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1. Introduction   

The notion of obtaining passive gaits, powered only by gravity, was pioneered by 
McGeer[1], who thought that ,we can perhaps learn about the stability and control of 
walking by studying un-powered, uncontrolled models.  
Some results with McGeer’s passive dynamic models of human locomotion suggest that 
human body parameters such as mass distribution or limb lengths may have more influence 
on the existence and quality of gait than is generally recognized. The question has been 
subsequently studied by many other researchers-such as Collins, Garcia and Goswami. 
 Human locomotion is typically described as having a periodic movement pattern and stable 
passive gaits were found for both planar and non-planar bipeds on shallow downhill slopes. 
And the existence of passive limit cycles(periodic behavior) has important implications for 
the design of walking robots. Some basic definition about the limit cycle has been 
induced[2][3][6], discrete events, such as contact with the ground , can act to trap the 
evolving system state within a constrained region of the state space. Therefore, even when 
the underlying continuous dynamics are unstable, discrete events may induce a stable limit 
set and limit cycles are often created in this way.  
Here the paper will take great interest in the model Goswami presented 1997 and will 
describe the model geometry, its dynamic parameters, and its governing equations during 
the swing stage and the transition stage. In addition, a typical walk cycle of the passive 
robot on a inclined plain with the help of a phase diagram will be discussed, this motion can 
continue indefinitely due to a delicate balance between the robot’s kinetic energy and 
potential energy. The discussion about the intricate energy transition and also the mutual 
influence between the swing leg and stance leg will help us to be better aware of the 
passivity gait of this kind of compass-like biped robot, besides, some further control ideas 
will be educed based on this very character thus lead to systematic control design. In spite of 
this, the paper also present some applicable control strategies on the gait biped to improve 
its gaits and present some new idea of anti-phase synchronization. 
The results of gait biped concluded above can also be extended to the model of three 
dimensional phase and some useful research results will shed light on new discovery of this 
terrific field of the gait biped.  
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2. The compass gait biped model 

2.1 The model description and assumption  

The paper will follow the model that Goswami presented in 1997, so called the compass gait 

biped, shown as Figure 1, is equivalent to a double pendulum with point masse mH and m 

concentrated at the hip and legs respectively. The leg-length is l, which is divided into two 

parts: a and b, a is the distance from the leg-tip to the position of m and b is the distance from 

m to the hip center mH. The support angle θs and nonsupport angle θns determine the 

configuration of the compass gait. The angle was made by the biped leg with the vertical 

(counterclockwise positive). 2α is the total angle between the legs, which is defined as the 

“inter-leg angle”, and in addition is formed during the instant when both legs are touching 

the ground. The slope of the ground with the horizontal is denoted by the angle φ      
            

nsθ

sθ

2α

m

m

H
m

a

b

φ

lba =+

 

Fig. 1. Model of a compass gait biped robot on a slope 

The model has been made by the following assumptions: the total mass of the robot 
mC = 2m + mH is constant and equal to 20kg. For the sake of simplifying the model, all 
masses are considered point-masses and the legs are identical with each leg having 
telescopically retractable knee joint with a mass-less lower leg(shank), this retractable knee 
joint which is called prismatic-joint knee and is the imaginary concoction, the function of it 
is to address the conceptual problem of foot-clearance common to all knee-less planar 
bipeds. The gait consists of swing stage and an instantaneous transition stage: during the 
swing stage the robot behaves exactly like an inverted planar double pendulum with its 
support point being analogous to the point of suspension of the pendulum. During the 
transition stage the support is transferred from one leg to the other. The robot is assumed to 
move on a horizontal or inclined plane surface. The impact of the swing leg with the ground 
is assumed to be inelastic and without sliding[4]. This implies that during the instantaneous 
transition stage the robot configuration remains un-changed, and the angular momentum of 
the robot about the impacting foot as well as the angular momentum of the pre-impact 
support leg about the hip are conserved. These conservation laws lead to a discontinuous 
change in robot velocity. 

2.2 Dynamics of the swing stage 

The dynamic equations of the swing stage are similar to the well-known double pendulum 
equations. Since the legs of the robot are assumed identical, the equations are similar 
regardless of the support leg considered.  
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They have the following form 

 
.. . .

( ) ( , ) ( )M q q C q q q g q Bu+ + =  (1)       
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, and the vector u  represents independent torques at 

the hip and ankle, which are assumed to be identically zero in the case of passive biped . 

The matrices ( )M q ,
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The parameters used for our simulations are a = b =0.5m, l a b= + , Hm =2 m =10kg. Since no 

dissipation takes place during swing stage, thus the total mechanical energy E of the robot is 

conserved during this stage. 

2.3 Transition equations  

The algebraic transition equations relate the robot’s states just before and just after its 
collision with the ground. The support and the non-support legs switch during transition. 
The pre-impact and post-impact configurations of the robot can be simply related by  

 Jθ θ+ −=  (2) 

With 

 
0 1

1 0
J

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3) 

 The matrix J exchanges the support and the swing leg angles for the upcoming swing 

stage. The pre-impact and post-impact variables are identified respectively with the 
superscripts – and +. The conservation of angular momentum principle applied to the robot 
gives us the following equation  

. .

( ) ( )Q Qα θ α θ
− +

− +=  

From which we can write the joint-velocity relationship  
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. . .
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The complete state vector q  before and after impact can thus be written as  

.

( )q W qα+ −=  

With 

. 0
( )

0 ( )

J
W

H
α

α
⎛ ⎞

= ⎜ ⎟
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Moreover, it follows with the robot geometry during the transfer  

2ns sθ θ ϕ− −+ = −         (or 2ns sθ θ ϕ+ ++ = −  ) 

2ns sθ θ α− −− =            ( or 2s nsθ θ α+ +− =   ) 

where +and – correspond to the instants just after and before the change of support, 
respectively. 
The assumption that the angular momentum of the robot is conserved during the transition 
doesn’t explicitly indicate how the mechanical energy of the robot changes during this stage. 
we will present a detailed explanation in the following section on the fact that through the 
transition stage, the change in mechanical energy is always negative. 

3. Characteristics of steady passive compass gaits                                                   

3.1 Description of a typical limit cycle 

 Due to the hybrid nature[5] of the governing equations, it is impossible to utilize the 
traditional tool developed to aid the study of this nonlinear systems. McGeer has proposed 
an idea of linearizing the swing-stage equations of the robot about an equilibrium state, thus 
making it possible to explicitly integrate these equations. Next the transition equations are 
concatenated and the conditions for the existence of a periodic solution of this coupled 
system is found. To study the stability of this periodic solution, a second linearization about 
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the periodic solution is necessary. The problem with this approach is that the linear solution 
is valid only within a narrow region around the point of linearization.   
     

 

Fig. 2. Phase portrait of a periodic walk. This figure corresponds to only one leg of the biped, 
one cycle in the figure corresponds to two steps of the robot. In the figure we have indicated 
some of the time stamps important in the dynamic evolution of the biped. The configuration 
of the biped has been shown with small stick diagrams. In these diagrams, one leg is dotted, 
the other leg is solid, and a black dot at the foot indicates the supporting leg. 

Figure 2 just presents the sketch of a phase-space limit cycle of a symmetric gait of the robot 
on a three degree slope.  

 Follow the phase trajectory at the instant marked Ι , corresponding to time 0t += , when the 

rear leg just loses contact with the ground and becomes the swing leg. The phase trajectory 

evolves in the clockwise sense in the diagram with the cycle from Ι - ΙΙ , depicts the swing 

leg suspended as a simple pendulum from the moving point-hip, at the same time, stance 

leg “hinged” at the point of support as an inverted  simple pendulum. While the swing leg 

will cross the velocity axis at a positive velocity, the biped is in the vertical configuration. 

During the process, only the stance leg contacts with the ground, please recall that we have 

the assumption that there is no slipping at the stance leg ground contact. Instant ΙΙ  

corresponds to time t T −= , when the swing leg is about to touch the ground. The impact 

between the swing leg and the ground occurs at the instant t T= , we observe a velocity 

jump from ΙΙ - ΙΙΙ  due to the impact. In order to simplify the model, we assume that the time 

during the impact is instantaneous, which means there is an impulse force acting on the 

biped. Due to this presumption, constant angle momentum is possible and the decrease of 

the kinetics can be explained by the jump in velocity and inelastic property. At instant ΙΙΙ , 

t T += , the swing leg becomes the support leg and executes the process of ΙΙΙ - VΙ ，and it 

corresponds to the motion of the support “hinged” at the point of support as an inverted 

simple pendulum. From VΙ — Ι ，thus 0t −= - 0t += ，the velocity jump appears for 

another time due to the impact between the current swing leg with the ground, similar to 

the process ΙΙ - ΙΙΙ , and then the cyclic trajectory is a limit cycle. For the stable gaits, it will 

attract and absorb all nearby trajectories that enter its attractive basin. This property will be 

useful for the further control strategy design.   
  Simulation trials reveal that the passive compass gait robot can walk down a slope with a 
steady gait. For a given robot, one and only one stable gait on a given slope exists, which 
symbolize the periodicity of the humanoid gaits, if we can make full use of this property, we 

www.intechopen.com



 Biped Robots 

 

180 

may find some idea on controlling the robots by maintaining the stability of limit cycle 
through the idea of adding some torque or only adjust the parameter of the system. 
Moreover, the initial value of the passive walking must correspond with an energy value , 
for the lost energy during the process of collision should conform to some regulations 
between the gravity and kinemics. To a certain slope, the limit cycle is the only, so the state 
point adjoin to the limit cycle can also converge to the limit cycle. The non-linear system 
possesses the property of being sensitive to the initial value, so the analytical procedure to 
find this limit cycle still remain a challenge.  

3.2 The energy analysis in passive gait  

Figures 3 depict the variation graph of kinetic energy, potential energy and total mechanical 
energy corresponding to the limit cycle of certain three slope respectively. Seen from figures, 
we can clearly specify the whole biped gaits of the robot, the kinetic energy (KE) and the 
potential energy (PE) have a complex variation process just not as we have expected before. 
KE just experiences an asymmetry periodic process. At instant T, a sharp downwards jump 
exists because of the inelastic impact of the legs and the ground thus causing the loss of the 
kinetic energy dramatically, we can clearly see from Figure 3 that the reduction of the energy is 
irregular just due to the inertial kinetic energy compensation of the stance leg, the 
enhancement of kinetic energy is partly compensated by gravity, the detailed message of the 
variation of the energy and conversion can be informed in figures. While PE just experiences a 
contrary process. During the swing stage, gravity and only gravity acts on the robot, so the 
whole mechanical energy of the system will keep constant. At instant t = T, mechanical energy 
will also have a downward jump, this variation value will be equal to the kinetics’. The 
potential energy decreases continuously during the whole process, we can tell from figures 
that some coupling phenomenon exists between the swing leg and the stance leg, similar to 
that 2-dof mechanical configuration. Mutual influence between the two legs can be observed 
indirectly by figures and also will help us in realizing this complex hybrid system. 
 

T 2T0 3T

E

     0 T 2T 3T

0P

TP

2TP

3TP

 

Fig. 3. The kinetic energy and potential energy variation graph corres-ponding to the limit 
cycle of certain three slope     

Seen from Figures, we present the variation and comparison graph. And some important 

points 0 1 2 3 4, , , ,t t t t t  have been selected out to explain the whole biped gaits, they represent 

the instant corresponding to different culmination points during the steady gaits period. 

During the whole walking course, KE and PE curve just go along with the direction 

0 1 2 3 4t t t t t− − − − , amid of it, 0 0t = , 4t T= . The graph can tell us some details about the 

particular energy variation of the whole steady robot gaits.  
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0 T 2T 3T

1
E
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Fig. 4. The total mechanical energy variation graph corresponding to the limit cycle of 
certain three slope   

 

0t 1t
2t

3t

4t

 

Fig. 5. The variation and comparison graph of KE and PE conversion of the swing leg during 
steady robot gaits of certain 3 degree slope 

 

1
P

1
K

 

Fig. 6. The graph on the two nearest existed culmination values of KE and PE corresponding 
to the course of energy conversion of the swing leg within one gait cycle  

Seen from Figures we address the culmination values corresponding to the course of energy 
conversion. There are   three culmination points of KE and two culmination points of PE 
within one steady gait period. For Figure 11, we can set the culmination potential value of 

the swing leg as 1P , 2P , 3P  from the left to right, and also set two culmination kinetic value 

of the swing leg as 1K , 2K  with the same sequence above within one gait cycle, the 

maximum and minimum of the energy can be observed. The figure just search out the 

culmination point of the two nearest point as k  and p , the potential energy culmination 

point just drop behind the kinetic energy culmination point even they are adjacent while 
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they are not the same point as we had thought before. The reason will be well explained in 
the following section. 
Theoretical speaking, the mechanic energy should keep constant during the swing stage 
corresponding to the stable walking limit cycle. Virtually, total mechanic energy will 
decrease incessantly during the swing stage. While the reduction of the magnitude can be 
omitted comparing with total energy magnitude. The reason that we mention this problem 
is that due to the complexity of the non-linear system, it is necessary  to make some 
adjustments sometimes in order to get the better results when considering the control 
strategy of the system. 
The phenomena called “rub ground” will exist during the swing stage, this phenomena just 
happens at the time before the superposition of two legs and ends just at the instant of the 
superposition of two legs. The height between the swing leg and the ground will be 
negative when the swing leg swings from the start to the vertical position by simulation 
results corresponding to steady robot gaits of certain 3 degree slope, the maximum of the 
height will reach  -0.0033m. Why this phenomenon exist and how to avoid this state which 
we intuitively sense unrealistic? We can solve this problem by some technique methods 
such as the assumption discussed in the second part of the paper- the introduction of a 
purely imaginary concoction so called prismatic joint knee. The prismatic joint is assumed to 
retract the lower leg to clear the ground, and the retraction of the lower leg is assumed 
mass-less, it will not affect the robot dynamics and the swing leg returns to its original 

length l  at transition. The assumption is very necessary for the existence of the limit cycle 

and many properties of the bipedal gaits can be observed directly and also will guide us in 
some directions: for example, what is the relationship between the point of intersection of 
two legs and the height between the swing leg and the ground? For real gaits of the robot, 
we can modify the value of the graph to keep tracing   the steady gaits of the robot.  
 

 

Fig. 7. The relationship graph of angle position between the swing leg and the stance leg   

‘---’ just represents the swing leg and ȶ—ȷ just represents the stance leg, the same with the 

following figures.    
Seen from Figure 15, the angle position curve of the swing leg is much more approach to 
sine wave, while the stance leg has a comparative big difference with the swing leg. This can 
be explained that the stance leg experiences a compelled motion, with the action force 
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coming from the swing leg as well as gravity. And in addition, the coupling degree of the 
two legs vary at different instant.  
The angle position will be more than zero when two legs are in the state of superposition, 
which means the joint of superposition lies in the left side of the vertical direction. When the 
swing leg becomes straight, the angle of the stance leg will be positive, and the stance leg the 
same. 
Here the focus of the work is a relative further study of the passive gait of a compass-like, 
planar, biped robot on inclined slopes, an analysis about the distribution of the energy and 
also the conversion law between the swing leg and the stance leg during the process of the 
steady robot gaits, have been discussed in the paper. Phase-position property corresponds 
to the limit cycle, the coupling properties between two legs, the existence of the culmination 
points which produced in the course of the conversion of KE and PE are also the topic of the 
research. To a certain slope angle φ, one and only one stable limit cycle exists. 
The research of the paper will have positive significance in getting better aware of the law 
and global property to biped gaits of the robot. The model we adopt here is an ideal 
position, how to induce or modify a more realistic model for biped gaits, and how to enlarge 
the initial value attraction region of the limit cycle as well as how to apply the efficient 
control on the robot combined with its own property with the least energy possible will 
guide our further research direction. 

4. Some simple control laws  

The existence of passive gaits in simple bipeds is interesting and may help to explain the 
efficiency of human locomotion. In particular, the sensitivity to initial conditions and 
ground slope must first be emphasized [8]. In spite of this, robustness to external 
disturbances and parameter uncertainty must be investigated. In the paper, we address 
simple control law for the compass gait biped by tracking a given mechanical energy of the 
robot with the torque added on the hip and ankle respectively.  

4.1 The idea of control law tracking passive energy level  
As the robot walks down on a slope, its support point also shifts downward at every 
touchdown, the kinetic energy will increase accordingly as it loses gravitational potential 
energy. In a steady walk, at the end of each step by the impact, the amount of kinetic energy 
will absorb the loss of the gravitational potential energy. This character presents us an idea 
on control passive biped robot, if, at every touchdown we reset our potential energy 
reference line to the point of touchdown, then the total energy of the robot appears constant 
regardless of its downward descent. We name the characteristic energy of the passive limit 
cycle on a given slope as “reference energy”, the function of it is to drive the robot toward it 
thus attain to a mobile balance. 
The approach assumes that we have already identified the passive limit cycle for a given 
slope and the advantage of it is that it is able to generate gaits which don’t exist for the un-
powered robot. In addition, at the same time, only those neighborhoods of the passive gait 
can function well by this control law. The total mechanical energy E of the robot can be 

expressed as 
. .

0.5
T

E M PEθ θ= + . The power input to the system is the time rate of change of 

the total energy,
. . T

E B uθ=  for a passive cycle 0u = , and the reference energy of the limit 

cycle is 
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*.
* *( , )E E θ θ= . Here we use a simple damper control law of the form

.

B u β θ= − . So the 

power input to the system is therefore
. . T

E θ β θ= − . For a positive definite β , the quantity 

. T

θ β θ− <0, which means that the robot’s kinetic energy decreases monotonically. In order 

to simplify the choice, we can further specify that the control law should bring the current 
level of the robot to the reference energy level at an exponential rate. 
Three ways of the control law[9] will be implemented: by means of the two actuators acting 
independently or them acting together on the hip or in the supporting leg at the point of 
support, the latter will be also called as “support ankle torque”. The paper will have a 
discussion about the latter two control strategies. 

4.2 Control with hip torque    

We propose a control law of the following form based on the idea presenting abov then after 
the calculation we get  

 
*

. .

( )
H

s ns

E E
u

λ

θ θ

−
= −

−
 (4) 

λ is a parameter influencing the degree about the rate of convergent to the reference energy 

level. At the state of
. .

0s nsθ θ− = , the control law will have a singularity, to solve this 

problem, the common idea is to set the control to zero whenever  
. .

s nsθ θ ε− < . 
To the passive limit cycle on a 3° slope, we make some active phase cycle superimposed on 
it, and from the picture, we let the starting position, denote as A, lie outside the basin of the 
attraction of the passive limit cycle. In this situation the passive robot would have fallen 
down soon, while the control law will lead the gait of the robot go back into the state of limit 
cycle and thus keep the periodic state. We can come to the conclusion from the control that 
the basin of attraction of the passive limit cycle has been enlarged and this will have a 
realistic sense in the application of the further study. 
 

A

      

H
u

Ν
m

  (
) 

Time   (sec)  

Fig. 8. Active stabilization of a limit cycle. Here we show the performance of the energy 
tracking law for a robot walking down a 3° slope. The system driven only by a hip torque 
seeks and returns to the passive cycle of the robot. The initial condition is denoted as point 
A, lying outside the basin of attraction of the passive limit cycle. Through the control 
strategy, the system has been brought back to the limit cycle. The right will be the graph of 
the variation graph on the control added on the hip 
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Seen from Figure, we conclude that the system will run away from the limit cycle without 
the added control. While added with control, the system will make a 3-4 gaits adjustment to 
converge to the original limit cycle and then keep its stable gait state, which proves the 
validity of the control. Figure 4 just depicts the variation on total energy based on the hip 
control condition, we can clearly see that the total energy will fluctuate within a transitory 
process and then go into a constant value which corresponding to the energy of the limit 
cycle. From Figure, we can explicitly be aware of the detailed variation on the control torque 
act of the hip and of the every gait state. To seek for the deep relationship between the 
variations of added torque,  the variation regulation of the energy control and also the 
property of the limit cycle will be useful. 
Then, we observe the process with the starting position lying inside the basin of attraction of 
the passive limit cycle of certain slope(here 3°). 
 

                 

Fig. 9. Limit cycle corresponding to the certain three slope with the initial condition lying in 
the limit cycle  The variation on total energy corresponding to the condition as Figure has 
demonstrated.   

 

           

Fig. 10. Limit cycle with hip control corresponding to the condition as Figure And the 
variation on total energy corresponding to the condition as Figure 8 has demonstrated.       

Figures 9 and 10 just show us something about the limit cycle corresponding the certain 
three slope with the initial condition lying in the limit cycle and also the variation of total 
mechanical energy corresponding that condition. 
Figures 9 and 10 just show us the whole process with control added on the hip. Seen from 
the picture, we may safely find that time consuming in going into the limit cycle has been 
improved a lot evidently, with only two gaits the gait will converge to its stable period with 
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control comparing at least 4 gaits to the same limit cycle by its own convergence. The 
variation on the total mechanical energy just describes the whole process of the biped gaits. 
In another words, with the control on the hip we may efficiently improve the quality of the 
convergence of the passive limit cycle. 
Next, we’d meant to make unnatural limit cycles to track the certain target mechanical 
energy denoted by Etar, which is different from the reference energy corresponding to that 
slope. 
By the use of hip control, we can successfully produce new gaits, while it is very interest for 
us to see that the consequence in tracking the specified target energy can not match the very 
exact result that we expect, it will converge to the energy cycle which is adjacent to the 
target energy cycle. That is to say, the control strategy can help us to track any appointed 
target energy in some degree and will guide us to get better aware of the property of the 
passive gait control. 

156tarE J=  

 

                      Time   (sec)

H
u

Ν
m

  (
) 

 

Fig. 11. Target energy tracking control and also the variation graph by using hip actuator on 
the control added on the hip  

 

The target energy 
we’d like to track 

The final attained energy 
with hip control 

154tarE J=  153.1348JfinalE =  

156tarE J=  153.1520JfinalE =  

158tarE J=  153.1480JfinalE =  

160tarE J=  153.1088JfinalE =  

Table 1. The relationship between active biped gait for different target energies and the 
energy level at which the robot converged at the end. 

Seen from Table 1, we find that no cycle with an energy level tarE  less than that 

corresponding to the passive cycle could be generated 

4.3 Control with ankle torque   

We will implement the same control law employing only the support ankle torque following 
the above hip control, and then we have: 
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*

.

( )
s

s

E E
u

λ

θ

−
= −  (5) 

With the same procedure depicted as section 3.2, to the passive limit cycle on a 3° slope, we 
make some active phase cycle superimposed on it, we let the starting position, denote as A 
lie outside the basin of the attraction of the passive limit cycle, and in this situation the 
passive robot would have fallen down soon. While the control law will make the gait go into 
the state of limit cycle and thus enlarge the basin of attraction of the passive limit cycle.  
 

A

                     

Fig. 12. Active stabilization of a limit cycle. Here we show the performance of the energy 
tracking law for a robot walking down a  3° slope. The system driven only by an ankle 
torque on the stance leg seeks and returns to the passive cycle of the robot. The initial 
condition is denoted as point A, lying outside the basin of attraction of the passive limit 
cycle. Through the control strategy, the system has been brought back to the limit cycle. And 
the right one will be the Energy tracking control using support ankle actuation. Ten steps of 
the robot are presented here. The support ankle alternates between the left and the right 
ankle. The black dot represents the energy Etar=152.6J and the real line represents the 
energy Etar=153.08J.    

Figure 12 reveals the evolution of ankle torque. The repeated peaks in the control torque 
correspond to the time instants of foot touchdown. The zero of the time axis in the figure 
represents the beginning of a swing stage. Seen from this Figure, control is active from the 
beginning and as the robot’s energy reaches the reference energy, the control becomes zero, 
clearly, foot touchdown has caused a sudden change in the angular velocity and also the 
system energy. In reality, arbitrarily large torques can’t be applied as it may cause the robot 
foot to roll on the ground or maybe leave the ground.  
We can come to a conclusion from Figure 16 that the target energy that we appoint ahead 
must lie in a relatively narrow region in order not to run away from the stable periodic state 
due to the property of non-linear system. We have found during the study that if we choose 
the target energy a little farther away from the reference energy, with only ankle control, the 
target energy that we expected can’t be tracked successfully. Seen from Figure, the total 
energy will never converge to a constant value as we expect. Figure12 below just address the 
region about limit cycle of a stable gait with ankle control in certain slope.  
For the study to the ankle torque control and the hip torque control, we come to the result 
that the main difference between them, is that for the hip control discussed above, we can 
effectively converge to any target energy (within a limit), which has  much larger region 
than the ankle control. The reason will be explained as the ankle control is capable of more 
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directly affecting the overall dynamics of the robot. Whether controlled at the hip or at the 
ankle, the control law will enlarge the basin of attraction of the limit cycle. 
 

Passive limit cycle
E=153.078J

E=152J

E=153J

E=154.7J

 

Fig. 13. Some region about limit cycle of a stable gait with ankle control in certain slope  

In addition, we will pay more attention to the study about two actuators added at the hip 
and ankle together in the future work and it will be useful to identify the boundary of the 
basin of attraction and to determine the favorable initial conditions. In spite of all stated 
above, we should also know that the robot’s behavior is heavily influenced by the impact 
model which is not the only available impact model, how to model some new realistic 
foot/ground impact models possessing such a manner that reasonable perturbations of the 
model parameters don’t dramatically change the gait, should be considered. 

5. The complicated idea of controlling the gait biped with energy based 
control slope invariance law   

5.1 Controlled symmetry and slope invariance  

The idea that passive limit cycles can be made slope invariant by a control that compensates 
the gravitational torques acting on the biped has been proposed by Mark. Spong.  

The result just relies on some symmetry properties in the Lagrangian dynamics of robots 

with respect to rotations of inertial frame. A group action of ( )SO n  has been defined to 

change the ground slope with respect to the inertial frame on Q , for 2n =  in the planar 

case, this group action takes a particularly simple form as  

 
cos sin

(2)
sin cos

A SO
ϕ ϕ
ϕ ϕ

−⎡ ⎤
= ∈⎢ ⎥

⎣ ⎦
 (6) 

The group action, :A Q Qφ →  is given by  

 1 2( ) ( , )A q q qφ ϕ ϕ= + +  (7) 

The so called lifted action on TQ  is  

 
. .

( ( ), ( )) ( ( ), )A q A Aq T q q qφ φ φ=  (8) 

The kinetic energy and impact equations are invariant under this group action and if ( )q t , 
.

( )
i

q t is a solution trajectory of (1), with 0u = then 
.

( ),A q qφ is a solution of  
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.. . .

( ) ( , ) ( ( ) 0AM q q C q q q g qφ+ + =  (9) 

Via the control 

 1( ( ) ( ( ))Au B g q g qφ−= −  (10) 

The limit cycle of Figure can be reproduced on any ground slope via active control that 
effectively cancels the gravity vector that corresponds to the current slope.  

5.2 Energy based control to the gravity compensation control  

Using this gravity compensation control of the previous section. We let  

1( ( ) ( ( ))Au B g q g q uφ
−

−= − +  

So that (1) becomes  

.. . .

( ) ( , ) ( ( ))AM q q C q q q g q Buφ
−

+ + =  

The design of the additional term u
−

 is to increase the robustness to slope variations. Set S as 

a storage function 

 21
( )

2
refS E E= −  (11) 

E is the total (kinetic and potential) energy 

. .1
( ) ( )

2

T

E q M q q V q= +  

And refE  is the constant energy of the biped along the limit cycle trajectory of the system 

corresponding to a fixed ground slope. A simple calculation shows that 

    

. .

.

( )

( )

ref

T

ref

S E E E

E E q Bu
−

= −

= −

 

Where the second equality comes from the usual passivity or skew-symmetry property of 
rigid robots. Based on the above deduction, we design the following control scheme 

 
.

1( )refu kB E E q
−

−= − −  (12) 

Where k  is a scalar gain, and we can easily get the results as  

 

2. .

2 0S k q S= − ≤  (13) 
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So the function S works just as a Lyapunov function. Thus the total energy of the biped will 

thus converge exponentially toward the reference between impacts. At the impact the 

storage function will exhibit a jump discontinuity. It follows from standard results in hybrid 

system theory that, if less than its value at the previous jump, then the total energy will 

converge asymptotically to the reference energy as t → ∞ . 

5.3 Some results with energy tracking  

Figures in this section will show that the addition of the total energy shaping control u
−

 

results in both an increase in the basin of attraction of the limit cycle and increased 

convergence to the limit cycle. This has important consequences for robustness to external 

disturbances as well as uncertainty and variations in the ground slope.  
 

         

A

 

Fig. 14. Convergence to the limit cycle (a)without total energy control (b)with total energy 
control  

With total energy control, the biped trajectory converges to the limit cycle in one to three 
steps depending on the initial conditions whereas without the total energy control 
convergence is much slower, on the order of ten to twelve steps just as Figure 3 shows. And 
Figure just presents the variation process with the energy explanation variation graph. The 
whole detailed convergence process will be identified in the figure. The value of the storage 

function, S , shown in Figure 14, will decrease at each step, the implication of this is that the 

trajectory after each step moves closer to the limit cycle on which the energy equals the 
reference energy. 
Seen from figure 14 (a), the initial condition lies outside the region to the limit cycle, and the 
robot will fall down with asymmetry gaits under this condition. By the idea of control, the 
trajectory of the gait will be brought back to the stable limit cycle only within few steps, this 
proves that, with control, an increase occur in the basin of attraction of the limit cycle.                  

The convergence speed and convergence efficiency of the control will be influenced by 

scalar k  in great degree. With the simulation, a result comes out that it is not right for k  to 

be the larger the better, virtually this feedback coefficient will possess a more complex 

variation during the whole control process. That is to say, there exists an “optimal” choice as 

well as appropriate value for k  beyond which the stability is degraded, the choose value of 

this k  will be preferable important for the control of the limit cycle. 
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5.4 Slope variation  

As a further illustration, the performance of the system when the slope exhibits a sudden 

change will be presented. The control input is determined by the local slope, which is the 

ground slope at the stance leg. The local slope can be determined by the two–point contact 

condition which occurs at the moment of contact of the swing foot with the ground thus for 

a discrete slope change. Figure 8(a) shows that, without the total energy control, the robot is 

not able to maintain a stable gait. Figure 8(b) shows that, with the addition of the total 

energy based control u , the biped successfully makes the transition between slopes. During 

the course of simulation, we can come to the conclusion that refE  will be the decisive factor 

to the control, and it must correspond to certain angle φ , otherwise the control strategy will 

be out of function. 
 

9φ = c
7φ = c
5φ = c

3φ = c

1φ = c

 
Fig. 15. The limit cycle corresponding to different slope angle using the control u  with 

0 3φ = c  

Figure 15 just addresses the detail for the limit cycle corresponding to different slope angle 

using the control u  with the initial 0 3φ = c . The control idea is thus to make the robot vary 

at different limit cycle to keep stable walking gaits when facing different suddenly slope 

change and in addition this control idea is shown to be effective in generating new stable 

walking gaits for biped robots. Definitely the total energy control increases the basin of 

attraction but there are still limits to the range of slope variation as well as disturbances that 

the biped can tolerate. Increasing the basin of attraction further would improve the 

applicability of these passivity based ideas. 

6. Control of average progression speed with two actuators   

Energy based control slope invariance law just discussed above works pretty well in some 
occasion while the law neglects the truth that actually the speed of walking gaits should be 
considered in some degree in passive walking when creating steady gaits. In order to solve 
the problem, so called average progression speed control strategy which Goswami has 
proposed will help us to establish the relationship between the average speed of progression 
and the target energy to improve the robot performance.   
This control strategy for the robot is on the basis of the principle that the total energy of 
robot appeared constant regardless of its downward descent. The control law tries to drive 
the robot toward the reference energy corresponding to the energy of the limit cycle on 
given slope. The assumption is that, for the given slope, a passive limit cycle exists and have 
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already been identified. Although this may appear extremely constraining at first, while the 
advantage is that gaits can be generated which don’t exist for the un-powered robot. 

The total mechanical energy E of the robot can be expressed as
.

T0.5E M PEθ θ= +$ . The 

power input to the system is the time rate of change of the total energy, 
.

TE S uθ= $ , for a 

passive cycle 0u =  and the reference energy * * *( , )E E θ θ= $ . A simple damper control law of 

the form 
.

S u β θ= − is used here. The power input to the system is therefore 
.

TE θ β θ= − $ . For 

a positive definite β  the quantity Tθ β θ− $ <0, which means that the robot’s kinetic energy 

decreases monotonically. In order to simplify the choice, specify that the control law should 

attempt to bring the current level of the robot to the reference energy level at an exponential 

rate. 
The hip actuator and the actuator in the supporting leg at the support of leg are available at 
any instant. This section will have a study on the performance of the control law with both 
actuators. 

6.1 Control of two actuators 

The idea on the control of average progression speed will be discussed as the following. The 

average speed per step is given by 
2 sinl

v
T

α
=  , the thk step target energy is tar

kE , which is 

equal to that the 1thk −  step with an added term. And this target energy is proportional to 

the error in speed. tar
kE  is expressed as          

 tar
kE = 1

tar
kE − + 1( )tar

kv vη −−  (14) 

η  is a weighting factor between energy and speed. A simplification is obtained by imposing 

that the hip torque be proportional to the ankle torque with a proportionality constant of ,μ   

thus [1 ]T Hμ μ μ= , while the relationship of the actuator between hip torque and ankle 

torque can be assigned at any rate that we expect. 

. .

. .

( )
(1 )

(1 )

0

tar
k

s n

H s n

E E
if

otherwise

λ θ μ θ ε
μ θ μ θ

⎧ ⎫− −
+ ≠⎪ ⎪⎪ ⎪= ⎨ ⎬+ −

⎪ ⎪
⎪ ⎪⎩ ⎭

Z
 

With the implementation of the control law corresponding to two actuators, some 
satisfactory control results have been acquired and the strategy has been proved to be valid 
in tracking reference energy considering the influence of speed.   
Figures 16 will show us some detailed message about the process that through the two 
actuators control in tracking the limit cycle. It will just take the robot about 30-40 gaits to 
walk into the limit cycle that we appoint. The collision with the ground is avoided by means 
of the retraction of the mass-less shank of the swing leg. In general, if the inclination of the 
upward slope is increased, the robot tends to lengthen the step length in order to maintain 
the specified speed. The same control law can be easily extended to control the robot on a 
terrain with a series of plane surfaces with changing slopes.   

As shown in Figures 17, the desired speed is reached for a large range of values of λ . As the 

target speed is less than that corresponding to the passive limit cycle, the robot tries to 

lengthen its step length and the step period to maintain a constant average speed.  
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Fig. 16. Phase plane representation of the energy tracking control with two actuators added 
on the hip and the ankle together. The right will be the average speed and the number of 
steps corresponding to the two actuators control  

 

5λ =
10λ =

20λ =

50λ =

100λ =

      

5λ =

10λ =

100λ =

 
 

Fig. 17. Phase plane representation of the energy tracking control with respect to the 

different parameter λ using two actuators. The average speed and the number of steps with 

respect to the different parameter λ using two actuators  

6.2 Some discussion about parameter variation   

With the control, we find that the average progression speed control strategy can works 

pretty well in solving some more difficult walking gait with the appropriate parameter 

variation. Control of the average speed with two actuators ensures the convergence to an 

active cycle for a reasonably specified speed. The control law has been studied in detail by 

changing one parameter at a time while holding the others fixed. The parameters concerned 

are , ,λ μ η , 0
tarE . The following simulations are carried with for the following  parameter  as 

0.0524, 0.2710, 153 ,

5, 5, 2, 5 / .

ref

tar

E J

V m s

φ α

λ μ η

= = =

= = = =  
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ǌ The desired average speed is reached for a large range of values ofǌ 

μ  
For higher values of  μ , it will cause a bifurcation leading to asymmetric 

or 2-periodic gaits. In such a gait the average speed oscillates around the 
target speed, the amplitude of this oscillation increases with μ  

η  
Will slightly affects the speed of convergence to the cycle. And when it is zero 
the target energy is not updated at every step so for a target energy equal to the 
reference energy the robot converges to the passive limit cycle. 

0
tarE  

Affects the rate of convergence to the target speed. The target energy is modified 
at every step and we can’t predict a priority to what final energy the robot will 
converge. 

Table 1. Effect of , , ,λ μ η  0
tarE  

 
 

μ  ( )α c
 

( / )v m s
 

( )T s
 

( )finalE J  

5 9.9240 0.5 0.6890 148.9767 

8 10.5769 0.5 0.7339 149.2529 

 
10 

10.8739 
and 

10.4443 

0.5222 
and 

0.4778 

0.7222 
and 

0.7584 

149.8433 
and 

149.9025 

Table 2. Effect of μ on the control performance. The table corresponds to simulations on a 

3c slope with parameters: 5λ = , 153tarE J=  , 5η =  

The most curious effect of Ǎ is that for higher values, it will cause a bifurcation leading to 
asymmetry or 2-periodic gaits just shown as the data of Table 2. In such a gait, the average 
speed oscillates around the target speed, and the amplitude of this oscillation increase with 
Ǎ. And figure 15 will show us the limit cycle under the so called 2-periodic gaits state. At 
this time, the gaits just locate in the limit cycle and is about to get away from this stable state 
if some slight disturbances working on the gaits. In addition, when getting out of this state, 
the walking gait of the robot will go into chaos and then slip down. Figure 16 is the graph of 
the average speed and the number of steps with 2-periodic gaits state. With different initial 
energy value, the graph of average speed and the number of steps will be different due to 
the sensitivity of chaos. 
Furthermore, some more attention should be paid to the work of how to identify the 

boundary of the basin of attraction and how to determine the favorable initial conditions 

effectively. In spite of all those stated in the paper, there still exists some other problems 

such as the robot’s behavior is heavily influenced by the impact model which the paper 

proposed is not the only available impact model. How to model some new realistic 

foot/ground impact models possessing such a manner that reasonable perturbations of the 

model parameters don’t dramatically change the gait, should be considered. 
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Fig. 18. Phase plane representation of the energy tracking control using two actuators with 
2-periodic gaits state. 

 

 

Fig. 19. The average speed and the number of steps corresponding to the two actuators 
control with 2-periodic gaits state 

7. Influence of robot parameters on the gait 

This section presents the effects of continuous change of the parameters φ , μ  and β  on the 

gait of our compass-like biped robot. First we discuss the limitations of al linear model in 
predicting the robot’s long term behavior. Next we point out the general features of the 
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symmetric gaits of the robot-this section mainly consists of a graphical presentation. When 
one of the parameters exceeds a certain limiting value, we observe bifurcation of the 
dynamics which we discuss subsequently. Finally we focus on the features of chaotic 
behavior of the robot gait. 

7.1 Symmetric gait 

This section presents the evolution of pertinent gait descriptors as functions of the three 
parameters during the symmetric gait regime of the robot. As opposed to a parameters 
which can be directly altered , a gait descriptors is an observed(measurable or computable) 
quantity which cannot be modified directly but is indirectly influenced by the parameters. 
The gait descriptors that appear the most meaningful to us for this study are the state 

variables q, the half inter-leg angle at touchdown α ,the step period T ,the average speed of 

progression v ,the total mechanical energy of the robot ,E and the loss of mechanical energy 

EΔ  due to impact. 
The evolution of the gait descriptors is presented  in the form of so-called bifurcation. 
Figs.5(a) to 5(f), 6.(a) to 6.(f) and 7(a) to 7(f). present the evolution of the gait descriptors that 

appear the most meaningful to us for this study are the state descriptors T , α , Sθ$ (at the 

beginning of a step), v , E  and 
E

E

Δ
 as functions ,respectively ,of the parameters φ  and μ  

but decreases with β .The results show that both the step period and the step length of the 

robot .The overall behavior of the robot can be summarized qualitatively as follows: 
 

 T L E v 

φ ↗ ↗ ↗ ↗ ↗ 

μ ↗ ↗ ↗ ↗ ↗ 

β ↗ ↗ ↗ ↘ ↘ 

 

Some interpretations are in order here. Let us consider the evolution of total mechanical 

energy E  of the robot in response to parameter changes. As the ground slope φ  increases 

the potential energy PE  of the robot available per step slightly increases. The kinetic energy 

KE ,being roughly proportional to 
2θ ,increases also, see Fig.5(c). As a consequence the 

total energy E , Fig.5(e). An increase in β  results in a lowering of the center of mass of the 

robot, which lowers PE  available per step and increases the step period . The latter results 

in a decreases in the average velocity of the robot (Fig.7 (d)). The increase in KE  caused by 

the small increase in the sθ$  cannot compensate for the decreases in PE  and consequently 

lowers E . Conversely, an increase in μ  , which results in raising the center of mass of the 

robot , increase E . 

It is interesting to look at the effect of a parameter change on the evolution of entire limit 

cycles as shown in Fig.s5(g), 6(g) and 7(g). In response to an increase in φ  the limit cycle 

expands along both axes, see Fig.5(g), implying an increase in the range of joint angle and 

joint velocity .The limit cycles are compensated along the joint velocity axis for an increase 
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in the parameters μ  and β  (Figs .6(g) and 7(g)). A shorter reach of the limit cycle along the 

joint velocity  axis means a smaller maximum joint velocity but dose not necessarily mean a 

slower robot . We see in Fig6 (d) that an increase in μ  is associated with an increase in the 

average speed of progression v . 

7.2 Chaotic bifurcation 
7.2.1 Period-doubling bifurcation 

We noticed in Figs.5 and 6 that for the range of variations of the parameters considered in this 

study an increase in φ and β cause a bifurcation in all the gait descriptors. Bifurcation was also 

observed for higher values of Ǎ especially when coupled with higher values of φ (Fig.7). 

As a consequence of the period-doubling bifurcation the limit cycle becomes 2-periodic and 

the robot gait becomes asymmetric with a shorter step and a longer step. The occurrence of 

bifurcation is shown in Figs.5,6,7 by the emergence of two branches in the curves, each 

associated with one of two dissimilar steps and describing its characteristic variables. Since 

bifurcation involves the state of the system and since all the gait descriptors, in turn, depend 

on the robot states, the occurrence of bifurcation is simultaneously manifested in all the gait 

descriptors. 

On further increasing the parameters , the robot gait may experience a further period-

doubling, giving rise to a 4-periodic limit cycle . This phenonmenon , repeated ad infinitum, 

is called a period doubling cascade and is recognized as one of the possible routes leading to 

chaos. Regardless of the parameter considered, we observe that the successive period 

doubling occur after progressively smaller intervals of parameter variation. This is expected 

in view of general results on period doubling casacades. 

Period doubling cascades leading to chaotic behavior have already been observed for 

passive planar hopping robots which possess a smaller dimension than that of the compass.  

2n-periodic gaits, termed as “limping gaits,” were observed and analyzed for hopping 

robots. 

In Fig.9 we introduce a novel way of capturing the behavior of the biped during a period 

doubling cascade ensuring from the parameter φ (other parameters are kept constant at 

2, 1μ β= = ). The figure plots the first plots the first return map of nsθ . For a 1-periodic 

robot gait nsθ  is the same in every step. This gait is therefore represented by a point on the 

45° line. 
As we change the ground slope, this point moves along the 45° line from the right-hand top 
corner of  Fig.9, as indicated by the arrow. 

The first period doubling occurs at 4.38φ °=  when the gait turns 2-periodic and is therefore 

represented by 2 points. Just after the first bifurcation the 2 representative points differ only 

slightly from that of the 1-periodic gait from which they originate. The two steps are 

therefore very similar to the steps of the steps of the symmetric gaits. On further changes , in 

the parameter the two representative points move away from the 45°  line along the two 

branches shown by dotted lines in Fig.9. It follows that one step length is slightly longer and 

the other slightly shorter than those of the corresponding symmetric gait. As we increase the 

slope the longer step is further elongated and the shorter step further shortened. 

This continues until a second period doubling occurs at 4.93φ °=  when each branch gives 

rise to two sub-branches. In this 4-periodic gait the 4 different steps are visited in the same 
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order with a longer step always followed by a shorter step. The last clearly identifiable 

bifurcation occurs when 5.02φ = °  as the robot gait becomes 8-periodic. 

 

 

Fig. 20. First-return map of 2n -periodic steady gaits 

The period doubling cascade may also be observed using phase plane diagrams. The phase 
plane diagram for a symmetric gait. which is a single-loop closed trajectory repeated after 
two robot steps. During one step the considered leg is in the swing stage and during the 
following one, it is in the support stage. Since the gait is symmetric, the robot legs are 
indistinguishable and the phase plane cycles of the two legs are identical. 
In case of a 2-periodic gait, since all state variables are identical after every two steps, the 
phase plane limit cycle associated with one leg is still a single-loop closed trajectory 
repeated after two robot steps, see Fig.21(a). However, since the gait is asymmetric, the limit 
cycles associated with the legs are no longer identical. 

In case of 2n -periodic gaits, all the state variables repeat themselves after every 2n  steps. 

The phase plane diagram associated with one leg is therefore a 12n− -loop closed trajectory 

repeated after every 2n  steps, distinguishable from the phase diagram of the other leg. The 

visual inspection of the phase plane diagrams of the 4-periodic and the 8-periodic gaits (Fig. 

21(b) and 21(c), respectively) correctly indicates that they resulted from the bifurcation of 

respectively the preceding 2-periodic and the 4-periodic gaits.  

7.2.2 Chaotic gaits 
The chaotic gait is an extreme case of the asymmetric gait and is characterized by a complete 
disappearance of order in a system. During a chaotic gait on a given slope, the states, and 
consequently the gait descriptors, of the biped robot never completely repeat themselves. 
Chaotic gaits are represented in the bifurcation diagrams by a continuous distribution of 
points. We explicitly show this on Figs.22(a) and 22(b) and omit them in the other 
bifurcation diagrams for the sake of clarity. 
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                                       (a)                                                                              (b) 

 

(c)                                                                             (d) 

 

Fig. 21. Phase plane limit cycles of a) 2-periodic steady gait( 4.38φ °= ),b)4-periodic steady 

gait( 4.93φ °= ), c) 8-periodic steady gait( 5.02φ = ° ) d) chaotic gait associated with one leg, 

100 robot steps, ( 5.2φ °= ). For all the 4 subplots 2, 1μ β= = . 
 

The gradual progression of the robot gait to the chaotic regime is well depicted in the first 

return maps of , 1 ,( )ns k ns kfθ θ+ = shown in Figs. 11(a) to 11(d). When 5.02φ °= , the gait is 8-

periodic and its first return map consist of 8 points. At 5.05φ °= ,the first return map still 

consists of 8 distinguishable clusters of points(Fig.11(a)). Through multiple period doubling 

bifurcation this 8-periodic gait gives rise to a 2n -periodic gait with a large n . This gait will 

still preserved and nsθ  is still always followed by a small one. The same property is still 

preserved, since a large nsθ  is still always followed by a small one. The same property still 

holds for 5.13φ °= , but in this case the first return map appears as a continuum of 

points(Fig.11(c)). We are therefore very close to the “broad-band frequency” characteristic 

typical of chaotic behavior. Finally, when 5.21φ °= , we observe that predictability and 

periodicity have been completely destroyed, since a large nsθ  can be followed by another 

large one. The layered structure of the strange attractor can also be guessed from the first 

return map. 
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                                       (a)                                                                              (b) 

 

                                       (c)                                                                              (d) 

Fig. 22. First return map of nsθ : a) 2n -periodic gait, n  large( 5.05φ = ° ), b) 2n -periodic gait, 

n  very large( 5.10φ = ° ), c) approaching chaotic gait ( 5.13φ = ° ), d) chaotic gait 

( 5.21φ = ° ).For all the 4 subplots 2, 1μ β= = . 

7.2.3 Local stability of the limit cycle 

One way to investigate the orbital stability of a limit cycle is by means of studying the 
stability of its fixed point in the Poincare map. As a natural choice studying of the Poincare 
section of the compass biped we take the condition that the swing leg of the robot touches 
the ground. For two successive touchdowns of the same leg the states of the robot can be 
related as 

 1( )k kx F x +=  (14) 

Where [ , , , ]Tns s ns sx θ θ θ θ= $ $  is the 4-component state vector of the robot. 

For a cyclic phase trajectory the first return map is fixed point of the mapping. On a cyclic 

trajectory, therefore , 1k kx x +=  and we can write, * *( )x F x= .For a small perturbation *xΔ  

around the limit cycle the nonlinear mapping function F  can be expressed in terms of 
Taylor series expansion as 
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 * * * *( ) ( ) ( )F x x F x F x+ Δ ≈ + ∇ Δ  (15) 

Where F∇  is the gradient of F  with respect to the states. Since *x  is a cyclic solution ,we 

can rewrite Eq.2as 

 * * * *( ) ( )F x x x F x+ Δ ≈ + ∇ Δ  (16) 

The mapping F  is stable if the first return map of a perturbed state is closer to the fixed 

point. This property can be viewed as the contraction of the phase eigenvalues of F∇ at the 

fixed point *x  are strictly less than one. From Eq.3 we write * * * *( ) ( )F x F x x x∇ Δ ≈ + Δ −  

where * *( )F x x+ Δ  is the first return map of the perturb one state * *x x+ Δ . As it is not 

practical to analytically calculate perturb one state at a time by a small amount and observe 

its first return map. Repeating this procedure at least four times (once for each of the four 

states ) we obtain an equation of the form 

 ( )F τ∇ = Ψ  (17) 

When φ  increases from 0.0524 to 0.0824, the variation of eigenvalues are as follows: 

 

 

When 0.0908φ = , the limit cycle is as follows: 

 

 

When μ  increases, the variation of the first, the second and the fourth eigenvalues are as 

follows: 
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When β  increases, the variation of the first, the second and the fourth eigenvalues are as 

follows: 
 

 

When μ  and β  increase, the real parts of the first and the second vary from negative to 

positive. It shows that the system varies from stable to unstable. 

7.2.4 Chaotic control laws 
Here we introduce a simple control law which was inspired by the passive energy 
characteristics of the compass model. As the robot walks down on a slope its support point 
also shifts downward at every touchdown . As it loses gravitational potential energy in this 
way its kinetic energy increases accordingly. In a steady walk this is exactly the amount of 
kinetic energy that is to be absorbed at the end of each step by the impact. If, at every 
touchdown we reset our potential energy reference line to the point of touchdown, the total 
energy of the robot appears constant regardless of its downward descent. We formulate a 
control strategy for the robot based on this principle. The control law, aware of this 
characteristic energy of the passive limit cycle, called the reference energy in this section, of 
the robot on a given slope tries to drive the robot toward it. 

8. The introduction of anti-phase synchronization 

Observing from the human gait biped, symmetry is an important indicator of healthy 
gait[6]. The presence and nature of asymmetry in gait can be a useful diagnostic tool for the 
clinicians. Symmetry can be measured through the use of so many kinetics variables such as 
acceleration, force, moment, energy, power, step period and step length. Is it possible to 
apply this obviously symmetry property of healthy gait in human walking into the design of 
the robot’s gait and explicitly explain the efficiency of human and animal locomotion more 
in detail will be a new challenge. Some new control strategy of “anti-phase synchronization” 
has been presented here to reduce the complexity such as the property of nonlinearity and 
strong coupling of this hybrid dynamic system. To the best of our knowledge, it is the first 
time to introduce the concept of synchronization to explain and control the motion of 
passive biped theoretically.    
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For a perfectly symmetric gait a properly synchronized twin trajectories from corresponding 
joints should be identical. Through the control and the reduced presumption of the collision 
model, the strong coupling between two legs has been successfully erased. A controller 
which is able to solve the synchronization problem in such a way that the pendulum reaches 
the desired level of energy and they move synchronously in opposite directions has been 
presented and in addition the construction of new Lyapunov function and simulation 
results prove the validity of the strategy. The method stated in the paper is helpful to 
practical application of the design of the robot’s gait.  
The paper is organized as follows. First we formulate the problem statement. Next we 
analyze the behavior of compass-like biped. Then the symmetry property in gait biped and 
the possibility to the application of the anti-phase synchronization have been discussed in III 
as well as the problem of erasing the coupling between two legs. The main contribution of V 
is the construction of Lypunov function, the proposed controller and also the local stability 
analysis.  Simulation results stated in IV just verify the effectiveness of the proposed 
method. The conclusions and future work are formulated in the final part.  

8.1 Some symmetry property in gait biped   

One of the most important properties in steady gait biped is that there exists some kind of 
symmetry with the variation of angle position and angle velocity. 
The comparison relationship on the angular position of the two legs during steady periodic 
gait cycle has been presented in Fig. 3. It is obviously that angular positions of the two legs 
are asymmetry. The gait biped walking works as a double pendulum, while the stance leg 
has a comparative big difference with the swing leg. This can be explained that the stance 
leg experiences a relative compelled motion with the action force coming from the swing leg 
as well as from gravity. And in addition, the coupling degree of the two legs varies at 
different instant. 
Presume the intersection point between two legs in Fig. 3 and the middle point with the two 
culmination value within one cycle of the swing leg as the symmetry point respectively, we 
get the asymmetry degree figures about two legs. 
Observing from Fig. 4(a), different hip mass will correspond to the result that the larger the 
hip mass is, the higher the symmetry degree is. That is to say, the coupling effect between 
two legs will be influenced by the hip mass in great degree. With Fig. 4(b), different Ǎ will 
correspond to the different error about the angular position and angular velocity. The 
conclusion is very important for it will help in modifying the gait biped model when 
choosing the parameter and adjusting the gait biped cycle. As stated above, Figures 4(a) and 
4(b) just provide us a kind of symmetry. While for the coupling of the two legs, it is 
impossible to construct the same ideal sub-systems to fulfil traditional master-slave 
synchronization corresponding to the dynamic system of the robot. The most direct way is 
to erase the coupling of the two legs and construct the subsystem of the swing leg and 
stance leg respectively, observing their position and the angle velocity relationship.  

8.2 Anti-phase synchronization  

In order to make the system to reach a kind of synchronization, the complex dynamic 
equation should be simplified as: 1. erase the coupling of two legs. 2. construct the new 
collision model between the swing leg and the ground. 3. add the control with the least 
energy consumption at appropriate instant as impulse force to imitate the behaviour of 
human gait. The paper will pay great attention to the solution of the first problem. 
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                                         (a)                                                                              (b)                             

Fig. 23. The asymmetry degree Figures about two legs with different symmetry point (a) 
inter-section point between legs (b) centre value with two culmination within one cycle of 
the swing leg   

By applying the idea of “inverse dynamic control”[10], make both the gravity torque act on 
the robot and the added control torque be equivalent to a gravity action, then a closed loop 
linear system with the same effect on the robot can be obtained. The advantage of the idea is 
that it can help adjust the gait distance and also the period corresponding to the forward 
varied velocity at any instant. Through the control, the swing leg acts as the single 
pendulum and the stance leg works as the inverted pendulum, the dynamic property of the 
two legs are the same except the analysis of the equilibrium point and the stability.   
In addition, a reasonable presumption can be provided that there exists no collision with the 
swing leg and the ground with respect to this kind of pendulum walking. That means with 
the algebra constraint added, during the cycle of gait biped, the tip of the swing leg slides 
with the ground all the time and no friction will be considered when the robot moving 
forward. The construction of the new collision model can be solved by the consideration of 
knees which is not the topic of this paper. It is reasonable for us to eliminate the impact of 
collision model here for the impact can be solved by some idea such as time delay set and 
other counteract equipment when designing the real robot. Under this condition, the phase 
graph of the gait will be a perfect circle, at the end of each gait cycle, the velocity of the leg 
will be set zero and at the same time preceding the velocity conversion.   

8.3 Erasing the coupling 

There exists strong coupling action between θns and θs  when analysing the dynamic 
equation. Erasing the coupling and construct the same sub-system with the idea of “inverse 
dynamic control”, then obtain a closed loop linear system. For the non-linear equations (2) 
of our biped, as the stance leg is about to leave the ground, the anti-phase control is induced 
to the equation with the form                                 

 1( ( ) ( , ) ( ))u B M q a C q q q g q−= + +$ $ $  (18) 

Reduces the system to the decoupled double integrator system  
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..

q a=  (19) 

Joint angles can then be controlled independently using a control law  

 p da K q K q r= − − +$  (20) 

Where pK and dK are diagonal matrices with elements consisting of position and velocity 

gains, respectively. For a given desired trajectory  

 ( ( ), ( ))d dt q t q t$  (21) 

We can choose the input ( )r t as  

 ( ) ( ) ( )d d d
p dr q t K q t K q t= + +$$ $  (22)    

The desired trajectory can be obtained as cubic trajectory as shown in [11] if the initial and 
final states of the trajectory are known. Thus a kind of synchronization can get with the 
walking trajectory and the given trajectory. 
Simulation demonstrates that the rule for the swing leg is similar with the simple 
pendulum, during the process of anti-phase synchronization control, keep the dynamic state 
of the swing leg and make the stance leg act with the same rule, then  

 

sin( )

sin( )

ns

s

g

kla
g

kl

θ φ

θ φ

⎡ ⎤− +⎢ ⎥
= ⎢ ⎥

⎢ ⎥− +⎢ ⎥⎣ ⎦

 (23)                          

k  is the parameter representing the mass centre of the pendulum. With the same parameter 

described in section 2, the distance between the hip and the mass centre is b , the distance 

between the foot and the mass centre is a , where 
1

k
β

β
=

+
,

b

a
β =  .  

The dynamic equation of the robot can be divided into two independent parts, and both of 
them possess the same expression as      

 sin( ) 0ns ns

g

kl
θ θ φ+ + =$$  (24)    

 sin( ) 0s s

g

kl
θ θ φ+ + =$$  (25) 

8.4 Control synchronization  

For global application of the synchronization method, introduce the new coordination  

t
ns nsθ θ φ= +  

t
s sθ θ φ= +  
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With the control strategy stated above, equations of the two legs have been given as (9) and 
(10) with the same dynamic control rule. Assume that both the legs possess the point mass 
m, and then the virtual mechanical energy of the robot is   

 

2 221
( ) ( ) (1 cos )

2

(1 cos )

t t t
ns s ns

t
s

V m kl mgkl

mgkl

θ θ θ

θ

= + + −

+ −

$
 (26) 

Obviously 0V ≥ , appoint V as the Lyapunov function of the system, for the collision has 

been avoided here, thus the system is conservative, then 0V =$ . Seen from equation (11), the 

mechanical energy of the system is constant, this proves that the dynamic behaviour of the 

two legs can come to the state of anti-phase synchronization; expected ideal symmetry 

property appears here. 
Synchronizing the two dynamic systems with the idea (12) so called mutual direction 
coupling synchronization.     

 

.

( ) ( )

( ) ( )

x f x K x x

x f x K x x

− −

− − −

⎧
= + −⎪

⎨
⎪ = + −⎩ $

 (27)                          

Where ( )K x x
− −

− , ( )K x x
− −

− is the mutual coupling synchronization control item of the two sub-

systems. In addition, it will be adjusted different for the purpose of improving the 

synchronized precision and enhancing the synchronized velocity.  

1 2( , ,..., )nK diag k k k= is so called coupling  length, where 2n =  here. Therefore the control 

objective can be formalized by the following relations  

 lim( ) 0t t
ns s

t
θ θ

→∞
+ =  (28) 

 lim( ) 0t t
ns s

t
θ θ

→∞
+ =$ $  (29) 

Synchronized time of the system should be considered   here and two legs would come to 
the state of anti-phase synchronization within one cycle with the control. In order to fulfil 
the control of the gait biped, two main problems are discussed as follows: 1. stability with 
which the robot will not to slip forwards or downwards corresponding to the gait biped in a 
2-dimension plain. 2. the gait should satisfy any given target velocity and gait distance as 
well. To reach this kind of target control goal, an applicable method is to control the 
amplitude of the swing leg with energy consumption consideration. 
Add the new controller which is related to in system (9) and (10) 

 q a Bu
− −

= +$$  (30) 

Where 

1 0

1 1
B
− ⎡ ⎤

= ⎢ ⎥−⎣ ⎦
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 1 2

1 2

sin( ) ( )

2 2 sin( ) 2 ( )

t t t t t
ns ns s ns s

t t t t t
ns ns s ns s

H
u

H

γ θ λ θ θ λ θ θ

γ θ λ θ θ λ θ θ

− ⎡ ⎤− − + − +
= ⎢ ⎥

− − + − +⎢ ⎥⎣ ⎦

$ $ $

$ $ $
 (16) 

Where 
. .

*( , ) ( , ) 2ns sns sH H H Hθ θ θ θ= + − . 1λ , 2λ  is the ratio coefficient, which decides the 

converging speed of anti-phase synchronization; γ is positive gain coefficient.  H represents 

Hamiltonian function of each pendulum-like leg and the designed controller (16) can swing 

the pendulum up to the desired energy level *H in such a way that the pendulum-like two 

legs move in opposite directions. 

Theorem:  For any given controller presented as (16), if satisfies *
2 2Hλ > , then the set 

t t
ns sθ θ= − , t t

ns sθ θ= −$ $  is globally asymptotically stable with respect to the controlled system 

(15).  
Proof: Construct the virtual Hamiltonian function of each pendulum-like leg  

 2 21
( , ) ( ) (1 cos )

2
t tH m kl mgklθ θ θ θ= + −$ $$ $  (31)     

The control objective can be formalized by the following relations 

 *lim ( ( ), ( )) ,t t
ns s

t
H t t Hθ θ θ θ θ

→∞
= =$  (32) 

The relation implies that the periods of oscillations of each pendulum are identical 
(frequency synchronization). 

Using the control law (16), analyses the equations of the closed loop system with respect to 

the variable t t
ns sx θ θ= +  , then  

2
2 1( ) sinm kl x x xλ λ+ +$$ $  

 *
2[ ( , ) ( , ) 2 ]t t t t

ns ns s sH H H xγ θ θ θ θ λ= − + + −$ $ $  (33) 

Define a new Lyapunov function to the whole system 

2 2
2

1
( ) (1 cos )

2
V m kl x xλ= + −$  

(2 cos cos )t t
ns smgkl θ θ+ − −  

Obviously  0V ≥  

2
2( ) sinV m kl x x x xλ= +$ $ $$ $  

* 2
2[ ( , ) ( , ) 2 ]t t t t

ns ns s sH H H xγ θ θ θ θ λ= − + + −$ $ $  

for ( , ) 0t t
ns nsH θ θ ≥$ , ( , ) 0t t

s sH θ θ ≥$ , if *
2 2Hλ > , 0V ≤$ . Then the set 0x =  is globally 

asymptotically stable. 
From this observation one can make a few important conclusions. First, the uncontrolled 
system can exhibit synchronous behaviour. Clearly, it follows that the Hamiltonian of each 
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pendulum tends to a common limit. However, due to energy dissipation the limit value 
depends on the initial conditions and particularly, if one initializes the pendulum from an 
identical point, the oscillations will decay. Therefore the uncontrolled system exhibits a 
behaviour which is very close to the desired one, and there is one thing to the controller-to 
maintain the energy level    for each pendulum, and this problem will be useful for the 
further research.  

As predicted by the theorem, there is a set of zero Lebesgue measure of exceptional initial 

conditions for which the control objective can not be achieved. For example, if one initiate 

the system at the point where 0,t t
ns sθ θ= = 0t t

ns sθ θ= =$ $  the anti-phase synchronization 

control u  based on the energy can’t drive the system away from the zero condition, 

however from practical point of view, it is not difficult to modify the controller to handle 

this problem.  
Presume the system has been in the condition of anti-phase synchronization, that is, the 
stable point of the closed loop system, the limit dynamics of each pendulum is given by the 
following equation 

2 *( ) sin( ) 2 ( , )t t t tm kl mgkl H Hθ θ γ θ θ⎡ ⎤+ = − −⎣ ⎦
$$ $  

And therefore the control objective  

*lim ( , )t t

t
H Hθ θ

→∞
=$

 

is achieved. 

8.5 Simulation and discussion   

To verify the effectiveness of the proposed method, we conduct the following simulation 
results.    
 

  
                                              (a)                                                                        (b) 

Fig. 24. Anti-phase synchronization of two legs in the controlled system with different initial 

condition ( , , )ns sθ θ γ (a) (0.01, 0, 10)   (b) (-0.05, 0.05, 10)       

The limit cycle under anti-phase synchronization is given by Figure 5 and its Mechanical 
energy of the robot under anti-phase synchronization is just depicted by Figure 24. It is 
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clearly that  the anti-phase synchronization can enlarge the convergence region of the limit 
cycle and it appears the typical double-pendulum property.  

Figures 24 present the results of the anti-phase synchronization based on the energy control.  

With the anti-phase synchronization control, the angular position and angular velocity of 

the two legs can reach the synchronization with the same magnitude and the opposite 

direction at any moment. Simulation results prove the validity of the control method. In 

addition, as simulation demonstrates, with different initial condition of the gait biped will 

be around zero as well as any given biped value and with the control it can converge to the 

state of anti-phase synchronization corresponding to any given target energy. The 

converging speed depends on the controlled parameter 1 2, ,γ λ λ . Virtually the higher the 

value of the parameters are, the faster the converging speed is. The consequence is valid 

with the consideration of both the constraint of the manipulator and the appropriate 

maximized sustaining force added on the system. In practice, for not using the initial 

condition as it does in simulation, so the effect of the control will be better in controlling the 

practical robot.   
In this work, we considered the problem of controlled synchronization of the decoupled two 

legs based on the compass-like biped model. Some new method so called “anti-phase 

synchronization” has been presented to explain the perfectly symmetric gait typical of healthy 

gait in human walking. The paper also proposed a useful controller which is able to solve the 

synchronization problem in such a way that the pendulum reaches the desired level of energy 

and they move synchronously in opposite directions. In addition, the construction of Lypunov 

function, the local stability analysis to the proposed controller as well as the presentation of 

simulation results have also been stated and proved the validity of the method.  

For the next step, the design of a more efficient new collision model and also the further 

analysis about the added simplified impulse force under new condition will be helpful to 

practical application of the design of the robot’s gait. 

9. The description and assumption on he model with knees  

Next, we will extend the model to the new one with knees, and the state of the straight 

direction of the gait biped will be equivalent to the one of the compass-like gait biped, then 

the equation can be united as the unanimous form discussed formerly the model shown as 

Figure 25, partially resemble Compass-like waker with point masse Hm , sm  and tm  

concentrated at the hip ,shanks and thighs respectively. The leg-length is L, which is divided 

into three parts: sl and tl , sl is the distance from the heel to the knee of m  and  sl  is the 

distance from knee to the hip center Hm ,in the meanwhile,both shank and thigh are divided 

by their respective sub-mass center sm and tm into two parts,with  sl  1a  and 1b ,with tl  

2a and 2b . 1 1 2 2, ,s t s tl l L a b l a b l+ = + = + =  As is depicted in figure 1, three key parameters 

are needed to describe the configuration of the walker, 1q , 2q  and 3q . 2α  is the total angle 

between the legs, which is defined as the “inter-leg angle”, and in addition is formed during 

the instant when both legs are touching the ground. The slope of the ground with the 

horizontal is denoted by the angle γ . 
The model has been made by the following assumptions: the total mass of the robot 

2 2C s t Hm m m m= + + is constant. For the sake of analysing the model, we separate the 
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motion into two phases, knee-free phase and knee-locked phases,whose boundaries are  
knee-strike and heel strike,that is the period between knee-strike and heel-strike is knee-
locked stage and the period between  heel-strike and knee-strike is knee-free stage.    
 

 

Fig. 25. Model of a  passive kneed-walker  on a slope 

 

 

Fig. 2. Stages  in  a  step  cycle  of  a  kneed-walker  

In order to simplify the analysis and calculation of The waking model, we shoud make some 
assumptions at first. All masses are considered point-masses and one leg are identical with 
the other. The gait consists of knee-free stage and a knee-locked stage: during the knee-
locked stage the robot behaves exactly like an inverted planar double pendulum with its 
support point being analogous to the point of suspension of the pendulum. During the 
knee-free stage, the stance leg remain straight while the swing-leg bends at its knee, which is 
different from the Compass-like walker. The robot is assumed to move on a horizontal or 
inclined plane surface. The impact of the swing leg with the ground is assumed to be 
inelastic and without sliding, so is the impact between the thigh and the shank of the swing 
leg, which marks the inception of the knee-locked stage. This implies that during the 
instantaneous transition stage the robot configuration remains un-changed, and the angular 
momentum of the robot about the impacting foot as well as the angular momentum of the 
pre-impact support leg about the hip are conserved. Thanks to angular-momentum 
conservation law, we can obtain some useful equations, by which some meaningful 
simulations will be made. 
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10. The applicable function on 3D model 

As we have discussed before, we have finished the model of the whole integral process of 
the gait biped, while for the sake of the real application, a 3D model- a more 
anthropomorphic model should be presented necessarily. 
The simulation of the 3D one is similar with the 2D model. Previously, when the roll angle 
and its derivative are set to zero, the equation gained from the support leg angle, non-
support angle and their derivatives will be share some characteristics with the 2D robot. 
Moreover, reversely if the two angles and their derivatives are set to zero, the model 
represented by the roll angle will behave like an inverted pendulum. So the comparison 
between 3D model in this special condition and the 2D model is a direct way to the correct 
of the modeling. 

The 3d dynamic walking bipedal model 

 

→

k

→

j

→

i

1θ

2θ

Hm

m

m
φ

 

Fig. 26. 3d dynamical bipedal walker 

The model consists of two legs connected by a pelvis, with pin joints at the hips[3]. The legs 

are point feet, shown as Figure.1. The same with 2D bipedal model, it is also equivalent to a 

double pendulum (more obviously in saggital plane model) with point masse Hm  and 

m concentrated at the hip and feet respectively. The leg-length is l . The support angle 1θ , 

nonsupport angle 2θ  and roll angle 3θ  determine the configuration of the gait. The angle 

was made by the biped leg with the vertical (counterclockwise positive). 2α  is the total 

angle between the legs, which is defined as the “inter-leg angle”, and in addition is formed 

during the instant when both legs are touching the ground. The slope of the ground with the 

horizontal is denoted by the angle φ . 

The model has been made by the following assumptions: the total mass of the robot 

2C Hm m m= +  is constant and equal to 20kg. For the sake of simplifying the model, all 

masses are considered point-masses and the legs are identical with point feet. The same as 

2d bipedal model, the 3d gait also consists of swing stage and an instantaneous transition 

stage: during the swing stage the robot behaves exactly like an inverted planar double 

pendulum with its support point being analogous to the point of suspension of the 

pendulum. During the transition stage the support is transferred from one leg to the other. 

The robot is assumed to move on an inclined plane surface and the leg only swing forward 

and backward. The impact of the swing leg with the ground is assumed to be inelastic and 

without sliding [4]. This implies that during the instantaneous transition stage the robot 

configuration remains un-changed, and the angular momentum of the robot about the 
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impacting foot as well as the angular momentum of the pre-impact support leg about the 

hip is conserved. These conservation laws lead to a discontinuous change in robot velocity. 
 

1θ

2θ

Hm

m
m

φ
B

H

A

 

Fig. 27. Sagittal planar 3d model  

 

3θ
m

ll

l

 
 

Fig. 3. Frontal 3d model  

The new dynamic equations of the swing stage are similar to the well-known double 
pendulum equations. Since the legs of the robot are assumed identical, the equations are 
similar regardless of the support leg considered with the variation of the following. 
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1 3 1 3

2 3

1 3 1 3 1 3

sin cos sin cos

( ) sin cos

cos sin cos sin cos sin

H

H

m gL mgL

g mgL

m gL mgL mgL

θ θ θ θ
θ θ θ

θ θ θ θ θ θ

− −⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− − +⎝ ⎠  

The parameters used for our simulations are l =1 m , Hm =2 m =10kg. Since no dissipation 

takes place during swing stage, thus the total mechanical energy E of the robot is conserved 

during this stage. 

( , ) ( , )
0

d L L

dt

θ θ θ θ
θ θ

∂ ∂
− =

∂ ∂

$ $
$  

Where the Lagrangian ( , )L θ θ$  is the difference between the kinetic energy and the potential 

energy of the robot: L( ,θ θ$ )=K( ,θ θ$ )-P(θ ), the right-hand side term of (3) is 0, since the 

robot is completely passive. The new equation of the gait biped are given as the following 

and the results presented before can be applied perfectly.  
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Fig. 19. Model in the 3d space 

In order to calculate the energy of the robot, we simply consider the dynamics of the three 
distinct masses: 

 

2 2 2
1 1 1

( , )
2 2 2

H H B BK m V m V m Vθ θ
• → → →

= + +  (34) 
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 1 3 1 3 2 3 0( ) cos cos (cos cos cos cos )HP m gL mgL Pθ θ θ θ θ θ θ= + − +  (35) 

Where HV
→

, AV
→

and BV
→

are the velocities of the point masses. In the frame [ , , ]i j k
→ → →

 depicted 

on Fig.3, these vectors are given by: 

1 3 31 3 1 3 1 1 1 1 3 1 3( sin sin cos cos ) cos ( sin cos cos sin )HV L L i L j L L kθ θ θ θ θ θ θ θ θ θ θ θ θ θ
• • • • •

= − + + + − −
iiif f f f

 

1 3 2 31 3 1 3 2 3 2 3

1 31 1 2 2 1 3 1 3

2 2 3 3 2 3

( sin sin cos cos sin sin cos cos )

( cos cos ) ( sin cos cos sin

sin cos cos sin )

BV L L L L i

L L j L L

L L k

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

• • • •

• • • •

• •

= − + + −

+ − + − −

+ +

iif f

f

f
 

0AV
→

=     

 

The Transition equation 

Since our robot is constituted of only two links, the condition of conservation of angular 
momentum leads to only two equations: 

 H HH B H B
m V A H mV A B m V A H mV A B− − + +

− − − − + + + +× + × = × + ×
iiiiiiif iiiiiif iiiiiiif iiiiiifiiiif iiif iiiif iiif

 (36) 

 

 
A B A B

mV H A mV H B mV H A mV H B= − + +
− − − − + + + +× + × = × + ×

iiiiiiif iiiiiif iiiiiiif iiiiiifiiiif iiif iiiif iiif
 (37) 

Where points H, A and B are respectively the hip, the mass center of the support leg, the 

mass center of the non-support leg. HV
→

, AV
→

and BV
→

are respectively the velocity vectors at 

H, A and B. The superscripts – and + indicate respectively pre-impact and post-impact 
variables.All the vectors appearing are given by: 
 

1 3 1 11 3 1 3 1 1 3

3 1 3

( sin sin cos cos ) ( cos ) ( sin cos

cos sin )

H
V L L i L j L

L k

θ θ θ θ θ θ θ θ θ θ θ

θ θ θ

−

• • • •

•

= − + − + −

−

iiiif f f

f  

 

1 3 2 31 3 1 3 2 3 2 3

1 2 1 31 2 1 3 1 3

2 32 3 2 3

( sin sin cos cos sin sin cos cos )

( cos cos ) ( sin cos cos sin

sin cos cos sin )

A
V L L L L i

L L j L L

L L k

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

−

• • • •

• • • •

• •

= − − + +

− + + − −

+ +

iiiif f

f

f
0

B
V − =
iiif
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1 3 11 3 1 3 1

1 31 3 1 3

( sin sin cos cos ) cos

( sin cos cos sin )

H
V L L i L j

L L k

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

+

+ + +• • •
+ + + + +

+ +• •
+ + + +

= − +

+ − −

iiiif f f

f
 

1 3 2 31 3 1 3 2 3 2 3

1 2 1 31 2 1 3 1 3

2 32 3 2 3

( sin sin cos cos sin sin cos cos )

( cos cos ) ( sin cos cos sin

sin cos cos sin )

B
V L L L L i

L L j L L

L L k

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

+

+ + + +• • • •
+ + + + + + + +

+ + + +• • • •
+ + + + + +

+ +• •
+ + + +

= − − +

+ − + − −

+ +

iiif f

f

f
0

A
V + =
iiiif

    

2 3 2 2 3cos sin sin cos cosA H L i L j L kθ θ θ θ θ− − − − − − −= − − +
iiiiiiif f f f

 

2 3 2 2 3cos sin sin cos cosH A L i L j L kθ θ θ θ θ− − − − − − −= + −
iiiiiiif f f f

 

1 3 1 1 3cos sin sin cos cosA H L i L j L kθ θ θ θ θ+ + + + + + += − + +
iiiiiiif f f f

 

2 3 2 2 3cos sin sin cos cos )H B L i L j L kθ θ θ θ θ+ + + + + + += − −
iiiiiif f f f

 

1 3 2 3 1 2

1 3 2 3

( cos sin cos sin ) ( sin sin )

( cos cos cos cos )

A B L L i L L j

L L k

θ θ θ θ θ θ

θ θ θ θ

+ + + + + + + +

+ + + +

= + + −

+ −

iiiiiif f f

f  

3 1 1 31 2 3 3 1 2 3 1 1 3

2 1 2 33 1 3 1 2 3 1 2

3 3 1 1 2 2

[ cos sin sin cos cos( )] ( cos cos sin sin )

[cos ( ) ( )cos cos( ) sin sin( )

sin (cos sin cos sin )]

H Hm m

m

θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

− − + +• • • •
− − − − − − + + + +

+ + + +• • • • •
+ + + + + + + +

+•
+ + + + +

− − − = +

+ + + − − − +

+ +

 

2 2
3 3 31 2 1 1 2cos cos cos (cos cos )H Hm m mθ θ θ θ θ θ θ θ
− + +• • •

− − + + +− = − − −
 

1 2 33 1 2 3 3 2 1 2

1 2 33 1 2 3 3 2 2 1

cos cos( ) cos sin sin (cos cos ) ...

cos cos( ) cos sin sin (cos cos )

θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ

− − −• • •
− − − − − − − −

+ + +• • •
+ + + + + + + +

− − + − =

− − + + −

 

2 2
3 3 3 31 2 2 1 2 2cos cos cos cos cos cosθ θ θ θ θ θ θ θ θ θ
− − + +• • • •

− − − + + +− = −     
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And for the assumption of the angles between hip and legs are all constant with 90c , there is 

extra torque at H.  
We get the following compact equation between the pre-impact and post-impact angular 
velocities: 
 

( ) ( )Q Qθ θ θ θ− +
− +=$ $

 

 

With matrices ( )Q θ− and ( )Q θ+  given by: 
 

3 1 2 1 2 3

3 1 2 3 3 2 1 2

1 2

cos cos( ) 0 cos sin sin

( ) cos cos( ) cos sin sin (cos cos )

0 0 cos cos

H H

H

m m

Q m m m

m

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ

− − − − − −

− − − − − − − −
−

− −

⎛ ⎞− − −
⎜ ⎟
⎜ ⎟= − − −
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 

3 3 1 2 3 1 2

3 1 2 3

1 1 3 3 1 2 1 1 2 2

3 2 2 1

2

cos cos [1 cos( )] cos [1 cos( )]

( ) cos cos( ) cos

0 0

cos sin sin sin [ sin( ) cos sin cos sin ]

sin sin (cos cos )

cos

H

H

H

m m m

Q m m

m m

m

m

θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ

+ + + + + + +

+ + + +
+

+ + + + + + + + + +

+ + + +

⎛ + − − − −
⎜
⎜= − −
⎜
⎜
⎝

+ − + + +

−

− 2
1 1 2(cos cos )mθ θ θ+ + +

⎞
⎟
⎟
⎟
⎟− − ⎠

 

 
By doing the transition of the equation, we can avail the consequences of the model to the 
real robot model. 

11. Conclusions and future work 

The focus of the work is a relative further study of the passive gait of a compass-like, planar, 
biped robot with knees on inclined slopes. An analysis about the distribution of the energy 
and also the conversion law between the swing leg and the stance leg during the process of 
the steady robot gaits, have been discussed in the paper. Phase-position property 
corresponds to the limit cycle, the coupling properties between two legs,  the existence of 
the culmination points which produced in the course of the conversion of KE and PE are 

also the topic of the research. To a certain slope angle φ, one and only one stable limit cycle 
exists. 
The research of the paper will have positive significance in getting better aware of the law 
and global property to biped gaits of the robot. The model we adopt here is quite applicable, 
how to enlarge the initial value attraction region of the limit cycle as well as how to apply 
the efficient control on the robot combined with its own property with the least energy 
possible will guide our further research direction. 
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