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1. Introduction

Biped locomotion consists of both sagittal and lateral (frontal) plane motions. Although the
stability of the locomotion must be ensured in both the planes, their natures are different.
In the sagittal plane, the main purpose is to move from one place to another; thus, the
stability is dynamic – losing static balance is essential in sagittal plane motion; it produces
tumble for travel. In the lateral plane, on the other hand, maintaining an upright posture is
crucial. Hence, lateral stability is static, and stabilizing a saddle point in the phase plane of
the inverted pendulum motion is the main challenge.
In general, the zero moment point (ZMP) criterion is utilized for biped motion control (Kagami
et al., 2002; Mitobe et al., 2001; Nagasaka et al., 1999; Suleiman et al., 2009; Yamaguchi &
Takanishi, 1997). Although this method is effective and useful, planned motion using this
method is not suitable when the environmental conditions change from those considered
during motion planning. The literature offers excellent reports on the modification of planned
motion (Hirai et al., 1998; Huang et al., 2000; Kulvanit et al., 2005; Lee et al., 2005; Napoleon
& Sampei, 2002; Prahlad et al., 2007; Wollherr & Buss, 2004), or online motion generation
(Behnke, 2006; Czarnetzki et al., 2009; Héliot & Espiau, 2008; Kajita & Tani, 1996; Nishiwaki

et al., 2002; Sugihara et al., 2002) that solve this problem.
Usually, motion planning based on the ZMP criterion is applied to both the sagittal and lateral
planes. The concept of this paper is that motion planning in the lateral plane can be skipped
because of the difference in the nature of its stability. In the sagittal plane, motion planning
is certainly crucial: one cannot proceed without actively generating both leg swing and torso
behaviour, followed by the planned motion. The ZMP method was originally proposed to
design such co-ordinated motions. However, in the lateral plane, balance is the primary
purpose; generating active motion is a secondary problem. Nonetheless, in the ZMP method,
the motion is first planned, and balance is maintained as a result of exact tracking of the
planned motion. In our opinion, the process should be reversed for motion in the lateral
plane, with balance control coming first and motion emerging as a result of balance control.
From this viewpoint, trajectory generation for the lateral plane should be eliminated by setting
balance as the control object.
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horizontal ground

slope

posture at  horizontal ground

balanced stepping motion

CoP position

Fig. 1. Lateral stepping motion on different gradients.

To maintain balance without motion planning, we introduce the direct centre of pressure
(CoP), i.e. ZMP control (Ito et al., 2003; 2007; 2008) (the CoP is equivalent to the ZMP). Instead
of an indirect balancing method, such as tracking the positions of trajectories planned using
the ZMP criterion, we select the ZMP directly as the control variable.
Adaptive lateral motion should result without adjusting the controllers or motion pattern
generators. This arises from the invariance in the ZMP trajectory in biped lateral motion.
Lateral motion on flat and sloped floors is illustrated in Fig. 1. To maintain balance, the
motion trajectories of the torso and legs must change adaptively in relation to the angle of the
slope. On the other hand, the ZMP trajectory, indicating the time stamp of the load centre,

is invariable. Therefore, balance control based on direct ZMP control can naturally produce
adaptive motion without re-designing the motion trajectories. In this chapter, we explain a
balance control strategy based on direct ZMP feedback and confirm the effectiveness of this
method by conducting experiments of improved robot from our previous papers (Ito et al.,
2007; 2008).
This chapter is organized as follows: the next section presents the mathematical framework;
section 3 describes a control method based on the direct ZMP control; section 4 reports on
robot experiments as well as simulation of lateral stepping motion and the section 5 presents
our conclusions.

2. Basic Theory of balance control

2.1 Inverted Pendulum model

2.1.1 Assumptions

The CoP is the representative action point of the ground reaction forces and coincides with
the ZMP (Goswami, 1999). Because the ZMP contains significant information on balance, the
ground reaction forces are also expected to contain the information.
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(stationary state)

body

foot

ankle joint

Fig. 2. Inverted pendulum model for biped balance.

From this viewpoint, feedback control of ground reaction forces is introduced for balance
control (Ito & Kawasaki, 2005). Because the ankle strategy is dominant for balancing
with respect to small disturbances (Horak & Nashner, 1986), the inverted pendulum model
illustrated in the left of Fig. 2 is considered with the following assumptions:

• The motion occurs only in the sagittal plane.

• The body (inverted pendulum) and the foot (support) are connected at the ankle joint.

• The foot does not slip on the ground.

• The shape of the foot is symmetrical in the anterior-posterior direction.

• The foot has two ground contact points: the heel and the toe.

• The vertical component of the ground reaction force is measurable.

• The ankle joint is located at the midpoint of the foot with zero height.

• The ankle joint angle and its velocity are detectable.

• An appropriate torque is actively generated at the ankle joint.

• An unknown constant external force is exerted at the centre of gravity (CoG).

The notations are defined as follows: M and m are the mass of the body and foot link,
respectively; I is the moment of inertia of the body link around the ankle joint; L is the length
between the ankle joint and the CoG of the body link; ℓ is the length from the ankle joint to
the toe or the heel; θ is the ankle joint angle; θ̇ is its velocity and τ is the ankle joint torque.
FH and FT are the vertical components of the ground reaction force at the heel and the toe,
respectively. fy is the vertical component of the internal force between the two links. Fx and
Fy are the horizontal and vertical components of constant external force, respectively, and g is
the gravitational acceleration.

17Motion Control of Biped Lateral Stepping
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2.1.2 Control law

The goal of the control is to maintain the postural balance regardless of the constant external
forces Fx and Fy. With respect to the stability margin (McGhee & Frank, 1968), FT and FH
should be kept equal, indicating that the ZMP is held to the centre under the foot. The
following control method achieves this.

Theorem 1. De�ne an ankle joint torque τ by using adequate feedback gains K d, Kp, K f and adequate
constant θd as

τ = −Kdθ̇ + Kp(θd − θ) + K f

∫

(FH − FT)dt. (1)

Then, θ = θ f becomes a locally asymptotically stable posture, and FH = FT holds at the stationary
state. Here, θ f is a constant satisfying

sin θ f = −
Fx
A

, cos θ f =
Mg− Fy

A
. (2)

where

A =
√

(Mg− Fy)2 + F2
x (3)

Proof. The motion equation of the body link is described as

I θ̈ = MLg sin θ + FxL cos θ − FyL sin θ + τ.

= AL sin(θ − θ f ) + τ (4)

On the other hand, the ground reaction forces, with ankle joint torque, are

FT = −
1

2ℓ
τ +

1

2
mg+

1

2
fy, (5)

FH =
1

2ℓ
τ +

1

2
mg+

1

2
fy, (6)

Here, a new state variable τf is defined as

τf =
∫

(FH − FT)dt. (7)

Then, the control law (1) becomes

τ = −Kdθ̇ + Kp(θd − θ) + K f τf . (8)

which is regarded as a state feedback whose states are θ, θ̇ and τf . In addition, differentiating
(7) and then substituting (5) and (6) results in

τ̇f =
1

ℓ
τ. (9)

An equilibrium point (θ̄, ¯̇θ, τ̄f ) of the dynamics in (4) and (9) with control law (8) is obtained
by setting the time-derivative term as zero. It is given as

(θ̄, ¯̇θ, τ̄f ) = (θ f , 0,
Kp

K f
(θ f − θd)). (10)
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length, angle and position mass, force and torque

Fig. 3. Lateral sway model for biped balance.

In this state, τ = 0 holds according to (8) and (10), indicating that FH = FT. The local stability
of this equilibrium point is ensured by the controllability of the linearized dynamics around
this point.

2.1.3 Behaviour

The stationary posture from the control law in (1) is illustrated in the right of Fig. 2. This

stationary state θ f depends not on θd but the external forces Fx and Fy. It follows that the
stationary posture changes adaptively with respect to the environmental conditions expressed
as unknown constant external forces. This posture allows the ankle joint torque to be zero
in the stationary state, since the moment of the external force is balanced by that of the
gravity around the ankle joint. This is an advantage of the control law, in addition to being a
model-free property.

2.2 Lateral Sway model

2.2.1 Assumptions

Here, we extend the control law in (1) to active lateral sway with double support. Because the
flexion of knee joints in this motion is small, each leg is represented by only one link, without
a knee, as shown in Fig. 3. Thus, the following assumptions are introduced:

• The motion is restricted within the lateral plane.

• The lateral motion is approximately represented using a 5-link model consisting of one
body, two legs and two feet.

• The foot does not slip on the ground.

• Ankle joints are assumed to be located at the centre of the foot with zero height.

• At the end of both sides, the feet contact the ground.

• The vertical component of the ground reaction forces is measurable.

• The angles and velocities are detectable at the ankle and hip joints.

• Every joint is actively actuated.

19Motion Control of Biped Lateral Stepping
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• An unknown constant external force is exerted on the CoG of the entire body.

Assume that the feet always maintain contact with the ground. This constraint forces the
mechanism to be a closed link constructed by the body and two legs, indicating that the degree
of freedom (DoF) of motion is reduced to one.
Here, the following notations are defined: (xG, yG) denotes the CoG position in the coordinate
frame whose origin is set at the midpoint between two ankle joints, φ is a lateral sway angle in
this coordinate frame. (xR, yR), (xL, yL) and (xB, yB) are the CoG of the right leg, left leg and
body (pelvis), respectively. L is the length of the leg, ℓ is the length from the ground to the CoG
of the leg, ℓB is the half length of the body, ℓ f is the length from the ankle joint to the side of
the foot and x f is the distance to the ankle joint from the origin of this coordinate frame. FRO,
FRI , FLO, and FLI are the vertical components of ground reaction forces at four contact points,
whose subscripts RO, RI , LI and LO represent the positions of the contact points, indicating the

right outside, the right inside, the left inside and the left outside, respectively. F = [Fx, Fy]
T

is the external force that is assumed to be constant. Θ = [θRA, θRH , θLH , θLA]
T is a joint angle

vector whose elements are the joint angles of the right ankle, right hip, left hip and left ankle,
respectively, and T = [τRA, τRH , τLH , τLA]

T is a joint torque vector whose elements are the
torque at each joint. τφ is a generalized force defined in the coordinate frame on the CoG orbit
Φ, and PZMP is the position of the ZMP.

2.2.2 Control law

Under these assumptions, PZMP is calculated from the magnitude of the ground reaction
forces at the four contact points as follows:

PZMP =
FRO
Fall

(x f + ℓ f ) +
FRI

Fall
(x f − ℓ f )−

FLI
Fall

(x f − ℓ f )−
FLO
Fall

(x f + ℓ f ), (11)

where

Fall = FRO + FRI + FLI + FLO. (12)

The purpose is to control the position of the ZMP at its reference position Pd in the lateral
sway model, as shown in Fig. 1. Here, Pd is appropriately planned in advance and may
be constant or, alternatively, switched. This is achieved using ZMP feedback obtained by
extending theorem 1.

Theorem 2. De�ne a generalized force τ φ based on PZMP as

τφ = −Kdφ̇ + Kp(φd − φ) + K f

∫

(Pd − PZMP)dt, (13)

and assign each joint torque T so that the following equation holds

τφ = JT(Θ)T. (14)

Here, φd is a constant, and J(Θ) is a Jacobian matrix that relates the deviation of Θ to that of φ

∆Θ = J(Θ)∆φ. (15)

Then, PZMP converges to Pd if it starts in the neighbourhood of Pd.

20 Biped Robots
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Proof. Because there is only one DoF of the lateral sway model, the sway angle φ uniquely
determines each joint angle Θ in the range 0 < θRH < π, 0 < θLH < π. Here, this relationship
is described as Θ = Θ(φ). Then, the equation of motion with respect to φ is obtained as

M(Θ)φ̈ + C(Θ, Θ̇) + G(Θ, g, F) = τφ. (16)

On the other hand, the relationship between PZMP and τφ is given as

PZMP = P(Θ)τφ + Q(Θ, Θ̇) + R(Θ, g, F). (17)

Here, M(Θ) > 0 is an inertia term, C(Θ, Θ̇) and Q(Θ, Θ̇) become the second order terms of
the element of Θ̇, G and R contain both the gravity term and external force F. See Appendix
7.3 for the derivation of (16) and (17). Then, a new variable τf is introduced:

τf =
∫

(PZMP − Pd)dt. (18)

The differentiation of τf provides the relationship

τ̇f = PZMP − Pd. (19)

And, using (17), it becomes

τ̇f = P(Θ)τφ + Q(Θ, Θ̇) + R(Θ, g, F)− Pd. (20)

In addition, the control law in (13) is described using τf

τφ = −Kdφ̇ + Kp(φd − φ) + K f τf . (21)

Let [φ, φ̇, τf ]
T be state variables of the dynamics of (16) and (20) with the control law in (21).

At the equilibrium point, the derivative terms are forced to zero, indicating that τ̇f = 0 in (19);
thus, PZMP = Pd. To test the stability of the equilibrium point, (16) and (20) are linearized
around it.

ξ̇ =

⎡

⎣

0 1 0
−Ḡθ J̄/M̄ 0 0

(

R̄θ + P̄θ τ̄φ
)

J̄ 0 0

⎤

⎦ ξ +

⎡

⎣

0
1/M̄
P̄

⎤

⎦ ∆τφ (22)

Here, ξ = [∆φ, ∆φ̇, ∆τf ]
T is a deviation from the equilibrium point, M̄ = M(Θ̄), Θ̄ = Θ(φ̄),

J̄ = J(Θ̄), P̄ = P(Θ̄), Ḡθ =
∂G(Θ̄)

∂Θ
, R̄θ =

∂R(Θ̄)

∂Θ
, P̄θ =

∂P(Θ̄)

∂Θ
, and ∆τφ is a deviation from

the input at the equilibrium τ̄φ = Kp(φd − φ̄) + K f τ̄f . The controllability matrix Mc of this
linear system becomes

Mc =

⎡

⎣

0 1/M̄ 0

1/M̄ 0 −Ḡθ J̄/M̄
2

P̄ 0
(

R̄θ + P̄θ τ̄φ
)

J̄/M̄

⎤

⎦ , (23)

whose determinant is calculated as

|Mc| = −
1

M̄3
(P̄Ḡθ + R̄θ + P̄θ Ḡ) J̄ = −

1

M̄3

∂

∂φ
(PG+ R)

∣

∣

∣

∣

φ=φ̄

. (24)
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Here, the relationship τ̄φ = Ḡ = G(Θ̄) from (16) and J̄ = ∂Θ

∂φ were applied. To verify

|Mc| �= 0, the deviation of the ZMP position is considered. Substituting (16) into τφ of (17)

and linearizing (17) around the equilibrium point results in

∆PZMP = PM∆φ̈ +
∂

∂φ
(PG+ R)

∣

∣

∣

∣

φ=φ̄

∆φ. (25)

This equation implies that the ZMP deviation depends on both the inertial force (the first
term) and the gravitational effect (the second term), which varies with the posture, i.e. the
CoG position. This is consistent with the definition of the ZMP – it is determined by the

inertial and gravitational forces. Now, assume |Mc| = 0. Then, ∂
∂φ (PG+ R)

∣

∣

∣

φ=φ̄
= 0 from

(24). This produces the conclusion, based on (25), that the ZMP position does not change
regardless of the CoG deviation. This contradicts the definition of ZMP; thus, |Mc| �= 0 is
ensured. Accordingly, the controllability matrix Mc should be full rank and the linear system
is controllable – the equilibrium point can be stabilized by adequate Kd, Kp and K f in (13).
Finally, note that we can find joint torque T to satisfy the relationship in (14).

2.2.3 Behaviour

The behaviour of the lateral sway model under control laws (13) - (15) is expected to be similar
to that of the inverted pendulum model using control law (1) discussed in the section 2.1.3,
i.e., in the stationary state:

• The ZMP is controlled to its reference position Pd.

• The posture changes with the external force.

• The generalized force τφ becomes zero due to the balance between the gravitational and
external forces.

Thus, this control law is a natural extension of control law (1) when there are multiple contact
points and active joints.

3. Control of in-place stepping

3.1 Strategy

Here, we focus on in-place stepping motion to achieve it without generating reference
trajectories of joint angles, as expected in section 1. The stepping motion is divided into
single- and double-support phases. The control law is defined separately in these two phases,
and then, two theorems from the previous section are applied, since this task basically
involves the stabilization of the inverted pendulum with respect to external forces caused
by ground gradients. However, some extensions are needed: definition of the switching
conditions between the two control laws and the time-dependent reference for the ZMP
position. The local stability of the control laws will ensure tracking of the ZMP position to
the time-dependent reference.

3.2 Control

3.2.1 Single-support phase

On a slope, adaptive behaviour is observed – the body tilts around the ankle joint of the
supporting leg, as shown in the bottom of Fig. 1. Thus, the ankle joint plays a significant role,
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Fig. 4. Single-support phase approximation by using the inverted pendulumn model.

and the dynamics of the single-support phase can be approximated by an inverted pendulum
with a foot support, as shown in Fig. 4. Under this approximation, theorem 1 is applicable by
regarding the effect of the slope as well as the swing leg dynamics as unknown external forces
Fx and Fy. The flow of the balance control is summarized as

1. Detect the angle and its velocity at the ankle joint of the support leg.

2. Detect the ground reaction forces at both ends of the supporting foot.

3. Calculate the ankle joint torque according to (1).

4. Output the ankle joint torque with its actuator.

The trajectory tracking control should be introduced to lift the swing leg.

3.2.2 Switching from single- to double-support phase

Control law (1) is expected to compensate for disturbances caused by the torso and swing leg
when stepping. If the torso and swing leg motions are adequately controlled, the posture of
the initial state of the single-support phase will be recovered. Thus, the switch condition of
the control law is set as the recovery of the initial posture.

3.2.3 Double-support phase

To change to the other support leg, the ZMP position must shift from under the current
supporting leg to the other. Control laws (13) - (15) are expected to make the ZMP track
such a reference position Pd. Following is the control flow:

1. Detect the angle and its velocity at the ankle and hip joints.

2. Detect the ground reaction forces at both ends of the feet.

3. Calculate the lateral sway angle φ by following the next relationship (Appendix 7.1):

φ =
θLA − θRA

2
. (26)

4. Calculate PZMP by using (11).
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5. Compute the generalized force τφ according to (13).

6. Distribute the generalized force τφ to each joint torque τ so as to satisfy (14). Namely,

T = (JT(Θ))∗τφ + (I − JT(Θ)(JT(Θ))∗)p. (27)

Here, ∗ denotes the generalized inverse matrix, and p is an arbitrary 4-dimensional vector.
See Appendix 7.2 for the calculation of J(Θ).

7. Output the joint torque by using the actuators.

3.2.4 Switching from double- to single-support phase

According to control law (13), the ZMP position is shifted to the side of the next supporting
leg by following Pd. The control law is switched when the ZMP position reaches an area under
the next supporting foot.

4. Robot experiment

4.1 Object

In the previous section, we proposed a control method for lateral stepping that does not
require motion planning, i.e. the reference trajectory generation of joint angles. This direct
ZMP control is expected to allow a robot to naturally change their motion according to the
slope. The objective of this experiment is to confirm this effect by using a robot with reduced
DoF. The details of the robot are described in section 4.3.

4.2 Simulation

Prior to the experiments, the control method is simulated under the influence of the constant
external force, as expressed by

Fx = −Mg sin α (28)

Fy = −Mg(1 − cos α). (29)

This is equivalent to the gravitational effect on a slope with angle α. The cases where α = 0
[rad] (no external force) and α = 0.2 [rad] are examined. The parameters are M = 2.5 [kg],
m = 1.25 [kg], m f = 0 [kg], L = 0.20 [m], ℓ = 0.1 [m], ℓB = 0.07 [m], ℓ f = 0.02 [m]. The
feedback gains of (1) are set to Kd = 30, Kp = 500 and K f = 1, while those of (13) are Kd = 5,
Kp = 10 and K f = 100. To the hip joint in the single-support phase, the conventional PD
control with non-linear compensation is applied with a reference trajectory that lifts up the
swing leg – the feedback gains are Kd = 100 and Kp = 500.
The graphs in Fig. 5(a) and (b) the ZMP position over time. Regardless of the external forces,
similar ZMP profiles are obtained, implying that the body weight shifts as expected in both
cases. The time-based plot of the horizontal CoG position is depicted in Fig. 5(c): when the
external force is exerted, the stepping motion is performed with the posture tilted against it.

4.3 Equipment

Experiments were performed using a biped robot with four DoFs: two in the hip joints, two
in the ankle joints and no DoF other than that in the lateral plane. This is an improved version
of that in our previous paper (Ito et al., 2007; 2008). The robot is 35 [cm] high and weighs 2.4
[kg]. The sole of the foot is 8.6 [cm] long and the horizontal distance between the right and
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-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12 14

actual

reference

Time [s]

Z
M

P
 P

o
si

ti
o

n
 [

m
]

(b) Reference and actual trajectory of ZMP for α = 0.20
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(c) Horizontal position of CoG.

Fig. 5. Simulation results.

left ankles is 13.4 [cm]. Four motors are installed: two drive hip joints, while the others drive
ankle joints. A rotary encoder installed in each motor provides information on the joint angles
of the robot. Furthermore, three load cells are attached to each sole to provide ZMP detection.
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Fig. 6. Snapshots of biped robot experiments on a sloped surface.

The robot controller, operated by ART-LINUX, acquires the sensory information via a pulse
counter and A/D converter. It calculates the torque that should be applied at each joint and
sends them to the motor driver via a D/A converter. In the experiment, the controller operates
at 1 [ms].

4.4 Methods

In the single-support phase, the control law (1) is applied for the ankle joint of the support leg
with feedback gains of Kd = 0.001, Kp = 0.005 and K f = 0.0018. Note that the unit of the angle
is set to degrees to allow a simple check of the robot motion in the experiment; thus, the gains

are given in the degree unit system. θ in (1) is approximated by the CoG sway angle φ, and φ
at the start of each single-support phase is set to θd in (1) so that the ankle joint torque initially
becomes zero. The other joint angles are controlled by the PD control. Its reference trajectories
are set as follows. The hip joint of the swing leg is held in its neutral position, whereas that of
the support leg is extended 30 [deg] from its neutral position in 8 [s], and then, returned to the
neutral position again in 8 [s], which is represented by the fifth-order polynomial equation of
the time. The ankle joint of the swing leg is controlled so that its sole becomes parallel to the
ground at the end of the single-support phase. The control mode is switched when the hip
joint angle reaches a neutral position. The feedback gains of the PD control are Kd = 0.0009
and Kp = 0.009. They are the same for the three joints.
The double-support phase uses control laws (13)-(15). The feedback gains are set to Kd =
0.001, Kp = 0.002 and K f = 0.07. Pd is set using the fifth-order polynomial equation, to move
18 [cm], i.e. from 8 [cm] (the side of the previous support leg) to 10 [cm] on the reverse side,
in 15[s]. To promote ZMP movement, the distance of the ZMP shift is set slightly larger than
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(a) Reference and actual trajectory of ZMP on flat floor.

Z
M

P

(b) Reference and actual trajectory of ZMP on slope.

(c) Horizontal position of CoG.

Fig. 7. Experimental results.

27Motion Control of Biped Lateral Stepping
Based on Zero Moment Point Feedback for Adaptation to Slopes

www.intechopen.com



the natural width between the two ankle joints (x f =6.7[cm]). The control mode is switched on
the basis of the ZMP position. This threshold is set 7 [cm]. Experiments are executed on both
flat ground and an 8 [deg] slope.

4.5 Results and remarks

Snapshots of the robot motion on the slope are shown in Fig. 6. To evaluate the behaviour
for both the conditions, time-based plots of the ZMP position in the double-support phase are
shown in Fig. 7: (a) is on the flat ground and (b) is on the slope. The ZMP profiles are quite
similar, implying that the stepping motion can be achieved regardless of the slope angle. The
time based plot of the horizontal CoG position is shown in Fig. 7(c). The profile of the slope
condition is shifted up from that on flat ground, indicating that lateral motion is achieved by
tilting the entire body adaptively against the slope, as shown in Fig. 1. The slow motion of the
robot requires improvement. Correcting mechanical problems, such as backlash at the joints,
will improve the motion speed somewhat.

5. Conclusions

The generation of the joint or CoG reference trajectories is a complicated task in biped robot
control. By restricting the task to balance control in the lateral plane motion, a control method
without the need for generating reference trajectories was proposed. This control method is
essentially a feedback control of the ZMP position that makes the most use of the information
on the ground reaction forces. Thus, the reference trajectories of both joints and the CoG
of the body, which are usually affected by environmental conditions such as the slope, are

unnecessary, although those of the ZMP position are required. This approach provides natural
adaptive changes in the lateral motion. Applying it to the control of a biped robot, whose DoF
of motion were restricted within the lateral plane, experimentally confirmed its effectiveness.
Improving the speed of the robot’s movements and applying this technique to 3D biped
locomotion are considered for future work.
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7. Appendex

7.1 Definition of φ

The lateral sway angle φ is calculated as

φ = arctan
xG
yG

. (30)

Here, xG and yG are the horizontal and vertical positions of the CoG of the lateral sway model,
respectively, and are described as

xG = 2ρ cos
θRA + θLA

2
sin

θLA − θRA

2
(31)

yG = 2ρ cos
θRA + θLA

2
cos

θLA − θRA

2
, (32)
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where

ρ =
2mℓ+ ML

2(2m+ M)
. (33)

Using this relationship, we obtain

xG
yG

= tan
θLA − θRA

2
. (34)

According to the definition of the generalized coordinates (30), φ is expressed by (26), i.e.,

φ = Jφ1Θ = Jφ2X, (35)

where
Jφ1 =

[

− 1
2 0 0 1

2

]

(36)

Jφ2 =
[

0 0 0 0 0 1
2 0 0 − 1

2

]

. (37)

The definition of X will be seen later in (47).

7.2 Calculation of the Jacobian matrix

The Jacobian matrix J(Θ), which maps φ̇ to Θ̇, is calculated as follows. From (26), we get

φ̇ =
θ̇LA − θ̇RA

2
. (38)

On the other hand, a kinematic relationship among the joint angles is given as

− θRA + θRH + θLH − θLA = π. (39)

Differentiating it, we obtain

− θ̇RA + θ̇RH + θ̇LH − θ̇LA = 0. (40)

In addition, the position of the left hip joint (xRH , yRH) can be described in two ways:

[

xRH
yRH

]

=

[

−x f + L sin θRA

L cos θRA

]

=

[

x f − L sin θLA − 2ℓB sin(θLH − θLA)

L cos θLA − 2ℓB cos(θLH − θLA)

]

. (41)

Differentiating them, the following equations hold.

[

−Lθ̇LA cos θLA − 2ℓB(θ̇LH − θ̇LA) cos(θLH − θLA)
−Lθ̇LA sin θLA + 2ℓB(θ̇LH − θ̇LA) sin(θLH − θLA)

]

=

[

Lθ̇RA cos θRA

−Lθ̇RA sin θRA

]

. (42)

Solve the three equations (38), (40) and (42) as four variables Θ̇ = [θ̇RA, θ̇RH , θ̇LH , θ̇LA]
T and

the relationship between Θ̇ and φ̇ is represented by

Θ̇ =
2

J1 + J3

⎡

⎢

⎢

⎣

−J1
−J1 + J2
J3 − J2

J3

⎤





⎦

φ̇ = J(Θ)φ̇ (43)
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Fig. 8. Notation for the derivation of motion equation.

J1 = 2ℓB sin θLH (44)

J2 = L sin(θLH + θRH) (45)

J3 = 2ℓB sin θRH . (46)

7.3 Motion equations

We define the vectors X and F as follows:

X = [ xB yB θB xL yL θL xR yR θR ]T (47)

F = [ FLH
x FLH

y FRH
x FRH

y FLA
x FLA

y FRA
x FRA

y ]T. (48)

The mechanical constraint is described as

CC(X) = 0, (49)

where

CC(X) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xB − ℓB sin θB − xL − ℓs sin θL
yB − ℓB cos θB − yL − ℓs cos θL
xB + ℓB sin θB − xR + ℓs sin θR
yB + ℓB cos θB − yR − ℓs cos θR

xL − ℓ sin θL
yL − ℓ cos θL
xR + ℓ sin θR
yR − ℓ cos θR

⎤





















⎦

(50)

ℓs = L− ℓ. (51)
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Refer to Fig. 8 for the notations. The motion equation is expressed as

MẌ = JTXF + G0 + JTθ T. (52)

Here,
M = diag[MB, MB, IB, ML, ML, IL, ML, ML, IL] (53)

JX =
∂CC(X)

∂X
(54)

G0 = GG + JTe Fe (55)

GG = [ 0 −MBg 0 0 −MLg 0 0 −MLg 0 ]T (56)

Jθ =

⎡

⎢

⎢

⎣

0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 −1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

⎤





⎦

(57)

Je =

[

0 0 0 0 0 ρ cos θL 0 0 −ρ cos θR
0 0 0 0 0 −ρ sin θL 0 0 −ρ sin θR

]

(58)

Fe =
[

Fx Fy
]T

. (59)

Differentiating (49) two times, we obtain

JXẌ + C0 = 0, (60)

where
C0 = J̇X · Ẋ . (61)

Combining (52) with (60), we can get

[

M −JTX
−JX 0

] [

Ẍ

F

]

=

[

G0 + JTθ τ

C0

]

. (62)

The matrix of the left hand side has an inverse matrix since M has it. This inverse matrix is
put to

[

M −JTX
−JX 0

]−1

=

[

N0 NT
1

N1 N2

]

. (63)

Then, (62) can be solved for Ẍ and F.

[

Ẍ

F

]

=

[

N0 NT
1

N1 N2

] [

G0 + JTθ τ

C0

]

. (64)

From (35),
φ̈ = Jφ2Ẍ = Jφ2(N0(G0 + JTθ JTφ1τφ) + NT

1 C0). (65)

The dynamics of φ is expressed by (16), where

M(Θ) = (Jφ2N0 J
T
φ2)

−1 (66)

C(Θ, Θ̇) = (Jφ2N0 J
T
φ2)

−1 Jφ2N
T
1 C0 (67)
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G(Θ, g, F) = (Jφ2N0 J
T
φ2)

−1 Jφ2N0G0. (68)

Note that Jφ1 Jθ = Jφ2 and X is uniquely written by Θ, i.e., X = X(Θ).
On the other hand, the ground reaction forces are expressed as

FLO =
1

2
FLA
y +

1

ℓ f
τLA (69)

FLI =
1

2
FLA
y −

1

ℓ f
τLA (70)

FRO =
1

2
FRA
y +

1

ℓ f
τRA (71)

FRI =
1

2
FRA
y −

1

ℓ f
τRA. (72)

Assume that Fall is constant because it corresponds to the total weight. Then, (11) is rewritten
as

PZMP = JTZ1F + JTZ2τ (73)

JZ1 =
[

0 0 0 0 0 −x f /Fall 0 x f /Fall
]T

(74)

JZ2 =
[

2/Fall 0 0 −2/Fall
]T

. (75)

From (64), F is expressed as
F = N1(G0 + JTθ τ) + N2C0. (76)

Substituting this equation to (73), we obtain (17), where

P(Θ) = JTZ1N1 J
T
θ + JTZ2 (77)

Q(Θ, Θ̇) = JTZ1N2C0 (78)

R(Θ, g, F) = JTZ1N1G0. (79)
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