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1. Introduction    

Carpal tunnel syndrome (CTS), an entrapment neuropathy of median nerve at the wrist, is 
one of the most common peripheral nerve disorders with an incidence of 99 per 100.000 
population (Bland JDP, 2005., Sternbach G, 1999). CTS is more common in females than 
males, with a ratio of seven to three. Although it is more prevelent between the fourth and 
sixth decades, it occurs in all age groups (Kanaan N & Sawaya RA, 2001). The condition 
produces bilateral symptoms in approximately half of patients (von Schroeder HP & Motte 
MJ, 1996), but dominant hand usually is more severely affected, especially in idiopathic 
cases (Ilbay K et al.,2010,  Preston DC & Shapiro BE, 2005  ). 
CTS arises from compression of the median nerve between the transverse carpal ligament, 
also called the flexor retinaculum, superiorly, and the flexor tendons, and carpal bones 
inferiorly. Anatomically, the fibres of median nerve originate from the fifth, sixth, seventh, 
and eighth cervical roots, and the first thoracic root and pass through the lateral and medial 
cords of the brachial plexus. The motor branch innervates the abductor pollicis brevis, 
opponens pollicis, and the two lateral lumbricals in the hand. The sensory branch supplies 
sensation to the volar aspect of the radial three digits and the lateral half of the fourth digit 
extending to the palm and the distal dorsal aspects of these digits beyond the distal 
interphalangeal joints (Kanaan N & Sawaya RA, 2001).  
There are two distinct varieties of CTS-acute and chronic. The acute form is relatively 
uncommon condition in which there is a rapid and sustained rise in interstitial pressure in 
the carpal tunnel. This most commonly occurs as the result of a distal radius fracture as 
described by Sir James Paget (Sternbach G, 1999). Other causes include burns, rheumatoid 
arthritis, infections, haemorrhage (caused by coagulopathy or trauma), repetitive and 
intensive manual work and injection injuries (Table 1) (Sternbach G, 1999., Aroori S & 
Spence RAJ, 2008., Luchetti R, 2007). 

                                                 
* Corresponding authore-mail: konuralpilbay@yahoo.com 

www.intechopen.com



 Recurrent Neural Networks for Temporal Data Processing 

 

38 

Burns 
Wrist fracture and dislocation 
Haemorrhage 
Infections 
Injection injuries  
Rheumatoid arthritis 
Repetitive and intensive manual work 

Table 1. Acute CTS causes 

The chronic form is much more common and symptoms can persist for months to years. 
However, in only 50 % of cases are the cause identified (Aroori S & Spence RAJ, 2008). The 
causes of chronic CTS summarised in Table 2. 
Any process that increases the volume of the contents of the carpal tunnel, such as tumour, 
inflammation, and edema, will elevate the pressure within the canal (Sternbach G, 1999). 
The pathophysiological mechanism of the nerve lesion is ischemic with the compression of 
the vasa nervosum secondary to the increased pressure ( Sunderland S, 1976). 
In most patients, the cause of CTS is not clear and it is defined as idiopathic. The idiopathic 
forms frequently show up as “non specific tenosynovitis” (Sternbach G, 1999., Luchetti R, 
2007). 
Patients with CTS may present with a variety of symptoms and signs. In early stages, 
patients usually complain of aching, burning, tingling or numb sensations in the distribution 
of median nerve distal to wrist. The portion of the hand involved is typically the thumb, 
index and middle fingers, and radial half of the ring finger. Symptoms are typically worse  
at night, are exaggerated by a flexed or extended wrist posture (Kanaan N & Sawaya RA, 
2001., Preston DC & Shapiro BE, 2005 ). The pain may radiate to the forearm, arm, or rarely 
shoulder. Motor complaints include finger weakness and the disease may be mistaken for 
cervical radiculopathy, shoulder bursitis, thoracic outlet syndrome, transient ischemic 
attack, coronary artery ischemia, tendinitis, fibrositis or lateral epicondylitis. Long-term 
involvement leads to thenar muscle atrophy, with loss of thumb abduction and opposition 
strength (Sternbach G, 1999., Kanaan N & Sawaya RA, 2001). 
The diagnosis of CTS based mainly on clinical symptoms and nerve conduction studies. 
Imaging studies have played a minimal role in evaluation of CTS. Magnetic resonance 
imaging (MRI) has recently been shown to help in establishing the diagnosis. But the 
application of MRI in CTS diagnosis has been limited and should remain so for reasons: 1) 
routine electrophysiologic studies are adequate and can be performed with confidence in 
both community and academic settings; 2) MRI remains expensive; 3) acquisition of high-
quality peripheral nerve images and their expert interpretation is not widely available; and 
4) the low specifity of MRI could complicate treatment decision (Fleckenstein JL & Wolfe GI, 
2002).  
High-resolution ultrasound has advantages over MRI in terms of cost and provides dynamic 
images. It has been shown to produce accurate measurements of carpal tunnel and nerve 
diameters (Kamolz LP et al, 2001). 
This chapter presents the use of recurrent neural networks (RNNs) for diagnosis of CTS. In 
different disciplines for modelling complex real-world problems, artificial neural networks 
(ANNs) have many applications. ANNs have been used for solution of different problems, 
such as pattern classification, time series prediction, nonlinear control, function 
approximation, and biomedical signals analysis. ANNs can produce nonlinear models 
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A.Local and regional causes 
 

B.Systemic causes 

Tumours    
                                     
    Ganglion                         
    Haemangioma        
    Cyst           
    Lipoma  
    Neuroma                      
   
Anatomical anomalies 
    Bony abnormalities 
    Abnormal muscle bellies 
    Persistent median artery 
    Aneurysm or arterio-venous malformation   
 
Inflammatory 
    Tenosynovitis 
    Hypertrophic synovium 
    Histoplasma fungal infection 
    Gout 
    Amyloidosis 
 

Diabetes 
Alcohol 
Obesity 
Hypothyroidism 
Pregnancy 
Menopause 
Systemic lupus erythematosus 
Dermatomyositis 
Scleroderma 
Renal failure  
Long-term haemodialysis 
Acromegaly 
Multiple myeloma 
Sarcoidosis 

Table 2. Causes of chronic form of CTS 

relating the inputs (the independent variables of a system) to the outputs (the dependent 
predictive variables). ANNs are desirable because learning and adaptivity allow the system 
to modify its internal structure in response to changing environment and the model can be 
applied to the unlearned data. RNNs have a wide application field among the ANNs 
architectures. One of the most important applications of pattern recognition is automated 
diagnostic systems and they have role at assisting doctors in making diagnostic decisions 
(Haykin S, 1994; Basheer I.A. & Hajmeer M., 2000; Chaudhuri B.B. & Bhattacharya U., 2000; 
Miller A.S. et al., 1992). 
The recurrent neural networks (RNNs) (Elman J.L., 1990; Thissen U. et al., 2003; Übeyli E.D., 
2008a; 2008b; 2009a; 2009b; Übeyli E.D. & Übeyli M., 2008; Ilbay K et al., 2010) have been 
studied extensively for classification, regression and density estimation. The results of the 
existing studies (Elman J.L., 1990; Thissen U. et al., 2003; Übeyli E.D., 2008a; 2008b; 2009a; 
2009b; Übeyli E.D. & Übeyli M., 2008; Ilbay K et al., 2010)  showed that the RNNs have high 
accuracy in classification of the biomedical data, therefore we used the RNNs in the 
diagnosis of CTS. In this study, in order to diagnose CTS, the RNNs and multilayer 
perceptron neural network (MLPNN) trained with the Levenberg-Marquardt algorithm are 
implemented (Figure 1). A significant contribution of the present chapter is to examine the 
performance of the RNNs on the diagnosis of CTS (normal, right CTS, left CTS, bilateral 
CTS).    
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Fig. 1. A schematic representation of an Elman recurrent neural network. z-1 represents a one 
time step delay unit (Thissen U. et al., 2003).  

2. Electrophysiological tests for the diagnosis of CTS: nerve conduction 
study and electromyography 

The combination of clinical symptoms and signs with electrodiagnostic findings allows 
possible prognostic validation for the neurosurgeon. Neurophysiology is a method that 
solely expresses the functional state of the median nerve alone with carpal tunnel (Haase J, 
2001). 
The usual electrophysiological procedures start with nerve conduction studies (NCS), 
sensory followed by motor NCS. Next, electromyography (EMG) is performed (Cornblath 
DR & Chaudry V, 2001). 
NCS are based on the principle of nerve stimulation across the area of interest. For median 
nerve, the nerve is stimulated proximal to the carpal ligament and compound muscle action 
potential (CMAP) is picked up by skin electrodes placed over the thenar eminence. The 
CMAP reflects the status of the motor fibres in the median nerve. The amplitude of the 
CMAP reveals stimulation of the whole population of motor nerve fibres. The duration 
reflects the conduction velocities across the different fibres. The latency, between the point 
of nerve stimulation and the onset of the CMAP, reveals the fastest velocity of the motor 
fibres across the carpal tunnel (Kanaan N & Sawaya RA, 2001). 
The sensory component of the median nerve is affected much earlier than the motor 
component and in early stages of CTS there is usually a delay in the sensory nerve 
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conduction study. Stimulation of sensory fibres is done at the same location as for motor 
stimulation and the sensory nerve action potential is recorded from the distal phalange of 
the second or third digits. The study of the sensory fibres can be performed orthodromically 
or anti-dromically (Kanaan N & Sawaya RA, 2001., Aroori S & Spence RAJ, 2008). 
Those studies usually involve a comparison of the median nerve to another nerve in the 
same hand. The ulnar nerve is the nerve most commonly used for comparison (Preston DC 
& Shapiro BE, 2005). 
Needle electromyography (EMG) is a complementary rather than a compulsory test in 
addition to  NCS. EMG describes the functional state of the muscle fibres that are dependent 
on innervation by motor axons. In CTS, it is usually performed on the median nerve –
innervated muscles of the hand and forearm. Denervation activity in the EMG reflects recent 
nerve damage. Neurogenic changes and reinnervation potentials indicate chronic nerve 
pathology (Kanaan N & Sawaya RA, 2001 ). Following of nerve decompression, a typical 
reiinervation pattern is found often earlier than that by clinical examination (Haase J, 2007). 
EMG is also used to reveal other nerve lesions in the involved arm when the findings of 
NCS are not consistent with CTS. These include nerve entrapment in the forearm, plexus 
lesions or cervical root disease (Kanaan N & Sawaya RA, 2001). 

3. Database description and evaluation of electrophysiologic recordings 

We retrospectively considered 350 patients (289 females and 61 males) with various CTS 
symptoms and signs who underwent nerve conduction studies. Of these patients, 121 had 
no electrophysiologic evidence of CTS, and were accepted as normal group (103 females and 
18 males). 229 of the patients were suffered from right CTS (32 females and 15 males), left 
CTS (22 females and 14 males) and bilateral CTS (132 females and 14 males). Patients with 
generalized peripheral neuropathy caused by diabetes or other medical illness and those 
who had undergone prior carpal tunnel surgery were not included in the study. Each 
subject completed a self-administered questionnaire. The questionnaire focused on hand 
symptoms that are commonly associated with CTS. 
All the studies were performed with the subjects at supine position in a warm room with the 
temperature maintained at 26 to 28°C. Skin temperatures were checked over the forearm. 
Nerve conduction studies were performed using standard techniques of supramaximal 
percutaneous stimulation with a constant current stimulator and surface electrode recording 
on both hands of each subject. Sensory responses were obtained antidromically stimulating 
at the wrist and recording from the index finger (median nerve) or little finger (ulnar nerve), 
with ring electrodes at a distance of 14 cm. The results of the median motor nerve obtained 
by stimulating the median motor nerve at the wrist and elbow and the recording was done 
over the abductor pollicis brevis muscle. The results of the ulnar motor nerve were 
performed by stimulating the ulnar nerve at the wrist, below the elbow, and above the 
elbow and the recording was done over the abductor digiti minimi muscle, with the arm 
flexed 135°. In the present study, the following median nerve and ulnar nerve measures 
were used: (1) distal onset latency of the sensory nerve action potential (DL-S); (2) distal 
onset latency of the compound muscle action potential (DL-M). Median sensory latency 
greater than 3.5 ms, median motor latency greater than 4.2 ms was used as the criteria for 
abnormal median nerve conduction (Budak F et al., 2001). 
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4. Recurrent Neural Networks 

In the diagnosis applications, Elman RNNs were used and therefore the Elman RNN is 
presented in this chapter. In principle, the set up of an Elman RNN is formed as a regular 
feedforward network. In the architecture of the network, all neurons in one layer are 
connected with all neurons in the next layer. The only difference in the architecture of the 
Elman RNN is the context layer which is a special case of a hidden layer. The neurons in the 
context layer, which are called as context neurons, hold a copy of the output of the hidden 
neurons. The output of each hidden neuron is copied into a specific neuron in the context 
layer. The value of the context neuron is used as an extra input signal for all the neurons in 
the hidden layer one time step later. Therefore, the Elman network has an explicit memory 
of one time lag (Elman J.L., 1990; Thissen U. et al., 2003). 
The strength of all connections between neurons are denoted with a weight. Initially, all 
weight values are chosen randomly and are optimized during the stage of training. In an 
Elman network, the weights from the hidden layer to the context layer are set to one and are 
fixed because the values of the context neurons have to be copied exactly. After this stage, 
the initial output weights of the context neurons are equal to half the output range of the 
other neurons in the network. The training algorithms of the Elman network are similar to 
the training algorithms of the regular feedforward neural networks. So, the Elman network 
can be trained with gradient descent backpropagation and optimization methods (Thissen 
U. et al., 2003; Pineda F.J., 1987). In the many applications, the backpropagation has some 
problems. The algorithm cannot find the global minimum of the error function, because 
gradient descent can probably get stuck in local minima, where it may remain indefinitely. 
Therefore, in order to improve the convergence of the backpropagation a lot of variations 
were proposed (Haykin S., 1994). In the training of neural networks optimization methods 
such as second-order methods (conjugate gradient, quasi-Newton, Levenberg-Marquardt) 
have also been used. The Levenberg-Marquardt algorithm combines the best features of the 
Gauss-Newton technique and the steepest-descent algorithm and  omitted their limitations. 
The algorithm suffers from the problem of slow convergence (Battiti R., 1992; Hagan M.T. & 
Menhaj M.B., 1994) and can obtain a good cost function compared with the other training 
algorithms.   
The Levenberg-Marquardt algorithm is a least-squares estimation algorithm based on the 
maximum neighborhood. ( )E w  be an objective error function composed of m  individual 
error terms 2( )ie w  as follows: 

 
22

1

( ) ( ) ( )
m

i
i

E e f
=

= =∑w w w ,  (1) 

where ( )22( )i di ie = −w y y  and diy  is the desired value of output neuron i , iy  is the actual 
output of that neuron. 
It is assumed that function ( )f ⋅  and its Jacobian J  are known at point w . The Levenberg-
Marquardt algorithm is trying to compute the weight vector w  such that ( )E w  is 
minimum. Then by the Levenberg-Marquardt algorithm, a new weight vector 1k+w  can be 
computed from the previous weight vector kw  as follows: 

 1k k kδ+ = +w w w , (2) 
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where kδw  is defined as  

 1( ( ))( )T T
k k k k kJ f J Jδ λ −= − +w w I .   (3) 

In equation (3), kJ  is the Jacobian of f  computed at kw , λ  is the Marquardt parameter, I  

is the identity matrix (Battiti R., 1992; Hagan M.T. & Menhaj M.B., 1994). The Levenberg-
Marquardt algorithm can be explained as in the following:  
i. compute ( )kE w , 

ii. start with a small value of λ  ( 0.01λ = ), 
iii. solve equation (3) for kδw  and compute ( )k kE δ+w w , 

iv. if ( ) ( )k k kE Eδ+ ≥w w w , increase λ  by a factor of 10 and go to (iii), 

v. if ( ) ( )k k kE Eδ+ <w w w , decrease λ  by a factor of 10, update :k k k kδ← +w w w w  and 

go to (iii).       

5. Results and discussion 

In this application example, the inputs of the RNNs are the features of CTS (right median 
motor latency, left median motor latency, right median sensory latency, left median sensory 
latency). Tables 3 and 4 (Ilbay K et al., 2010) show the values including right median motor 
latency, left median motor latency, right median sensory latency, left median sensory 
latency (four features used as inputs of the classifiers) of sample records of two classes 
(bilateral CTS and normal) which are presented in reports of the subjects.  

Motor Nerve Conduction Study 

Site Latency  
(ms) 

Amplitude Area Segment Distance 
 (mm) 

Interval 
(ms) 

NCV (m/s) 

Median, L        
Wrist 4,74ms 7,83mV 16,09mVms Wrist  4,74ms  
Elbow 8,25ms 6,68mV 13,43mVms Wrist- Elbow   170mm 3,51ms 48,4m/s 
Median,R        
Wrist 6,42ms 6,77mV 15,66mVms Wrist  6,42ms  
Elbow 10,26ms 5,24mV 11,94mVms Wrist- Elbow   170mm 3,84ms 44,3m/s 
Ulnar, R        
Wrist 2,85ms 18,22mV 29,78mVms Wrist  2,85ms  
Elbow 5,91ms 17,77mV 29,36mVms Wrist- Elbow   180mm 3,06ms 58,8m/s 

Sensory Nerve Conduction Study 

Site Latency  
(ms) 

Amplitude Area Segment Distance  
(mm) 

Interval 
(ms) 

NCV 
(m/s) 

Median, L        
Wrist 4,32ms 19,60uV 1,24uVms Wrist  4,32ms  
Median,R        
Wrist 4,72ms 7,20uV 1,00uVms Wrist  4,72ms  
Ulnar, R        
Wrist 2,58ms 31,60uV 1,28uVms Wrist  2,58ms  

Table 3. Values of median motor and sensory latency of the conduction study of the patient 
with bilateral CTS (Ilbay K et al., 2010). 
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The samples of the electromyogram (EMG) records of the patient with bilateral CTS and the 
normal subject are shown in Figures 2 and 3 (Ilbay K et al., 2010). MATLAB software 
package (MATLAB version 7.0 with neural networks toolbox) was used for implementation 
of the RNN and the MLPNN. The determination of architecture and training are important 
for the neural networks used in classification. The sizes of the training set and test set are 
determining the efficiency of neural networks. In order to determine the sizes of the training 
and testing sets of the CTS database, various experiments were performed. In the developed 
classifiers, 100 of 350 records were used for training and the rest for testing. The training set 
consisted of 40 normal, 17 right CTS, 12 left CTS and 31 bilateral CTS. The testing set 
consisted of 81 normal, 30 right CTS, 24 left CTS and 115 bilateral CTS (Ilbay K et al., 2010). 

Motor Nerve Conduction Study 

Site Latency  
(ms) 

Amplitude Area Segment Distance 
(mm) 

Interval 
(ms) 

NCV 
(m/s) 

Median, L        
Wrist 3,92ms 10,91mV 17,95mVms Wrist  3,92ms  
Elbow 7,76ms 12,32mV 20,40mVms Wrist- Elbow   220mm 3,81ms 57,7m/s 
Median,R        
Wrist 3,72ms 2,70mV 64,21mVms Wrist  3,72ms  
Elbow 8,04ms 3,38mV 51,41mVms Wrist- Elbow   250mm 4,32ms 57,9m/s 
Ulnar, R        
Wrist 2,58ms 4,07mV 3,51mVms Wrist  2,85ms  
Elbow 6,72ms 3,31mV 2,64mVms Wrist- Elbow   240mm 4,14ms 58,0m/s 

Sensory Nerve Conduction Study 

Site Latency  
(ms) 

Amplitude Area Segment Distance 
(mm) 

Interval 
(ms) 

NCV 
(m/s) 

Median, L        
Wrist 2,64ms 36,60uV 3,25uVms Wrist  2,64ms  
Median,R        
Wrist 2,76ms 11,60uV 1,82uVms Wrist  2,66ms  
Ulnar, R        
Wrist 2,58ms 25,90uV 1,28uVms Wrist  2,36ms  

Table 4. Values of median motor and sensory latency of the conduction study of the normal 
subject (Ilbay K et al., 2010). 

In the determination of efficient neural network architecture, experiments were done for 
different network architectures and the results of the architecture studies confirmed that 
networks with one hidden layer consisting of 25 recurrent neurons results in higher 
classification accuracy. In order to compare performance of the different classifiers, for the 
same classification problem MLPNN which is the most commonly used feedforward neural 
networks was implemented. The single hidden layered (20 hidden neurons) MLPNN was 
used to classify the CTS. The sigmoidal function was used as the activation function in the 
hidden layer and the output layer.  
The confusion matrices are used to display the classification results of the classifiers. In a 
confusion matrix, each cell contains the raw number of exemplars classified for the 
corresponding combination of desired and actual network outputs. The confusion matrices 
showing the classification results of the classifiers used for classification of the CTS are given 
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in Table 5 (Ilbay K et al., 2010). From these matrices one can tell the frequency with which 
record is misclassified as another. The test performance of the classifiers can be determined 
by the computation of sensitivity, specificity and total classification accuracy. The 
sensitivity, specificity and total classification accuracy are defined as:  
Sensitivity: number of true positive decisions / number of actually positive cases 
Specificity: number of true negative decisions / number of actually negative cases 
Total classification accuracy:  number of correct decisions / total number of cases 
A true negative decision occurs when both the classifier and the physician suggested the 
absence of a positive detection. A true positive decision occurs when the positive detection 
of the classifier coincided with a positive detection of the physician. 
 
A      B 

 
 
C      D                                                                     

 
Fig. 2. The samples of EMG records of the patient with bilateral CTS; A. Image of motor 
nerve conduction study of right median nerve, B. Image of motor nerve conduction study of 
left median nerve, C. Image of sensory nerve conduction study of right median nerve, D. 
Image of sensory nerve conduction study of left median nerve (Ilbay K et al., 2010). 
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  E     F                                                   

 
 
G     H                                                                      

   
Fig. 3. The samples of EMG records of the normal subject; E. Image of motor nerve 
conduction study of right median nerve, F. Image of motor nerve conduction study of left 
median nerve, G. Image of sensory nerve conduction study of right median nerve, H. Image 
of sensory nerve conduction study of left median nerve (Ilbay K et al., 2010). 

The classification accuracies (specificity, sensitivity, total classification accuracy) on the test 
sets of the classifiers are presented in Table 6 (Ilbay K et al., 2010), in order to show 
performance of the classifiers used for classification of the CTS. 
All possible sensitivity/specificity pairs for a particular test can be graphed by receiver 
operating characteristic (ROC) curves. Therefore, the performance of a test can be evaluated 
by plotting a ROC curve for the test and ROC curves were used to describe the 
performances of the SVMs. Sensitivity rises rapidly and 1-specificity hardly increases at all 
until sensitivity becomes high for a good test. 
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Output Result Classifiers 
Desired Result

Normal Right CTS Left CTS Bilateral CTS 

Normal 77 0 0 1 

Right CTS 2 28 0 2 

Left CTS 1 2 22 2 

RNN 

Bilateral CTS 1 0 2 110 

Normal 71 0 0 3 

Right CTS 5 26 1 4 

Left CTS 3 3 21 5 

MLPNN 

Bilateral CTS 2 1 2 103 

 

Table 5. Confusion matrix  (Ilbay K et al., 2010) 

 
 

Classification Accuracies (%) 

Classifiers 
Specificity 

Sensitivity 
(Right CTS) 

Sensitivity 
(Left CTS) 

Sensitivity 
(Bilateral 

CTS) 

Total 
classification 

accuracy 

RNN 95.06 93.33 91.67 95.65 94.80 

MLPNN 87.65 86.67 87.50 89.57 88.40 

 

Table 6. The values of the statistical parameters (Ilbay K et al., 2010)  

ROC curves which are shown in Figure 4 (Ilbay K et al., 2010) demonstrate the performances 
of the classifiers on the test files. From the classification results presented in Table 6 and 
Figure 4 (classification accuracies and ROC curves), one can see that the RNN trained on the 
features produce considerably high performance than that of the MLPNN. 

6. Conclusions 

The clinical symptoms and nerve conduction studies for the diagnosis of CTS are explained. 
The RNNs were used for automated diagnosis of CTS. The performance of the RNNs on the 
diagnosis of CTS (normal, right CTS, left CTS, bilateral CTS) was investigated. The accuracy 
of RNNs trained on the features of CTS (right median motor latency, left median motor 
latency, right median sensory latency, left median sensory latency) was analyzed. The 
classification accuracies and ROC curves of the classifiers were presented, in order to 
evaluate the used classifiers. The classification results and the values of statistical 
parameters indicated that the RNN had considerable success in discriminating the CTS 
(total classification accuracy was 94.80%). In the further studies, different neural network 
architectures and training algorithms can be used for obtaining more efficient results. 
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Fig. 4. ROC curves (Ilbay K et al., 2010) 
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