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1. Introduction 

The utilization of dynamic recurrent neural networks (DRNN) for the interpretation of 
biological signals coming from human brain and body has acquired a significant growth in 
the field of brain-machine interface. DRNN approaches may offer an ideal tool for the 
identification of input-output relationships in numerous types of neural-based signals, such 
as intracellular synaptic potentials, local field potentials, EEG and EMG which integrate 
multiple sources of activity distributed across large neuronal assemblies. In the field of 
motor control, the output signals of the DRNN mapping concern movement-related 
kinematics signals such as position, velocity or acceleration of the different body segments 
involved. The most direct input signals consist in the electromyographic signals (EMG) 
recorded over the different superficial muscles implicated in movement generation. It is 
generally recognized that the non-invasive recording of the EMG envelope signal represents 
a reasonable reflection of the firing rate of the motoneuronal pools including both central 
and afferent influences (Cheron and Godaux, 1986). In addition, the combination of the 
multiple EMG signals may reveal the basic motor coordination dynamics of the gesture 
(Scholz and Kelso, 1990; Kelso, 1995). A major interest of the EMGs to kinematics mapping 
by a DRNN is that it may represent a new indirect way for a better understanding of motor 
organization elaborated by the central nervous system. After the learning phase and 
whatever the type of movement, the identification performed by the DRNN offers a 
dynamic memory which is able to recognize the preferential direction of the physiological 
action of the studied muscles (Cheron et al. 1996, 2003, 2006, 2007). In this chapter, we 
present the DRNN structure and the training procedure applied in case of noisy biological 
signals. Different DRNN applications are here reviewed in order to illustrate their 
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usefulness in the field of motor control as diagnostic tools and potential prosthetic 
controllers.  

2. Multiple EMG signals as a final output controller 

The behavior of cortical neurons has been well related to movement segmentation, velocity 

profiles and EMG patterns (Schwartz and Moran, 1999) confirming the hypothesis that the 

timing of muscle activation is generated by the central neural structures. For instance, the 

agonist–antagonist organization of the muscles and the reciprocal mode of command are 

represented by the activity of a subset of cortical neurons correlated inside of cortical maps, 

with activation of one group of muscles linked to a simultaneous decrease in the activity of 

the opposing set of muscles (Cheney et al. 1985; Jackson et al. 2003, 2007; Capaday, 2004). 

The organization of the EMG burst is, in some instances, the peripheral reflection of the 

central rhythmical activity of the brain during the movement genesis (Bengoetxea et al. 

2010). This rhythmical organization could be viewed as resulting from a motor binding 

process (Sanes and Truccolo, 2003) supported by the synchronization of cortical neurons 

forming functional assemblies in the premotor and primary motor cortex (Jackson et al. 

2003; Hatsopoulos et al. 2003, 2007; Rubino et al. 2006). Moreover, the timing of the 

antagonist EMG burst is pre-programmed by the cerebellum and our DRNN has been able 

to learn and reproduce such aspect of motor control (Cheron et al. 2007). This will permit to 

use the antagonist EMG burst to stop adequately a prosthetic movement. We have also 

demonstrated that the DRNN is able to reproduce the major parameters of human limb 

kinematics such as: (1) fast drawing of complex figure by the upper limb (Cheron et al. 1996, 

Draye et al. 1997), (2) whole-body straightening (Draye et al. 2002), (3) lower limb 

movement in human locomotion (Cheron et al. 2003; Cheron et al. 2006) and (4) pointing 

ballistic movement (Cheron et al. 2007). In all of these experimental situations we have 

found that the attractor states reached through DRNN learning correspond to biologically 

interpretable solutions (Cheron et al. 2007). It was recently demonstrated that neural 

network with continuous attractors might symbolically represent context-dependent 

retrieval of short-term memory from long-term memory in the brain (Tsuboshita and 

Okamoto, 2007). Indeed, as recurrent neural networks take context and historical 

information into account they are recognized as universal approximators of dynamical 

systems (Hornik et al. 1989; Doya, 1993). This means that the DRNN mapping between EMG 

to kinematics may give rise to a dynamical controller of human movement. 

3. The DRNN structure 

Our DRNN is governed by the following equations: 

 
dy

-y  I
dt

i
i i i iT = + F(x )+  (1) 

where F(α) is the squashing function F(α) = (1+e -α)-1, yi is the state or activation level of unit i, 
It is an external input (or bias), and xi is given by: 

 ij yi j
j

x = w∑  (2) 
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which is the propagation equation of the network (xi is called the total or effective input of 
the neuron, Wij is the synaptic weight between units i and j ). The time constants Ti will act 
like a relaxation process. It allows a more complex dynamical behaviour and improves the 
non-linearity effect of the sigmoid function (Draye et al. 1996, 1997). In order to make the 
temporal behaviour of the network explicit, an error function is defined as: 

 
1

0

,t  dt
t

t

E = q(y(t) )∫  (3) 

where t0 and t1 give the time interval during which the correction process occurs. The 
function q(y(t ), t ) is the cost function at time t which depends on the vector of the neuron 
activations y and on time. We then introduce new variables pi (called adjoint variables) that 
will be determined by the following system of differential equations:  

 ij

1 1
p  - e  -  w  F  p'i

i i j j
i ij

dp
= (x )

dt T T
∑  (4) 

with boundary conditions pi (t1)=0. After the introduction of these new variables, we can 
derive the learning equations: 

 
1

0

1
F  p  dt'

i j j
ij i t

t
├E

= y (x )
├w T ∫  (5) 

 
1

0

dy1

dt
i

i
i i t

t
├E

= p
├T T ∫  (6) 

The training is supervised, involving learning rule adaptations of synaptic weights and time 
constant of each unit (for more details, see Draye et al. 1996). This algorithm is called 
‘backpropagation through time’ and tries to minimize the error value defined as the 
differential area between the experimental and simulated output kinematics signals. 

3.1 Improved DRNN training in case of noisy signals 
We found that for certain noisy biological signals, the results obtained using the procedure 

described above were not satisfying. In some cases the convergence to a minimum error 

value was very slow or the learning process could lead to some bifurcations, as shown in 

Figure 1. In order to solve those problems, we brought two improvements to the DRNN 

training procedure: firstly, by using a convergence acceleration technique, and secondly by 

developing a technique to optimize the DRNN topology (i.e. the number of hidden neurons) 

to use.  

The convergence acceleration technique we used is inspired from Silva and Almeida (1990). 
In their method, they defined an adaptive learning rate ┝ij different for each inter-neuron 
connection wij, namely for each synaptic weight and time constant. The acceleration consists 
in modifying the learning rate depending on the error function gradient sign. If the sign 
changes after iterating, it indicates that the learning went too far and so that the learning  
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Fig. 1. In A, typical example of a training procedure where the error function increases with 
the number of iterations before enhancements. In B, same illustration after enhancements. 
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step is too big. In this case, the learning rate is multiplied by d (by default, d=0.7). If there is 
no sign change after iterating, it means that the learning rate is too small. It is then 
multiplied by u (by default, u=1.3) in order to increase the step length and thus accelerate 
the search for the minimum error value. Formally, the algorithm is the following: 

• Small values are chosen for each ┝ij 
• At the step n, the learning rate is defined as: 

If 

( ) ( 1) 0
ij ij

E E
n n

w w

∂ ∂
⋅ − ≥

∂ ∂
 

Then 
┝ij(n) = ┝ij(n-1) · u 

Else 

┝ij(n) = ┝ij(n-1) · d  

• The connections wij are incremented:  

( ) ( ) ( )ij ij
ij

E
w n n n

w
ε ∂

Δ = − ⋅
∂

 

We observed that this method effectively accelerates the learning convergence, but can also 
lead to an abnormal behavior such as a monotonous increase of the error function along the 
number of learning steps as shown in Figure 1 B. Therefore, a new procedure was 
developed checking at each learning step if the new learning rate ┝ij will not lead to an 
increase of the error function. In that case, learning rates are halved. For each step n, the 
mathematic formalism is the following: 

If E(n + 1) > E(n) 
Then ┝ij(n) = ┝ij(n)/2  

Thanks to this procedure, the error function exhibits now a much better behavior, as 
depicted in Figure 2A. Finally, in order to obtain the best results as possible, the parameters 
that lead to the lowest error are stored along the learning. Thanks to those enhancements, 
the DRNN has a higher probability to converge in the training phase.  
Because the initial values of the parameters are random, a global optimization of the 
topology is valuable. It consists in training a certain amount of different neural networks 
with a certain topology and then, the same procedure has to be done again with another 
topology. Finally, the total amount of DRNNs is tested on another dataset and the best 
DRNN is chosen based on an error criterion. This criterion can be the sum of training and 
testing errors, the testing error, or any other combination. Figure 2A and B show 
respectively the impact of this approach on the link between a noisy and complex signal and 
the curve of walking kinematics before and after enhancements,  

4. DRNN identification of EMG-kinematic relationships during maturation of 
toddlers’ locomotion 

The emergence of the very first steps in toddler’s locomotion is considered as a milestone in 
developmental motor physiology because it represents the first basic skill implicating whole 
body movement in vertical posture upon which goal directed repertoires are built (Cheron 
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Fig. 2. In A, illustration of a bad result of the DRNN output due to a bifurcation in the 
training procedure. In B, example of successful results obtained thanks to the acceleration 
method applied during the training procedure and optimization of the DRNN topology 
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et al. 2001a,b, 2006; Ivanenko et al. 2004). The generation of the first steps is performed on 
the basis of highly variable and complex EMG patterns including erratic bursts and co-
contractions (Cheron et al. 2006; Okamoto and Goto. 1985, Okamoto and Okamoto, 2001, 
Okamoto et al. 2003). Such behavioural emergence may be analyzed in the context of neural 
group selection theory for which final or more stable solutions are selected upon numerous 
variable and unstable patterns (Edelman, 1987; Sporns and Edelman, 1993; Thelen and 
Corbetta, 1994; Turvey and Fitzpatrick, 1993). However, classical analytic tools failed to 
extract such relationships during the first three months of gait maturation. We apply our 
DRNN methodology previously developed in adult gait (Cheron et al. 2003) here for 
studying the functional relationships between multiple EMG signals and the elevation 
angles of the three main segments of the lower limb in toddlers’gait. The first derivative of 
elevation angles of the thigh, shank and foot were chosen because they represent robust 
parameters of human locomotion (Borghese et al. 1996; Lacquaniti et al. 1999) including in 
children (Cheron et al. 2001a). 
Despite the recent development of artificial neural networks using multiple EMG time 
course as input for providing joint torque (Koike and Kawato, 1995; Savelberg and Herzog, 
1997), joint angular acceleration (Koike and Kawato, 1994; Draye et al. 2002) or position 
(Cheron et al. 1996) of the upper limb, this type of mapping has sparsely been used in the 
field of human locomotion (Sepulveda et al. 1993). Conceptual and technical problems could 
explain why the neural network approach has been limited in the field of locomotion 
studies. Walking movement, although seemingly stereotyped, is highly complex as it 
integrates equilibrium constraints and forward propulsion in a multi-joint system. Therefore 
separate feedforward neural models could be developed, one for postural control and one 
for propulsion movement implicating some gating or selecting devices for an appropriate 
switch between these different networks. Although this type of approach has proved 
successful for arm movement control (Koike and Kawato, 1994), it is problematic for the 
control of task with simultaneous postural and movement requirements such as locomotion 
where distinction between the two modes of control is difficult on the basis of EMG signals. 
Moreover, in walking the great number of joints and body segments involved pose the 
problem of choice of the kinematic parameter to be used as the output of the neural 
mapping. Technically, the majority of neural networks used for EMG-to-kinematics 
mapping have been of the feedforward type (Sepulveda et al. 1993; Koike and Kawato, 
1994). In these networks, information flows from the input neurons to the output neurons 
without any feedback connections. This excludes context and historical information, which 
are thought to be crucial in motor control (Kelso, 1995).allowing to take into account time 
history and re-entrance of information flux into the controller. 
As explained above, the DRNN attractor states reached through artificial learning may 
correspond to biologically interpretable solutions and provide a new way to understand the 
development of the functional relationship between multiple EMG profiles and the resulting 
movement. Here, we followed the evolution of these attractor states during the early 
maturation of gait. As the coupling of neural oscillators between each other and with limb 
mechanical oscillators is progressively integrated with growing walking experience, we 
hypothesized that the EMG to kinematics mapping by the DRNN will become an easier task 
during the maturation of gait. For this, 8 surface EMG and kinematics of the lower limb 
have been acquired in 9 toddlers, (5 girls and 4 boys) by the motion analysis system ELITE 
(BTS Italy), during their very first unsupported steps (Fig. 3A). Four toddlers have been 
acquired on different days preceding and following the onset of independent walking. 
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Fig. 3. In A, illustration of one toddler during the acquisition of gait data (A). The kinematics 
was recorded by the optoelectronic ELITE system (BTS, Italy) and retro-reflective markers 
fixed on the skin over the following bony landmarks: Fifth Metatarsal Head (5M), Lateral 
Malleolus (LM), Lateral Condylus (LC), Greater Trochanter (GT), Anterior Iliac Crest (IL), 
Acromium (AC), Ear (EAR), Nose (NOS). The EMGs were recorded by surface electrodes  
fixed over the following muscles: Tibialis Anterior (TA), Gastrocnemius Medialis (GM), 
Vastus Lateralis (VL), Biceps Femoris (BF), Tensor Fascia Lata (TFL), Gluteus Maximus 
(GLM), Rectus abdominis (ABD) and Erector Spinae (ERS).  In B, architecture of the 
Dynamic Recurrent Neural Network (DRNN), illustrating 20 fully connected Hidden Units 
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(H0-H19), two Input Units on the left (I0 and I1), and one Output Unit (O0). Note that in this 
experiment we used 8 Inputs, 3 Outputs and 35 Hidden Units. In C, stick diagrams of one 
representative toddler on four acquisition days:  A: two weeks before the very first 
unsupported steps. A parent holds one hand of the toddler. B: very first unsupported steps. 
C: after one week of independent walking experience. D: after 1.5 month of independent 
walking experience. In D, EMG signals corresponding to the acquisitions of the stick 
diagrams shown in C. These signals are filtered, rectified and integrated. For each day, at 
least 3 training sets of two successive walking cycles, starting with “Toe Off” are used in this 
study. 

Informed consent has been given by their parents and the procedures were conformed to the 
Declaration of Helsinki. 
The smoothed and rectified EMG signals of one representative subject are illustrated in 
Figure 3, C. These signals are sent to all 35 hidden units of the DRNN (Fig. 3B), whose 
synaptic weights and time constants are adjusted during the supervised learning procedure.  
In order to quantify the likeness of the simulated output signals with respect to the original 
one, we calculated a similarity index (SI) using the following equation: 
 

( )

( )( ) ( )( )
1 2

2 2
1 2

1

2

f t f (t)dt
SI =

f t dt f t dt⎡ ⎤
⎢ ⎥⎣ ⎦

∫

∫ ∫

 

If  f1(t) = f2(t), then SI = 1. 
Then the DRNN output (f2) is compared to the experimental kinematics' data (f1) (this 
correspondence is expressed by SI). If an SI > 0.99 is reached within 10000 iterations, we 
consider that the training has been successful and its generalization capacities will be tested.  
The Figure 4A illustrates the artificial learning success rate (ALSR) considered as the ratio of 

“successful network trainings” (reaching a SI > 0.99 between the acquired kinematics and 

the simulated ones within 10000 iterations), compared to the total learning trials, for each 

acquisition day. There is no significant difference in the ALSR (F=2.17; p=0.17) between 

different days. This means that artificial learning success rates are not significantly related to 

the degree of early maturation in gait and that the DRNN reach their attractor states 

whatever the maturation of the input-output signals. The natural variability of the toddler’s 

gait kinematics was assessed by the analysis of the different steps performed during the 

same day by calculating the same SI used before to qualify the ALSR. In this case, a SI=1 

means that there is no variability between the different steps. We found that it is only after 

44 days of unsupported walking experience that the pattern is more stabilized. The 

generalization ability was assessed by the comparison of the kinematics calculated from 

unlearned EMG of the same acquisition day by a successfully trained DRNN with the 

kinematics corresponding to this unlearned EMG (Fig. 4C). The recognition index (RI) uses 

the same formula as the previously calculated SI but in this case the comparison is made 

between simulation obtained when an unlearned pattern is used as input and the real one. 

Interestingly, in contrast to the evolution of the SI, the RI presented a regular improvement 

from the first unsupported steps on to the 44th day (F=7.25; p=0.0003). 

We may conclude from these results that while the ALSR is not significantly related to the 
degree of early maturation in gait, there is a clear improvement of the identification process 
for the more experienced walking patterns (day 4), which are also more reproducible.  
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Fig. 4. Histograms of the evolution of the artificial learning success rate (ALSR) (A), the 
similarity index (SI) (B) and the recognition index (RI).    

Correct recognition of unlearned EMG patterns by a trained DRNN is significantly related 
to the walking experience of the toddler. In this context, the DRNN could be used to follow 
and quantify the maturation of a toddler’s and/or child’s gait. The increase in the RI during 
gait maturation could be interpreted as a better coupling between neural oscillators and 
limb mechanical oscillators, which could be progressively integrated by toddlers. By this 
way, the relationship of multiple muscle EMGs and resulting kinematics can slowly be 
generalized. This fits relatively well with Gibson’s concept (1988) suggesting that dynamic 
patterns emerge through exploration of available solutions before subsequent selection of 
preferred patterns. (Gibson, 1988). The initial solutions acquired through self-organized 
principle are often unstable and become more stable with practice. In this initial state, the 
DRNN can learn but its generalization ability is weak. It is only when behaviours have been 
practiced sufficiently and when the task and the context are unchanging that stable patterns 
emerge facilitating the generalization ability of the DRNN. Neurophysiological data are in 
favour of the existence of a central pattern generator (CPG) involving the spinal and supra 
spinal levels acting as a dynamic network generating rhythmic leg patterns (Hadders-Algra, 
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2002; Hadders-Algra et al. 1996). The dynamics of this innate complex progressively 
emerges through the process of repeated cycles of action and perception (Edelman, 1987; 
Sporns and Edelman, 1993). Our DRNN approach of EMG to kinematics mapping of 
toddler’s locomotion offers a new investigation tool of such complex processing. 
 

 

Fig.5. Lunging movement realized by an elite fencer. In A, kinogram of the whole body 
movement. In B, angular position (A, D), angular velocity (B,E) and angular acceleration of 
the elbow and the shoulder, respectively. In C, rectified EMG bursts of the anterior deltoïd 
(AD), posterior deltoïd (PD), medial deltoïd (MD), biceps (BI), triceps (TRI), flexor common 
(FLEX), radialis (RAD) and interroseus (INT) muscles. In D, simplified sketch of muscles 
anatomy. In E, kinogram of the upper limb extension movement. The vertical lines 
correspond to the time of the touch. The black arrows pointed to the onset of the BI and TRI 
muscles. 
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5. DRNN approach reveals interaction torque in sport movements 

EMG to kinematics mapping was applied to lunging movement performed by elite fencers. 
This stereotypical movement (Fig. 5A) is a whole body movement, but our mapping was 
only concerned with the upper limb movement (Fig. 5C) and related muscles (Fig. 5D). The 
angular acceleration of the shoulder and the elbow (Fig. 5E) were used as output signals and 
the rectified EMG of 8 superficial muscles (Fig. 5B) as input signals of a DRNN composed in 
this case of 20 neurons. 
The thrusting movement of the upper limb consists of a very rapid extension of the elbow 
joint (Fig 5B). Logically, this elbow extension should be accomplished by the prime mover 
action of the triceps (TRI)(Fig. 5C). However, the inspection of the time onset of the EMG 
burst of the TRI muscles shows that it is not the first event and that the EMG of the biceps 
muscle (BI) arrives earlier (Fig. 5C and 6C). Quite surprisingly, this muscular strategy only 
occurred in elite fencers and not in amateur fencers and may be explained by using a 
peculiar mechanical law implicating the interaction torque between the shoulder and the 
elbow. Indeed, the EMG recording demonstrated that the BI muscle is the prime mover of 
the extension. How this can be done?  

 

 

Fig. 6. DRNN simulation of the thrusting movement before (stick diagram in A) and after the 
artificial increase (X3) of the EMG burst of the BI muscle (stick diagram in B) (rectangular grey 
area in C). Note the hyperextension of the elbow induced by the BI increase. 
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As a biarticular muscle, the BI is able to produce an elevation of the arm. If this movement is 
explosive it can induce a passive but very fast extension of the forearm like in a flying effect. 
After the learning phase the DRNN is able to reproduce the lunging movement (Fig. 6A) 
and it is thus possible to use it as a simulator for testing the hypothesis that this extension 
movement is due to the effect of a dynamic interaction torque. The net torque is defined as 
the sum of all of the torques acting on a joint. In the lunging movement of the arm, the net 
torque acting at the elbow is equal to the sum of the gravitational, interaction, and muscle 
torques. In our case, the EMG bursts may be considered as a representation of the muscle 
torques acting on the different implicated joints and used as DRNN inputs. Bastian et al. 
(1996) elegantly established the inverse dynamics equations for the extension movement of 
the arm during a reaching task. The calculation of the net torque as the product of the 
moment of inertia of the involved segments and the angular acceleration around a given 
joint, determines the time series of joint angles and resultant limb trajectory. The angular 
acceleration of the shoulder and the elbow (Fig. 6B,C,F) are given here as output signals for 
the DRNN mapping. If the gravitational torque for the same movement remains the same 
regardless how fast the movement is made, in contrast the dynamic interaction torque, the 
passive mechanical torque generated when two or more linked segments move one another, 
depends greatly on joint velocity and acceleration. Like in the very fast lunging movement 
performed by the elite fencers, the interaction torques increase in magnitude. Thus in order 
to test our hypothesis that the DRNN has identified the dynamic interaction torque acting 
on the elbow, we have artificially increased the amplitude of the BI burst acting as the prime 
mover of the lunging movement (Fig. 6). When this increased BI burst (3X) was used in 
conjunction with the other unmodified EMG burst as input for a learned DRNN, it 
produced a strong reinforcement of the extension movement of the elbow. This 
demonstrates that the DRNN has identified the BI burst as inducing an interaction torque at 
the elbow joint by the production of the elevation movement of the arm. The final proof of 
this interaction effect should be obtained by performing inverse dynamics analysis in 
parallel to the DRNN simulation, but this demonstration is out of the scope of the present 
chapter.  
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