Conference, pp. 1-6

Klein, C. A., Caroline, C. J. & Ahmed, S. (1995). A New Formulation of the Extended
Jacobian Method and its Use in Mapping Algorithmic Singularities for
Kinematically Redundant Manipulators. IEEE Trans. on Robotics and Automation,
Vol. 11, No. 1, pp. 50-55

Kajita S., Morisawa M., Harada K., Kaneko K., Kanehiro F., Fujiwara K. & Hirukawa H.
(2006). Biped Walking Pattern Generator allowing Auxiliary ZMP Control.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993-2999

Liegeois, A. (1997). Automatic Supervisory Control of the Configuration and Behavior of
Multibody Mechanisms. IEEE Trans. systems, Man, and Cybernetics, Vol. 7, No. 12

Nakamura, Y. & Hanafusa H. (1986). Inverse Kinematics Solutions with Singularity
Robustness for Robot Manipulator Control. ASME Journal of Dynamic Systems,
Measurement and Control, Vol. 108, pp. 163-171

Tevatia, G. & Schaal S. (2000). Inverse Kinematics for Humanoid Robots. Proc. IEEE Int. Conf.
Robotics and Automation, pp. 294-299

Wampler, C. W. (1986). Manipulator inverse kinematic solutions based on vector
formulations and damped least squares methods. IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC-16, No. 1, pp 93-101

Yu, S. W. (2006). Walking Pattern Analysis and Control of a Humanoid Robot. Master
Thesis, Department of Mechanical Engineering, National Taiwan University, pp.
28-30

www.intechopen.com

Biped Robots

Edited by Prof. Armando Carlos Pina Filho

ISBN 978-953-307-216-6

Hard cover, 322 pages

Publisher InTech

Published online 04, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Biped robots represent a very interesting research subject, with several particularities and scope topics, such

as: mechanical design, gait simulation, patterns generation, kinematics, dynamics, equilibrium, stability, kinds

of control, adaptability, biomechanics, cybernetics, and rehabilitation technologies. We have diverse problems

related to these topics, making the study of biped robots a very complex subject, and many times the results of

researches are not totally satisfactory. However, with scientific and technological advances, based on

theoretical and experimental works, many researchers have collaborated in the evolution of the biped robots

design, looking for to develop autonomous systems, as well as to help in rehabilitation technologies of human

beings. Thus, this book intends to present some works related to the study of biped robots, developed by

researchers worldwide.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Han-Pang Huang and Jiu-Lou Yan (2011). A Fast and Smooth Walking Pattern Generator for Biped Robots,

Biped Robots, Prof. Armando Carlos Pina Filho (Ed.), ISBN: 978-953-307-216-6, InTech, Available from:

http://www.intechopen.com/books/biped-robots/a-fast-and-smooth-walking-pattern-generator-for-biped-robots

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

