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1. Introduction     

Palladium nanoparticles (Pd-NPs) stabilised by ionic liquids (ILs) revealed a promising 

potential to act as recyclable catalysts for plethora reaction types. These include typical 

homogeneous as well as heterogeneous catalytic reactions such as hydrogenation of 

multiple bonds, (Dupont et al., 2002; Huang et al., 2003; Scheeren et al., 2003; Kim et al., 

2004; Silveira et al., 2004; Umpierre et al., 2005; Migowski & Dupont, 2007; Rossi et al., 2007; 

Scholten et al., 2007; Hu et al., 2008; Prechtl et al., 2008; Gelesky et al., 2009; Hu et al., 2009; 

Prechtl et al., 2009; Redel et al., 2009; Rossi & Machado, 2009; Dupont & Scholten, 2010) and 

carbon-carbon cross-coupling reactions.(Calo et al., 2003; Calo et al., 2003; Calo et al., 2004; 

Calo et al., 2004; Calo et al., 2005; Calo et al., 2005; Cassol et al., 2005; Calo et al., 2006; 

Chiappe et al., 2006; Dubbaka et al., 2006; Phan et al., 2006; Calo et al., 2007; Fei et al., 2007; 

Dieguez et al., 2008; Calo et al., 2009; Calo et al., 2009; Cui et al., 2010) It is well accepted that 

Pd-NPs serve as reservoir for active molecular Pd species in carbon-carbon cross coupling 

reactions (Scheme 1), for example. Moreover, Pd-NPs have been employed as efficient 

catalyst for typical heterogeneous reactions (Scheme 2).(Phan et al., 2006; Migowski & 

Dupont, 2007; Gu & Li, 2009) In order to avoid the formation of bulk metal, ILs can be used 

as suitable stabilisers for the synthesis of mono-dispersed NPs.(Prechtl et al., 2008; Prechtl et 

al., 2009) ILs form also a protective liquid-film on the sensitive and highly active metal 

surface, preventing the metal surface from oxidation.(Migowski & Dupont, 2007) One 

additional property of Pd-NPs/ILs systems is the feature for multiphase catalysis that the 

NPs are immobilised in the dense IL-phase (“stationary phase”), and are, therefore easily 

recyclable by simple phase separation of the organic “mobile phase”, containing the 

substrates and product.(Dupont et al., 2002) In many cases, the well-immobilised NPs in ILs 

can be used as catalyst-phase several times, showing the potential to recyclability of this 

system. General limitations are reached in the following cases: (I) palladium leaching into 

the organic layer, (Cassol et al., 2005; Consorti et al., 2005) (II) retention of organic molecules 

in the IL-phase,(Cassol et al., 2007) and (III) a delayed mass transfer between the organic 

and the IL-layer due to the relatively high viscosity of the IL.(Dupont & Suarez, 2006) 
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Scheme 1. Exemplary coupling reactions catalysed by metal Pd-NPs in ILs. 
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Scheme 2. Hydrogenation reactions catalysed by metal Pd-NPs in ILs. 

Pd-based carbon-carbon cross-coupling reactions were discovered more than three decades 
ago, and remain under the most investigated transition-metal catalysed 
reactions.(Beletskaya & Cheprakov, 2000; Moreno-Manas & Pleixats, 2003; Phan et al., 2006; 
Yin & Liebscher, 2007; Liu et al., 2009) These reactions use Pd complexes with strong ligands 
(e. g. PR3, NHC), palladacycles, PdX2 (e. g. X= halide, acetate) or even ligand-free 
approaches, in which  Pd(0) species are catalytically active.(Reetz et al., 1998; de Vries et al., 
2002; Bedford, 2003; de Vries et al., 2003; de Vries et al., 2003; Reetz & de Vries, 2004; Dupont 
et al., 2005) The Heck reaction for instance, with aryl iodides or bromides is catalysed by a 
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plethora of Pd(II) or Pd(0) sources.(Cassol et al., 2005; Migowski & Dupont, 2007) This 
indicates, at least for ligand-free Pd sources, that soluble Pd-NPs are involved as a reservoir 
of active species.(Reetz & Westermann, 2000; Rocaboy & Gladysz, 2003; Tromp et al., 2003) 
The first article of a zero-valent Pd complex suitable for the formation of Pd-NPs, by 
Takahashi and co-workers was published in 1970, used Pd(dba)2 (dba = 
dibenzylideneacetone) under thermal decomposition conditions forming metallic palladium 
and dba in solution.(Takahashi et al., 1970) More studies of Pd-NP synthesis and its 
applications followed in the 1980s and 1990s by, for example Bönnemann, Reetz and their 
respective co-workers.(Bonnemann et al., 1990; Bonnemann et al., 1991; Reetz & Helbig, 
1994; Reetz & Quaiser, 1995; Reetz et al., 1996; Reetz & Lohmer, 1996) In the last decade, 
metal NP synthesis in ILs had their breakthrough and numerous detailed studies about Pd-
NPs in ILs are available in the literature. 
Synthetic approaches using controlled thermal decomposition for the generation of Pd-NPs 
in ILs use for example: Pd(dba)2,(Takahashi et al., 1970) Pd(OAc)2 or palladium carbene 
complexes (Scheme 3).(Reetz & Westermann, 2000; Xu et al., 2000; Deshmukh et al., 2001; 
Calo et al., 2003) Furthermore, palladium salts such as PdCl2, Na2PdCl4 can be reduced with 
metal hydrides or simply dihydrogen. Pd-NPs are also formed starting from palladacycles 
by reaction with dienes (Scheme 3).(Bonnemann et al., 1990; Cassol et al., 2005; Umpierre et 
al., 2005)  
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Scheme 3. Metal Pd-NPs formation in ILs by thermal/ultrasonic treatment of Pd salts and 
Pd carbene complexes where the imidazolium salt (RMI.X) acts as NHC-carbene source (A-
C; X = halide or BF4). Reduction with dihydrogen or hydrides (D-E; X = OAc, halide) or 
reductive elimination of a palladacycle by reaction with a diene (F). Adapted from 
references (Takahashi et al., 1970; Reetz & Westermann, 2000; Xu et al., 2000; Deshmukh et 
al., 2001; Calo et al., 2003; Cassol et al., 2005; Umpierre et al., 2005). 

The particle size of Pd-NPs is often strongly related to the type of precursor, and small-sized 
particles are easily obtained starting from Pd(OAc)2. Besides the Pd-precursor, the state of 
agglomeration/dispersion also depends on the coordination properties of the IL media and 
the concentration/solubility of the Pd-precursor in the IL.(Dupont & Scholten, 2010) 
Especially low concentration and high solubility of the Pd-precursor is quite helpful in 
obtaining a high dispersion and low agglomeration. It is important to note, that the lifetime 
of Pd-NPs as catalysts depend, on their stability, which is often related to the preparative 
protocol used. Also Pd-NPs tend to form large aggregates with smaller surface which often 
show lower activity. To obtain prolonged catalyst lifetime of the Pd-NPs, these particles may 
be stabilised by the addition of polymers, which give access for tuning the particle size and 
their topology.(Yang et al., 2008) A more detailed discussion on the synthesis of metal NPs 
in ILs can be found in a recently published critical review.(Dupont & Scholten, 2010) 
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2. Nanoscale Pd-Catalysts in ILs for C-C coupling reactions  

2.1 Mizoroki-Heck reaction 

The Mizoroki-Heck coupling reaction is one of the best methods in modern organic 

chemistry.(Beletskaya & Cheprakov, 2000; Moreno-Manas & Pleixats, 2003; Phan et al., 2006; 

Yin & Liebscher, 2007; Liu et al., 2009) The coupling involves the reaction of an unsaturated 

halide with olefins catalysed by Pd precursors in organic solvents in presence of a base. 

Pointing out, that often the active species is not the palladium complex but molecular Pd 

species derived from Pd-NPs stabilised by the IL serving as reaction medium.(Reetz & 

Westermann, 2000; Astruc, 2007) These Pd-NPs are resulting from the reduction of the Pd(II) 

species to Pd(0) in the presence of bases employed in the reaction. In the last two decades, 

classical solvents have been substituted by ILs in chemical reactions.(Dupont et al., 2002) In 

fact, ILs are more environmentally benign, which is due to their ability to act as stationary 

phase for catalysts in recyclable multiphase catalysis. In such multiphase systems, ILs are 

suitable together with apolar solvents as well as with polar solvents, depending on the 

polarity of the IL. Moreover, certain ILs such as those with imidazolium cations, show 

selectivity for a specific product as the ILs are feasible to stabilise ionic transition states due 

to their inherent physico-chemical properties.(Hardacre et al., 2003; Dupont, 2004; Gozzo et 

al., 2004; Tsuzuki et al., 2005) One of the first results reported on the role of ILs in Heck 

reactions was published by Deshmukh and co-workers in 2001. (Deshmukh et al., 2001) For 

instance, ILs based on the cation [1,3-di-n-butylimidazolium] and bearing bromide (BBI.Br) 

and tetrafluoroborate (BBI.BF4) as anions promote a significant improve in the rate of Heck 

reactions. It was observed that under ultrasonic irradiation and in the presence of base, the 

C-C couplings of several substituted iodobenzenes and alkenes/alkynes at 30 ºC were 

performed successfully affording solely the trans-product in high yields (Scheme 4). The 

authors also proved that a Pd bis-carbene took part in the transformation and was reduced 

to metal Pd-NPs in the process. Moreover, the molecular Pd as the active species is most 

likely coming from Pd-NPs. Once no reaction was observed for classical organic solvents 

under the same conditions, the advantage of ILs toward the stabilisation of intermediates 

can be evidenced in this case. 

The formation of similar palladium carbene complexes derived from imidazolium ILs were 

also reported elsewhere, as well as the deprotonation of imidazolium cations during the 

catalysis.(Xu et al., 2000; Dupont & Spencer, 2004; Lebel et al., 2004; Bernardi et al., 2009) 

In the same context, metal Pd-NPs (1.5–6 nm) dispersed in a tetraalkylammonium salt 

(tetrabutylammonium bromide, TBAB) could be used as catalysts for the Heck reaction of 

bromoarenes with 1,1-disubstituted olefins in the presence of tetrabutylammonium acetate 

(TBAA) as base at 120 ºC (entry 1, Table 1).(Calo et al., 2003) In most cases the main products 

were terminal olefins, which suggest that Pd-hydride species is immediately neutralised by 

the base avoiding the isomerisation of the olefin. Notably, bromoarenes may couple with 

less reactive 1,2-disubstituted alkenes, like cinnamates, in presence of Pd-NPs in TBAB at 

130 ºC.(Calo et al., 2003) Here, Pd(OAc)2 and a Pd bis-benzothiazole carbene compound 

were used as a source of Pd-NPs. The same research group reported recently that aryl 

chlorides undergo coupling reaction with deactivated alkenes using Pd-NPs in TBAB and 

TBAA (entry 2, Table 1).(Calo et al., 2009) It has to be pointed out, that it is generally 

accepted that the true catalyst of the reaction is most likely molecular Pd species detached 

from the NPs surface.  
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Yields = 73-87%

 

Scheme 4. Selected examples of Heck reaction of substituted iodobenzenes and alkenes in 
imidazolium-based ILs at 30 ºC under ultrasonic conditions. (Deshmukh et al., 2001) 

Mechanistic details concerning the role of Pd-NPs in C-C cross-coupling reactions, were 
investigated by Dupont and co-workers.(Cassol et al., 2005; Consorti et al., 2005) The 
palladacycle (see Scheme 3) was rapidly transformed into Pd-NPs by reaction with 
dimethylallene even at room-temperature. These Pd-NPs were suspended in BMI.PF6 (BMI: 
1-n-butyl-3-methylimidazolium; PF6: hexafluorophosphate). Following the analysis of the 
Pd-powder in IL was conducted with TEM and EDS techniques. The micrographs depict the 
presence of Pd-NPs and the XRD results of the isolated Pd-NPs confirmed the presence of 
metallic Pd. The evaluation of the Pd-NPs/IL-system for catalysis was performed in 
particular with the Heck reaction as benchmark model using with aryl halides and n-butyl 
acrylate (substrate:Pd ratio = 1000:1) at various temperatures and bases (entry 5, Table 1). 
The addition of NEt(iPr)2 to the dark suspension resulted then in a yellow solution. Contrary 
with other bases the colour of the suspension remained unchanged. Highest conversions 
(92-100%) are accessible with aryl iodides and bromides using NEt(iPr)2 as base and lower 
conversion (<30%) to other bases between 80–130 °C (14 h). The analysis of the organic 
fraction, after catalysis, by ICP-MS showed leaching of considerable quantities of palladium 
from the IL into the organic phase. The TEM and ICP-MS data indicate that Pd-NPs in IL 
simply serve as reservoir for molecular active Pd species. Pointing out, that Pd isolated from 
the organic layer showed no activity in the Heck reaction also after prolonged period of time 
in a recycling experiment (20 h). Also attempts to locate Pd-NPs in the organic phase by 
means of TEM failed. The authors suggested that the reaction pathway starts with oxidative 
addition of the aryl halide onto the metal surface. The oxidised molecular Pd species is 
immediately cleaved from the metal surface, which then enters the typical catalytic cycle  
 

 

Fig. 1. TEM micrographs of the Pd-NPs in BMI.PF6: before catalysis (1.7 ± 0.3 nm), left; after 
catalysis (6.1 ± 0.7 nm), right. The proposed catalytic cycle for the Heck reaction promoted 
by Pd-NPs is indicated in the middle. Reprinted with permission from reference (Cassol et 
al., 2005) (Copyright American Chemical Society). 
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(Figure 1). The molecular Pd species may remain in the catalytic cycle or Pd(0) may 
agglomerate and precipitate again as Pd-NPs, which stays in agreement with previous 
reports by de Vries and Reetz for ligand-free Heck reactions.(Reetz & Westermann, 2000; 
Reetz & de Vries, 2004) 

2.2 Suzuki-Miyaura reaction 

The Suzuki reaction represents another important example for C-C bond formation. Today, 
rather few works have been published using Pd-NPs in ILs as catalyst in this 
reaction.(Pathak et al., 2000; Ramarao et al., 2002; Gopidas et al., 2003; Narayanan & El-
Sayed, 2003; Pittelkow et al., 2003; Kim et al., 2004; Liu et al., 2004; Calo et al., 2005; Corma et 
al., 2005; Fernandez et al., 2007; Durand et al., 2008) For example, Calo and Nacci reported 
on Pd-NPs in tetraalkylammonium ILs, starting from Pd(OAc)2 in the presence of TBAA at 
90 °C, which were used as precursor for the coupling of aryl halides (Scheme 5; entry 6, 
Table 1).(Calo et al., 2005) 
 

X + B(OH)2
Pd-NPs

IL/Base(aq)

X = Cl, Br

Base = Na2CO3, KOH, NBu4OH

Yields = 20-95%

 

Scheme 5. Suzuki cross-coupling reactions catalysed by Pd-NPs in TBAB or THeptAB 
(THeptA = tetraheptylammonium) ILs at different temperatures (60-140 °C). (Calo et al., 
2005) 

Interestingly, with tetrabutylammonium hydroxide as base, the catalytic efficiency increased 
significantly, thus, the reaction was performed even under milder conditions. This can be 
explained by the elevated concentration of tetraalkylammonium in water, contributing 
through partitioning equilibrium, keeping the concentration of the cations in the IL constant. 
Consequently, the Pd-NPs were effectively stabilised against aggregation. Furthermore, 
with more hydrophobic IL such as tetraheptylammonium bromide (THeptAB) containing 
longer side chains than TBAB, the results were improved in the Suzuki reaction, which 
might be due to the better stabilisation of the Pd-NPs provided by this IL. Moreover, the 
Pd/THeptAB-system is recyclable for at least three runs. Again, the metal NPs were 
identified simply as reservoir for the molecular active catalyst in Suzuki reactions, when 
Pd(OAc)2 as precursor in BMI.PF6 in the presence of functionalised ligands derived from 
norborn-5-ene-2,3-dicarboxylic anhydride were employed.(Fernandez et al., 2007) 
Noteworthy is that in organic solvents the molecular catalyst is adequately stabilised by 
ligands, but in ILs the catalyst is active due to the in situ formation of NPs. Consequently, 
the formation of Pd-NPs is crucial to obtain an active catalyst in ILs as reaction medium. 

2.3 Stille reaction 

As another important tool for C-C coupling, the Stille reaction has also been catalysed by 
Pd-NPs in ILs. It was demonstrated that nitrile-functionalised ILs are superior for Pd-NP 
stabilisation to non-functionalised ILs (Figure 2).(Zhao et al., 2004; Calo et al., 2005; Chiappe 
et al., 2006; Fei et al., 2007; Cui et al., 2010) Moreover, tetraalkylammonium bromides are 
also suitable as reaction medium for the Stille reaction with Pd-NPs catalysts.(Calo et al., 
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2005) A library of imidazolium, pyridinium and pyrrolidinium ILs with nitrile groups was 
designed to improve prolonged catalyst lifetime in the Stille reaction, among other cross-
coupling reactions.(Zhao et al., 2004) 
 

N

N

X

X = Cl, PF6, BF4, NTf2

N N
R'

R''

N

n

n = 1-3

R' = Me, (CH2)nCN

R'' = H, Me

X = Cl, PF6, BF4, NTf2

X

N

N

NTf2

+

 

Fig. 2. Selection of ILs with nitrile-groups: pyridinium ((BCN)Py+; left), imidazolium 
((RCN)I+ or (RCN)2I+; middle), pyrrolidinium salts ((BCN)P+; right) with various anions. 
(Calo et al., 2005; Zhao et al., 2004; Chiappe et al., 2006; Fei et al., 2007; Cui et al., 2010) 

In these works an anion-dependence was described using pyridinium ILs with palladium 

chloride as precursor. It is a direct approach to various molecular palladium species with 

cations and anions in the coordinating sphere of the palladium. These palladium complexes 

were tested in C-C coupling reactions in ILs with aliphatic and nitrile side-chains. An 

encouraging catalytic activity was observed in the coupling of iodobenzene with 

phenyltributylstannane. And, also recycling with no significant loss of activity was observed 

exclusively for the nitrile-functionalised IL (entry 8, Table 1). The following facts are 

characteristic for the nitrile-ILs: (I) the nitrile-group avoids leaching remarkably, (II) Pd-NPs 

act as reservoir for the active Pd species in the Stille reaction and (III) Pd-NPs were analysed 

by means of TEM techniques depicted well-dispersed small sized Pd-NPs (5 nm).(Zhao et 

al., 2004) Similar results were observed with imidazolium ILs including the nitrile-groups. 

In the entitled reaction, the influences of the cations (BMI, (RCN)1-2I) and anions (BF4, NTf2, 

N(CN)2), and the catalyst source (Pd(OAc)2; Pd2(dba)3) have been evaluated (entry 10, Table 

1).(Chiappe et al., 2006) The nitrile group in the cations and also the cyanamide anion affects 

the cross-coupling and the catalyst stability. In fact, it was shown that the relative 

coordination strengths of the ions played a role and that under certain conditions NPs have 

been observed. In all cases, the nitrile-functionalised ILs are superior to alkylimidazolium 

ILs for the immobilisation of Pd-catalysts and vinylation of aryl halides with 

tributylvinylstannane (Scheme 6).  
 

80°C, 1-2 h

X = I, Br

X + Bu3Sn
Pd-NPs, IL

Yields = up to 65% 

Scheme 6. Example for the Stille reaction of aryl halides with tributylvinylstannane 
catalysed by Pd-NPs in ILs.(Zhao et al., 2004) 

In additional studies, molecular intermediate complexes were found, where (I) the nitrile 
group is ligated to the metal core, and (II) carbenes (derived from the imidazolium IL 
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reaction media) are coordinated to the central palladium atom.(Fei et al., 2007) Such 
complexes were tested for C-C coupling reactions, and Pd-NPs were observed in, for 
instance, the (BCN)MI.BF4.  
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Scheme 7. Proposed mechanism for the formation of nitrile-IL stabilised Pd-NPs. Adapted 
with permission from reference (Fei et al., 2007) (Copyright American Chemical Society). 

However, Pd-NPs are reservoirs for molecular Pd(II) species, the  presumably the true active 

catalyst. The nitrile-functionality and carbenes (derived from the IL) stabilises these 

molecular intermediates via transient coordination, and they protect Pd-NPs (Scheme 7).(Fei 

et al., 2007) Most interestingly, palladium leaching into the organic layer was ten times 

lower in nitrile-ILs than in alkylimidazolium ILs, and the coordinating nitrile-group 

supports also the solubility of PdCl2. These properties make this catalyst system, achieving 

high conversions in the Stille reaction, attractive for recycling catalyst. 

2.4 Sonogashira reaction 

Two different approaches were reported for the Sonogashira reaction with palladium 

nanocatalysts in IL. (Corma et al., 2005; Gao et al., 2005) One method used Pd-nanowires in 

IL, and in another protocol a palladacycle was thermally decomposed in IL resulting in Pd-

NPs. The palladium nanowires were prepared in a thiol-functionalised IL (TFIL) by use of 

the seed growth method.(Gao et al., 2005) H2PdCl4 was reduced with NaBH4 in a solution of 

gold colloids (2.2 nm) as seeds in the TFIL. Interestingly, the Pd-nanowires (2-4 nm in 

diameter) were exclusively obtained with specific ratios of Au and Pd precursors and IL. 

With low (high) Au concentrations core/shell nanostructures were obtained. The catalytic 

activity of the Pd nanowires were evaluated for the Sonogashira coupling. They revealed a 

remarkable activity and catalyst retention with iodoarene and phenyl acetylene as 

substrates, in presence of CuI and phosphine. Complete conversion was obtained in a few 

hours at 75 °C using the nanowires (Scheme 8a), contrary to the bimetallic (PdShell@AuCore)-

NPs where a conversion of 82% was obtained.  
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Scheme 8. a) Sonogashira reaction catalysed by Pd-nanowires and b) Pd-catalysed C-C 
coupling in PEG or ILs (BMI.PF6 and BM2I.PF6).(Corma et al., 2005; Gao et al., 2005)  

A palladacycle complex of 4-hydroxyacetophenone oxime was used for a recyclable 
multiphase system (Scheme 8b; entry 11, Table 1). This  palladacycle is known to be a highly 
active catalyst for C-C bond forming reactions in water.(Corma et al., 2005) The stability of 
the complex was evaluated at elevated temperature in ILs and in PEG. The palladacycle 
decomposed in H2O, BMI.PF6 and BMI.Cl forming Pd-NPs in water and BMI.PF6 (2–5 nm) 
and PdCl42– in the latter case. In contrast, the Pd complex remained stable in hot 1-n-butyl-
2,3-dimethylimidazolium hexafluorophosphate (BM2I.PF6) and in PEG. The activity of the 
complex in PEG was superior to the one in ILs, likely to be related to the stability of the 
complex. However, the palladacycle also decomposed in PEG during the cross coupling 
yielding Pd-NPs (2–5 nm) which were stabilised by PEG. This copper- and ligand-free 
Pd/PEG-system can be applied for Sonogashira coupling on air with moderate to good 
yields (Scheme 8b). The authors explained that the lower catalytic activity in the ILs is 
related to the low solubility of CsOAc and unconsidered ILs as suitable media for this Pd-
catalyst. Contrary, PEG was identified as more convenient medium for these reactions, due 
the higher stability of the palladacycle and of the Pd-NPs and the better solubility of cesium 
acetate. 

2.5 Ullmann reaction 

One established approach for the synthesis of biaryls is the dimerisation of aryl halides. For 
this purpose the Ullmann reaction is a traditional method, although the original protocol 
uses an excess of copper and harsh thermal conditions with temperatures above 200 
°C.(Calo et al., 2009) Without doubt, a convenient alternative uses Pd-catalysts for the 
coupling of aryl halides to symmetrical biaryls. However, reductive conditions are crucial, 
and reductive agents such as amines, molecular hydrogen, hydroquinone, alcohols, or 
formic acid salts are commonly used in this approach.(Calo et al., 2009) Protocols 
introducing improved methods of the Ullmann reaction for recyclable systems, use ILs as 
reaction media.(Pachon et al., 2006; Calo et al., 2009) Rothenberg, for instance, presented a 
Pd-NPs catalysed Ullmann reaction based on electroreductive coupling of haloarenes in IL 
at room temperature (Scheme 9). (Pachon et al., 2006) 
The Pd-NPs (2.5 ± 0.5 nm) were released in an electrochemical cell (Pd-anode and Pt-
cathode). Here electron-transfer was crucial for closing the catalytic cycle. This system 
already gives remarkable yields with aryl bromides and iodides as substrates, simply by 
applying an electric current in water. To improve the electric conductivity and the  
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Scheme 9. Ullmann-typed aryl halide coupling with Pd nanocatalysts in IL under 
electroreductive conditions at 25 °C (top). Proposed catalytic cycle for the electroreductive 
Pd-NPs catalysed coupling of aryl halides (Pd+ ions are depicted in dark grey). Noteworthy, 
the present model includes two single electron transfers from the same cluster, but in 
general interaction between different clusters is most likely to occur (bottom). Adapted with 
permission from reference (Pachon et al., 2006) (Copyright Wiley-VCH Verlag GmbH & Co. 
KGaA). 

stabilisation of the Pd-NPs, 1-methyl-3-n-octylimidazolium tetrafluoroborate (OMI.BF4) IL 
was introduced as recyclable solvent. Reaction monitoring at various electrode potentials 
revealed that a two-electron oxidation of H2O closes the catalytic cycle by reformation of the 
Pd(0). Limitations of the system are given for functionalised aryl bromides and iodides with: 
R = H, NO2, CH3, NH2, OCH3, CN, CF3, OH. The conversions vary extremely from 20 to 99% 
with reaction times from 8 to 24 h at 25 °C, using currents of 10 mA with 1.0–1.6 V. 
Noteworthy is that aryl chlorides do not undergo homocoupling under the described 
conditions. This set up is an unique example of electroreductive Pd-NPs catalysis in ILs. 
These insights into the kinetics suggest the formation of a phenyl radical anion during the 
reaction (Scheme 9). The advantage of this protocol is that simple electrons and water are 
the crucial elements for closing the catalytic cycle.(Pachon et al., 2006) 
Another very mild approach for reductive homocoupling of aryl, vinyl and heteroaryl 
towards symmetrical biaryls uses aldehyde as reductant with Pd-NPs in TBAB and TBAA 
(entry 12, Table 1).(Calo et al., 2009) The IL here is crucial as it acts as base, reaction medium 
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and it is a stabilising ligand for the Pd-NPs which serve as reservoir for active species. 
Bromo- and iodo arenes couple to biaryls in absence of other additives at temperatures 
between 40–90 °C with good conversions (70–90%). In this simple method the substrates and 
Pd(OAc)2 are added to the IL, providing the catalytically active species directly in situ. One 
advantage of this approach is that the consumed reductant propanal is converted in 
presence of TBAA into acrolein (via the enolate ion), which can be simply separated by 
evaporation. Interestingly, the selectivity of the palladium species is tuneable in dependence 
of the IL-anion. With TBAB (X = Br) the pathway follows the Heck reaction (not shown) and 
with TBAA (X = AcO–) the Ullmann reaction (Scheme 10). 
 

PdAr X
2

O

H PdAr OAc
2

H

O

AcOH

Pd Ar
0

+

O

ArX´ (X = Br, I)

Ar Ar

aryl homocoupling

TBAA

X = AcO-

 

Scheme 10. Pd-NPs catalysed Ullmann reaction in the presence of TBAA. Adapted with 
permission from reference.(Calo et al., 2009) (Copyright Wiley-VCH Verlag GmbH & Co. 
KGaA).  

2.6 Recyclability of Pd-catalysts in C-C coupling reactions 

In summary, convenient recyclable catalyst systems use simple tetraalkylammonium salts as 
well as imidazolium based ILs. Interestingly, such Pd-NPs in tetraalkylammonium salts or 
imidazolium ILs are capable to catalyse a whole range of cross-coupling reactions for several 
recycles in batch reactions of the previously discussed C-C coupling reactions, in particular: 
Heck, Suzuki, Stille, Sonogashira, and Ullmann reactions. (For references see Table 1 and the 
citations in the previous segments). 
 

No* Reaction IL 
Ar-X 
(X =) 

Educt/ 
Pd 

Conv. [%] Runs 

1 Heck TBAB/TBAA I, Br, Cl 67 (285) 
10-99 

(97-99) 
n. d. 
(10) 

2  TBAB, TBAA Cl 67 25-98 n. d. 

3  TBAB, BMP.NTf2 I 200 6-98 5 

4  (BCN)MI.NTf2 I 100 16-99 4 

5  BMI.PF6 I 1000 100 n. d. 

6 Suzuki TBAB, THeptAB Br, Cl 40 15-99 4 

7  TOAB Br 50 100 n. d. 

8 Stille BPy.NTf2, (BCN)Py.NTf2 I 20 
44-65 

(yield) 
9 

9  THeptAB Br, Cl 40 27-98 5 

10  (BCN)MI.BF4 I 20 48-85 4 

11 Sonogashira BMI.PF6 I 10 57 (yield) n. d. 

12 Ullmann TBAA Br 33 81-92 n. d. 

BMP: 1-n-butyl-1-methylpyrrolidinium, BPy: 1-n-butylpyridinium, THeptA: tetraheptylammonium, TOA 
= tetraoctylammonium.  *References: 1. (Calo et al., 2003; Calo et al., 2004) 2. (Calo et al., 2009). 3. (Forsyth 
et al., 2005). 4. (Fei et al., 2007). 5. (Cassol et al., 2005). 6. (Calo et al., 2005). 7. (Reetz et al., 1996) 8. (Zhao et 
al., 2004). 9. (Calo et al., 2005). 10. (Chiappe et al., 2006). 11. (Corma et al., 2005). 12. (Calo et al., 2009).  

Table 1. Examples for Pd-NPs Catalysed Carbon-Carbon Cross-Coupling Reactions in ILs. 
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Fig. 3. Hydrogenation of 1,3-butadiene catalysed by metal Pd-NPs in IL. Reprinted with 
permission from reference (Dupont & Scholten, 2010) (Copyright The Royal Society of 
Chemistry). 

3. Hydrogenation reactions catalysed by Pd-NPs in ILs 

There is no doubt that hydrogenation reactions of unsaturated compounds are under the 

most extensively studied processes in catalysis.(Young et al., 1947; Brown & Brown, 1962; 

Harmon et al., 1969; Ohkuma et al., 1995; Lu et al., 2008) In this context, the preparation and 

stabilisation of metal NPs becomes a suitable alternative for the classical homogeneous and 

heterogeneous systems.(Crooks et al., 2001; Thomas et al., 2003; Astruc et al., 2005; Yan et al., 

2010) Particularly, metal NPs prepared in ILs proved to be an outstanding recyclable 

catalytic-phase for the hydrogenation of different substrates exhibiting high catalytic 

activities.(Migowski & Dupont, 2007; Dupont & Scholten, 2010) In this section it selected 

works on the use of Pd(0)-NPs immobilised in ILs as catalyst-phase employed in 

hydrogenation reactions are briefly discussed (see Table 2). 

Stable metal Pd-NPs could be synthesised directly in ILs as unique stabiliser agents or in the 

presence of additional ligands that, in general, improves the stability and catalytic activity of 

these nanomaterials.(Prechtl et al., 2010) By use of imidazolium-based ILs as sole stabilising 

agent, Pd(0)-NPs (4.9 ± 0.8 nm) were generated in BMI.PF6 (or BMI.BF4) from the reduction 

of Pd(acac)2 (acac = acetylacetonate) by molecular hydrogen (4 atm, constant pressure) at 75 

°C.(Umpierre et al., 2005) These NPs dispersed in IL were tested as catalyst on the selective 

hydrogenation of 1,3-butadiene to butenes. Once that the substrate 1,3-butadiene is at least 

four times more soluble in BMI.BF4 than butenes, selectivities up to 97% in butenes was 

achieved at 40 °C and 4 atm of hydrogen (Figure 3). Moreover, 1-butene was the major 
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product obtaining up to 72% of selectivity at 99% of 1,3-butadiene conversion (entry 1, Table 

2). These selectivities in butenes could be explained due to the significant difference in 

solubility of the 1,3-butadiene and butenes, where the products were extracted from the IL 

layer by the substrate avoiding the subsequent hydrogenation step. Notably, there is no 

isomerisation of butenes during reaction, suggesting that the Pd(0)-NPs possess pronounced 

surface-like properties. After the catalytic reactions aggregation of the NPs could be 

observed, in certain cases. 

A “green” method based on the combination of IL and supercritical carbon dioxide was 

employed as an efficient metal NPs preparation route and product separation.(Jutz et al., 

2009) This procedure consists of the removal of the residual ligands after NPs synthesis by 

the supercritical CO2 as well as of the extraction of the products at the end of the 

hydrogenation reaction (Scheme 11). Indeed, Pd-NPs could be prepared in imidazolium 

(BMI.PF6 and BMI.OTf) or in quaternary ammonium (THAB; THA = tetrahexylammonium) 

salts by the reduction of Pd(acac)2 with molecular hydrogen. The Pd-NPs synthesised in 

THAB presented a mean diameter of 3.5 ± 0.6 nm, while the particles in BMI.PF6 or BMI.OTf 

exhibited considerable agglomeration reaching sizes of 10-30 nm. These nanocatalysts 

immobilised in ILs were able to catalyse the hydrogenation of acetophenone with good 

selectivities in 1-phenylethanol (entries 2 and 3, Table 2). The NPs prepared in THAB 

showed no significant activity for acetophenone hydrogenation. In particular, Pd-NPs in 

BMI.PF6 proved to be the best catalytic system without loss in its activity after recharges. 

When compared to the NPs generated in IL as unique stabiliser agent, a functionalised 

imidazolium IL, namely 2,3-dimethyl-1-[3-N,N-bis(2-pyridyl)-propylamido]imidazolium 

hexafluorophosphate (BM2DPA.PF6), was shown to be used as protective ligand to support 

the synthesis of more stable Pd-NPs in BM2I.PF6 (BM2I = 1-n-butyl-2,3-

dimethylimidazolium).(Hu et al., 2009) Indeed, the functionalised IL displayed an important 

role in enhancing the stabilisation of NPs. The precursor Pd(OAc)2 could be reduced by 

molecular hydrogen in BM2I.PF6 with the presence of BM2DPA.PF6 producing Pd-NPs (5-6 

nm). Notably, the isolation of the NPs and re-dispersion in the IL showed a remarkably 

effect on the catalytic activity in hydrogenation experiments. In fact, when isolated and re-

dispersed in IL, the Pd-NPs provide higher substrate conversions in the catalytic insights by 

comparison with those non-isolated NPs (entries 4 and 5, Table 2). This can be related to the 

fact that, when in excess (non-isolated NPs), the ligand could block the active sites of the NP 

dropping considerably the catalyst’s activity. Notably, using 2-cyclohexen-1-one as standard 

substrate, the system could be re-used efficiently for seven runs (entry 6, Table 2). 

Similarly, the use of phenantroline (Phen) as additional ligand on the synthesis of Pd-NPs in 

BMI.PF6 was also demonstrated.(Huang et al., 2003) Protected and well-dispersed NPs (2-5 

nm) was obtained from the reduction of Pd(OAc)2 by hydrogen in the IL with the presence 

of phenantroline. Insights into the catalytic process showed that these ligand-protected Pd-

NPs in ILs were very active catalysts for the hydrogenation of olefins, achieving total 

conversions in the most cases (entries 7 and 8, Table 2). The importance of the additional 

ligand was proved when cyclohexene hydrogenation was carried out with Pd-NPs prepared 

only in IL. After the first reaction, a Pd black precipitation occured in the IL and, in the 

second cycle a drastic decrease in activity was observed. However, using the Phen-protected 

Pd-NPs in IL, no significant loss in activity was detected for at least 10 recycles during 

cyclohexene hydrogenation. 
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Scheme 11. “Green” method developed to generate metal NPs in ILs and their use as 
catalyst during hydrogenation reactions. Reprinted with permission from reference (Jutz et 
al., 2009) (Copyright Elsevier). 

In the same context, palladium metal NPs (3 nm) were synthesised from the ethanolic 
reduction of PdCl2 in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilising 
ligand.(Mu et al., 2004) Then, these PVP-stabilised NPs were immobilised in BMI.PF6 and 
employed as efficient catalyst-phase in olefin hydrogenation under mild conditions (entry 9, 
Table 2). 
As an appropriate capping agent, TBAB was employed for the generation of Pd-NPs.(Le 
Bras et al., 2004) From a mixture containing a [Pd(II)] precursor, TBAB and tributylamine at 
120 °C, metal NPs with mean diameters of 4.1 and 7.5 nm can be prepared using Pd(OAc)2 
and PdCl2, respectively. Since the catalytic reactions were performed at room temperature, it 
was necessary to dissolve the NPs mixture in an organic solvent or in IL. In order to verify 
the potential recyclability of these systems, BMI.PF6 was chosen as suitable solvent. The 
stabilised Pd-NPs (4.1 nm) dispersed in IL present good efficiency and selectivity in 
hydrogenation of unsaturated compounds (entries 10 and 11, Table 2), even on the recycling 
tests during five successive reactions with different substrates. 
A simple and efficient deposition of Pd-NPs onto an IL functionalised multi-walled carbon 
nanotubes (IL-MWCNT) support was reported as a proper method to stabilise metal 
NPs.(Chun et al., 2008) The reduction of an aqueous solution of Na2PdCl4 and the IL.Br-
MWCNT (bearing a bromide anion) by hydrogen under mild conditions afforded deposited 
metal Pd-NPs (10 nm) on IL.Br-MWCNTs (Scheme 12). Moreover, the direct exchange of the 
bromide anion from the system Pd-NPs/IL.Br-MWCNTs to NTf2 or SbF6 in water can tune 
the solubility properties of these materials in other solvents. Interestingly, in a mixture 
containing an IL and another organic solvent (MeOH or i-PrOH), these systems dissolve 
preferentially in the IL phase. Notably, the Pd-NPs/IL.X-MWCNTs (X = Br, NTf2, SbF6) 
were applied firstly as catalyst on the trans-stilbene hydrogenation in MeOH, reaching high 
TOFs values. In addition, the catalyst containing SbF6 as anion showed the best results 
compared to those obtained bearing Br or NTf2 anion. Thus, Pd-NPs/IL.SbF6-MWCNTs was 
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Scheme 12. Synthesis of supported metal Pd-NPs in functionalised IL-MWCNTs. Adapted 
with permission from reference (Chun et al., 2008) (Copyright The Royal Society of 
Chemistry). 

 

No* Solvent Substrate Product 
T 

(°C)
t (h) 

Conv. 
(%) 

Runs 

1 BMI.BF4 1,3-butadienea 1-butene 40 6 99b n.d. 
2 BMI.PF6 acetophenonec 1-phenylethanol 25 4 98d 6 
3 BMI.OTf acetophenonee 1-phenylethanol 25 4 33f n.d 

4 
BM2I.PF6/ 
IL-ligand 

cinnamaldehydeg aldehyde + alcohol 35 2 75h n.d. 

5 
BM2I.PF6/ 
IL-ligand 

cinnamaldehydei aldehyde 35 2 36j n.d. 

6 
BM2I.PF6/ 
IL-ligand 

2-cyclohexen-1-one cyclohexanone 35 3 100 7 

7 
BMI.PF6/ 

Phen-ligand
cyclohexenek cyclohexane 40 5 100 10 

8 
BMI.PF6/ 

Phen-ligand
1,3-cyclohexadienek

cyclohexene 
(cyclohexane) 

40 2 (7) 
95 

(100)l 
n.d. 

9 
BMI.PF6/ 

PVP-ligand
cyclohexenem cyclohexane 40 1 100 n.d. 

10 BMI.PF6n benzylpropenoateo benzyl propanoate 25 20 97p n.d. 

11 BMI.PF6n 
1-benzyloxy-2-
allylbenzeneo 

1-benzyloxy-2-
propylbenzene 

25 22 98p n.d. 

12 
BMI.SbF6 
+ i-PrOHq 

olefinsr alkanes 20 
0.08-
0.17 

100 50 

a) Substrate/catalyst (S/C molar ratio) = 1063 and 4 atm of H2 (constant pressure); b) Selectivity of 72% 
in 1-butene; c) S/C = 78 and 50 atm of H2; d) Selectivity of 90% in 1-phenylethanol; e) S/C = 177 and 50 
atm of H2; f) Quantitative selectivity in 1-phenylethanol; g) S/C = 250 and 15 atm of H2 (isolated and re-
dispersed NPs); h) 65% in 3-phenyl propionaldehyde and 10% in 3-phenyl-propan-1-ol; i) S/C = 250 
and 15 atm of H2 (non-isolated NPs); j) Only 3-phenyl propionaldehyde was observed; k) S/C = 500 and 
1 atm of H2 (constant pressure); l) Only cyclohexene was observed at 2 h, but cyclohexane was the 
product after 7 h of reaction; m) S/C = 250 and 1 atm of H2; n) The NPs were prepared in TBAB and 
then isolated and re-dispersed in BMI.PF6 for catalytic insights; o) S/C = 100 and a balloon filled with 
H2 was used; p) Yield of product; q) NPs supported in functionalised IL-MWCNTs were dispersed in 
BMI.SbF6/i-PrOH (1/4, v/v) for hydrogenation insights; r) S/C = 100 and 1 atm of H2 (balloon). 

*References: 1. (Umpierre et al., 2005). 2. (Jutz et al., 2009). 3. (Jutz et al., 2009). 4. (Hu et al., 2009). 5. (Hu 
et al., 2009). 6. (Hu et al., 2009). 7. (Huang et al., 2003). 8. (Huang et al., 2003). 9. (Mu et al., 2004). 10. (Le 
Bras et al., 2004). 11. (Le Bras et al., 2004). 12. (Chun et al., 2008).  

Table 2. Selected hydrogenation reactions of unsaturated compounds catalysed by metal Pd-
NPs in ILs. (For references, see in the table caption) 
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chosen as catalyst to test the potential for recyclability during hydrogenation of several 
olefins under biphasic conditions (i-PrOH/BMI.SbF6). In fact, this catalytic system could be 
recycled up to 50 times without loss in activity, indicating to be a robust recyclable catalyst 
immobilised in the IL phase (entry 12, Table 2). 

4. Summary 

The summarised contributions about carbon-carbon cross-coupling and hydrogenation 
reactions with Pd-NPs in ILs show interesting activity and are attractive as recyclable catalyst 
systems. In both reaction types, the ILs prevented the formation of bulk metal via 
agglomeration of the NPs. In case of the C-C coupling reactions, the Pd-NPs acted as reservoir 
for catalytically active molecular Pd species. For hydrogenation reactions, the surface of 
nanoparticles is catalytically active for heterogeneous reactions. The choice of cations, anions, 
functional groups and additive bases can influence the Pd-NPs´ reactivity, stability and 
reaction pathways. Moreover, the choice of palladium precursors for the generation of Pd-NPs 
most likely plays a minor role, as plethora palladium complexes and palladium salts are 
known as suitable “pre-catalysts” for the discussed reactions. It is expected that further Pd-
catalysed coupling reactions will be more deeply investigated with Pd-NPs in ILs. Additional 
mechanistic studies might reveal that homogeneous catalytic systems involve NPs as reservoir 
for molecular species in several reaction types.  
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