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1. Introduction 

A. Background 

The synchronous reluctance motor (SynRM) has many advantages over other ac motors. For 

example, its structure is simple and rugged. In addition, its rotor does not have any winding 

or magnetic material. Prior to twenty years ago, the SynRM was regarded as inferior to 

other types of ac motors due to its lower average torque and larger torque pulsation. 

Recently, many researchers have proposed several methods to improve the performance of 

the motor and drive system [1]-[3]. In fact, the SynRM has been shown to be suitable for ac 

drive systems for several reasons. For example, it is not necessary to compute the slip of the 

SynRM as it is with the induction motor. As a result, there is no parameter sensitivity 

problem. In addition, it does not require any permanent magnetic material as the permanent 

synchronous motor does.  

The sensorless drive is becoming more and more popular for synchronous reluctance 

motors. The major reason is that the sensorless drive can save space and reduce cost. 

Generally speaking, there are two major methods to achieve a sensorless drive system: 

vector control and direct torque control. Although most researchers focus on vector control 

for a sensorless synchronous reluctance drive [4]-[12], direct torque control is simpler. By 

using direct torque control, the plane of the voltage vectors is divided into six or twelve 

sectors. Then, an optimal switching strategy is defined for each sector. The purpose of the 

direct torque control is to restrict the torque error and the stator flux error within given 

hysteresis bands. After executing hysteresis control, a switching pattern is selected to 

generate the required torque and flux of the motor.  A closed-loop drive system is thus 

obtained.      

Although many papers discuss the direct torque control of induction motors [13]-[15], only a 

few papers study the direct torque control for synchronous reluctance motors. For example, 

Consoli et al. proposed a sensorless torque control for synchronous reluctance motor drives 

[16]. In this published paper, however, only a PI controller was used. As a result, the 

transient responses and load disturbance responses were not satisfactory. To solve the 

problem, in this chapter, an adaptive backstepping controller and a model-reference 

adaptive controller are proposed for a SynRM direct torque control system. By using the 
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proposed controllers, the transient responses and load disturbance rejection capability are 

obviously improved. In addition, the proposed system has excellent tracking ability.  As to 

the authors best knowledge, this is the first time that the adaptive backstepping controller 

and model reference adaptive controller have been used in the direct torque control of 

synchronous reluctance motor drives. Several experimental results validate the theoretical 

analysis.    

B. Literature Review 

Several researchers have studied synchronous reluctance motors. These researchers use 

different methods to improve the performance of the synchronous reluctance motor drive 

system. The major categories include the following five methods: 

1. Design and manufacture of the synchronous reluctance motor 

The most effective way to improve the performance of the synchronous reluctance motor is 

to design the structure of the motor, which includes the rotor configuration, the windings, 

and the material. Miller et al. proposed a new configuration to design the rotor 

configuration. By using the proposed method, a maximum dL / qL  ratio to reach high power 

factor, high torque, and low torque pulsations was achieved [17]. In addition, Vagati et al. 

used the optimization technique to design a rotor of the synchronous reluctance motor. By 

applying the finite element method, a high performance, low torque pulsation synchronous 

reluctance motor has been designed [18]. Generally speaking, the design and manufacture of 

the synchronous reluctance motor require a lot of experience and knowledge.    

2. Development of Mathematical Model for the synchronous reluctance motor 

The mathematical model description is required for analyzing the characteristics of the 

motor and for designing controllers for the closed-loop drive system. Generally speaking, 

the core loss and saturation effect are not included in the mathematical model. However, 

recently, several researchers have considered the influence of the core loss and saturation. 

For example, Uezato et al. derived a mathematical model for a synchronous reluctance 

motor including stator iron loss [19]. Sturtzer et al. proposed a torque equation for 

synchronous reluctance motors considering saturation effect [2]. Stumberger discussed a 

parameter measuring method of linear synchronous reluctance motors by using current, 

rotor position, flux linkages, and friction force [20]. Ichikawa et al. proposed a rotor 

estimating technique using an on-line parameter identification method taking into account 

magnetic saturation [5]. 

3. Controller Design 

As we know, the controller design can effectively improve the transient responses, load 

disturbance responses, and tracking responses for a closed-loop drive system.  The PI 

controller is a very popular controller, which is easy to design and implement. 

Unfortunately, it is impossible to obtain fast transient responses and good load disturbance 

responses by using a PI controller. To solve the difficulty, several advanced controllers have 

been developed. For example, Chiang et al. proposed a sliding mode speed controller with a 

grey prediction compensator to eliminate chattering and reduce steady-state error [21]. Lin 

et al. used an adaptive recurrent fuzzy neural network controller for synchronous reluctance 

motor drives [22]. Morimoto proposed a low resolution encoder to achieve a high 

performance closed-loop drive system [7]. 

4. Rotor estimating technique 

The sensorless synchronous reluctance drive system provides several advantages. For 

example, sensorless drive systems do not require an encoder, which increases cost, 
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generates noise, and  requires space. As a result, the sensorless drive systems can reduce 

costs and improve reliability. Several researchers have studied the rotor estimating 

technique to realize a sensorless drive. For example, Lin et al. used a current-slope to 

estimate the rotor position and rotor speed [4]. Platt et al. implemented a sensorless vector 

controller for a synchronous reluctance motor [9]. Kang et al. combined the flux-linkage 

estimating method and the high-frequency injecting current method to achieve a sensorless 

rotor position/ speed drive system [23]. Ichikawa presented an extended EMF model and 

initial position estimation for synchronous motors [10].   

5. Switching strategy of the inverter for synchronous reluctance motor 

Some researchers proposed the switching strategies of the inverter for synchronous 

reluctance motors. For example, Shi and Toliyat proposed a vector control of a five-phase 

synchronous reluctance motor with space vector pulse width modulation for minimum 

switching losses [24]. 

Recently, many researchers have created new research topics for synchronous reluctance 

motor drives. For example, Gao and Chau present the occurrence of Hopf bifurcation and 

chaos in practical synchronous reluctance motor drive systems [25]. Bianchi, Bolognani, Bon, 

and Pre propose a torque harmonic compensation method for a synchronous reluctance 

motor [26]. Iqbal analyzes dynamic performance of a vector-controlled five-phase 

synchronous reluctance motor drive by using an experimental investigation [27]. Morales 

and Pacas design an encoderless predictive direct torque control for synchronous reluctance 

machines at very low and zero speed [28]. Park, Kalev, and Hofmann propose a control 

algorithm of high-speed solid-rotor synchronous reluctance motor/ generator for flywheel-

based uniterruptible power supplies [29]. Liu, Lin, and Yang propose a nonlinear controller 

for a synchronous reluctance drive with reduced switching frequency [30]. Ichikawa, 

Tomita, Doki, and Okuma present sensorless control of synchronous reluctance motors 

based on extended EMF models considering magnetic saturation with online parameter 

identification [31]. 

2. The synchronous reluctance motor  

In the section, the synchronous reluctance motor is described. The details are discussed as 

follows. 

2.1 Structure and characteristics    
Synchronous reluctance motors have been used as a viable alternative to induction and 

switched reluctance motors in medium-performance drive applications, such as: pumps, 

high-efficiency fans, and light road vehicles. Recently, axially laminated rotor motors have 

been developed to reach high power factor and high torque density. The synchronous 

reluctance motor has many advantages. For example, the synchronous reluctance motor 

does not have any rotor copper loss like the induction motor has. In addition, the 

synchronous reluctance motor has a smaller torque pulsation as compared to the switched 

reluctance motor.   

2.2 Dynamic mathematical model 
In synchronous d-q reference frame, the voltage equations of the synchronous reluctance 

motor can be described as  
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 qs s qs qs r dsv r i pλ ω λ= + +  (1)  

 ds s ds ds r qsv r i pλ ω λ= + −  (2)  

where qsv  and dsv  are the q-axis and the d-axis voltages, sr  is the stator resistance, qsi  is the 

q-axis equivalent current, dsi  is the d-axis equivalent current, p is the differential operator, 

qsλ  and dsλ  are the q-axis and d-axis flux linkages, and rω  is the motor speed. The flux 

linkage equations are  

 ( )qs ls mq qsL L iλ = +  (3) 

 ( )ds ls md dsL L iλ = +  (4) 

where lsL   is the leakage inductance, and mqL  and mdL  are the q- axis and d-axis mutual 

inductances.   The electro-magnetic torque can be expressed as  

 eT =
3

2
 0

2

P
( md mqL L− ) dsi qsi  (5) 

where eT  is the electro-magnetic torque of the motor, and 0P  is the number of poles of the 

motor. The rotor speed and position of the motor can be expressed as  

 p rmω  = 
1

J
( eT  - lT  - B rmω ) (6) 

and  

 p rmθ  = rmω  (7) 

where J is the inertia constant of the motor and load, lT  is the external load torque, B is the 

viscous frictional coefficient of the motor and load, rmθ  is the mechanical rotor position, and 

rmω  is the mechanical rotor speed. The electrical rotor speed and position are 

 0

2
r rm

P
ω ω=  (8) 

 0

2
r rm

P
θ θ=  (9) 

where rω  is the electrical rotor speed, and rθ  is the electrical rotor position of the motor. 

2.3  Steady-state analysis  

When the synchronous reluctance motor is operated in the steady-state condition, the d-q 

axis currents, di  and qi , become constant values. We can then assume  q e qsx Lω=  and 

dx = eω dsL , and derive the steady-state d-q axis voltages as follows:  

 d s d q qv r i x i= −  (10) 
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 q s q d dv r i x i= +  (11) 

The stator voltage can be expressed as a vector sV  and shown as follows 

 s q dV v jv= −  (12) 

Now, from equations (10) and (11), we can solve the d-axis current and q-axis current as 

 
2

s d q q

d

s d q

r v x v
i

r x x

+
=

+
 (13) 

and 

 
2

s q d d

q

s d q

r v x v
i

r x x

−
=

+
 (14) 

By substituting equations (13)-(14) into (5), we can obtain the steady-state torque equation as  

 2 2 2

2 2

3 1
[( ) ( ) ( ) ]

2 2 ( )

d q

e s q q s d d s d q d q
e s d q

x xP
T r x v r x v r x x v v

r x xω

−
= − + −

+
 (15) 

According to (15), when the stator resistance sr  is very small and can be neglected, the 

torque equation (15) can be simplified as  

 
23 1
sin(2 )

2 2 2

d q

e s
e d q

x xP
T V

x x
δ

ω

−
=

 (16) 

The output power is  

 

2

( )
2

3
 sin(2 )

2 2

e
e

d q

s
d q

P T
P

x x
V

x x

ω

δ

=

−
=

 (17) 

where P  is the output power, and δ  is the load angle. 

3. Direct torque control  

3.1 Basic principle 
Fig. 1 shows the block diagram of the direct torque control system. The system includes two 
major loops: the torque-control loop and the flux-control loop. As you can observe, the flux 
and torque are directly controlled individually. In addition, the current-control loop is not 
required here. The basic principle of the direct torque control is to bound the torque error 
and the flux error in hysteresis bands by properly choosing the switching states of the 
inverter. To achieve this goal, the plan of the voltage vector is divided into six operating 

www.intechopen.com



 Torque Control 

 

258 

sectors and a suitable switching state is associated with each sector. As a result, when the 
voltage vector rotates, the switching state can be automatically changed. For practical 
implementation, the switching procedure is determined by a state selector based on pre-
calculated look up tables. The actual stator flux position is obtained by sensing the stator 
voltages and currents of the motor. Then, the operating sector is selected. The resolution of 
the sector is 60 degrees for every sector. Although the direct torque is very simple, it shows 
good dynamic performance in torque regulation and flux regulation. In fact, the two loops 
on torque and flux can compensate the imperfect field orientation caused by the parameter 
variations. The disadvantage of the direct torque control is the high frequency ripples of the 
torque and flux, which may deteriorate the performance of the drive system. In addition, an 
advanced controller is not easy to apply due to the large torque pulsation of the motor.  

In Fig.1, the estimating torque and flux can be obtained by measuring the a-phase and the b- 

phase voltages and currents. Next, the speed command is compared with the estimating 

speed to compute the speed error. Then, the speed error is processed by the speed controller 

to obtain the torque command. On the other hand, the flux command is compared to the 

estimated flux. Finally, the errors eTΔ  and sλΔ  go through the hysteresis controllers and the 

switching table to generate the required switching states. The synchronous reluctance motor 

rotates and a closed-loop drive system is thus achieved. Due to the limitation of the scope of 

this paper, the details are not discussed here. 

  

 

Fig. 1. The block diagram of the direct torque control system 

3.2 Controller design 
The SynRM is easily saturated due to its lack of permanent magnet material. As a result, it 

has nonlinear characteristics under a heavy load. To solve the problem, adaptive control 

algorithms are required. In this paper, two different adaptive controllers are proposed.   
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A. Adaptive Backstepping Controller 

From equation (6), it is not difficult to derive  

 
[ ]

1 2 3

1

         

r e L m r
m

e L r

d
T T B

dt J

A T A T A

ω ω

ω

= − −

= + +

 (18) 

and 

 1

1

m

A
J

=  (19)  

 2

1

m

A
J

= −  (20) 

 3
m

m

B
A

J
= −  (21) 

Where 1A , 2A , 3A  are constant parameters which are related to the motor parameters. In 

the real world, unfortunately, the parameters of the SynRM can not be precisely measured 

and are varied by saturated effect or temperature. As a result, a controller designer should 

consider the problem. In this paper, we proposed two control methods. The first one is an 

adaptive backstepping controller. In this method, we consider the parameter variations and 

external load together.  Then   

 
r

d

dt
ω = 1 3e rA T A ω+ 2( LA T+ + 1 2eA T AΔ + Δ LT + 3 rA ωΔ ) = 1 3e rA T A ω+ +d (22) 

and  

 d= 2( LA T + 1 2eA T AΔ + Δ LT + 3 rmA ωΔ ) (23) 

where 1AΔ , 2AΔ , 3AΔ  are the variations of the parameters, and d is the uncertainty 

including the effects of the parameter variations and the external load.  

Define the speed error 2e  as 

 *
2 rm rme ω ω= −  (24) 

Taking the derivation of both sides, it is easy to obtain 

 *
2 rm rme ω ω= −$ $ $  (25) 

In this paper, we select a Lyapunov function as 

 

( )

2 2
2

2
2

2

1 1 1
V

2 2

1 1 1 ˆ   
2 2

e d

e d d

γ

γ

= +

= + −

#
 (26) 
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Taking the derivation of equation (26), it is easy to obtain  

 ( )
2 2

2 2

2 2

1
V

1 ˆ   

1 ˆ   

e e dd

e e d d d

e e dd

γ

γ

γ

= +

= + −

= −

$# #$ $

$# $$

$#$

 (27) 

By substituting (25) into (27) and doing some arrangement, we can obtain  

 
( )

( )

*
2 1 3

*
2 1 3

1 ˆV A A

1ˆ ˆ   A A

rm e rm

rm e rm

e T d dd

e T d d dd

ω ω
γ

ω ω
γ

= − − − −

= − − − − −

$#$ $

$# #$
 (28) 

Assume the torque can satisfy the following equation 

 ( )*
3 2

1

1 ˆA M
A

e rm rmT d eω ω= − − +$  (29) 

Substituting (29) into (28), we can obtain  

 2
2 2

1 ˆV Me de dd
γ

= − − − $# #$  (30) 

From equation (30), it is possible to cancel the last two terms by selecting the following 

adaptive law 

 2d̂ eγ= −$
 (31) 

In equation (31), the convergence rate of the d
∧

 is related to the parameter γ . By submitting 

(31) into (30), we can obtain  

 2
2V M 0e= − ≤$  (32) 

From equation (32), we can conclude that the system is stable; however, we are required to 

use Barbalet Lemma to show the system is asymptotical stable [32]-[34].   

By integrating equation (32), we can obtain  

 
0

V V( ) V(0) < dτ
∞

= ∞ − ∞∫ $  (33) 

From equation (33), the integrating of parameter 2
2e  of the equation (32) is less than infinite. 

Then, 2 2( )  L  Le t ∞∈ ∩ , and 2( )e t$  is bounded. According to Barbalet Lemma, we can 

conclude [32]-[34] 

 2lim ( ) 0
t

e t
→∞

=  (34) 
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The block diagram of the proposed adaptive backstepping control system is shown in Fig. 2, 

which is obtained from equations (29) and (31). 

 

 

Fig. 2. The adaptive backstepping controller. 

B. Model-Reference Adaptive Controller  

Generally speaking, after the torque is applied, the speed of the motor incurs a delay of 

several micro seconds. As a result, the transfer function between the speed and the torque of 

a motor can be expressed as:  

 -

1

e srm m

me

m

J

BT s
J

τω
=
⎛ ⎞+⎜ ⎟
⎝ ⎠

 (35) 

Where τ  is the delay time of the speed response. In addition, the last term of equation (35) 

can be described  as 

 
1

1

se
s

τ

τ
− ≅

+
1/

1/s

τ
τ

≅
+

 (36) 

Substituting (36) into (35), one can obtain 

 0
2

1 0

1 1

1( )( )

rm m

me

m

J b

BT s a s ass
J

ω τ

τ
= =

+ +++
 (37) 

where  

 1

1
( )m

m

B
a

J τ
= +  (38a) 
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 0
m

m

B
a

J τ
=  (38b) 

 0

1

m

b
J τ

=  (38c)  

Equation (37) can be described as a state-space representation: 

 
1 1

2 0 1 2 0

0 1 0
+

- -

x x
u

x a a x b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$
$

 (39a) 

 [ ] 1

2

     1 0
x

y
x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (39b) 

Where 1 rm px yω= = , 2 rmx ω= $ ,  and eu T= .  Next, the equations (39a) and (39b) can be 

rewritten as : 

 +p p p pX A X B u=$  (40a) 

and 

 T
p p py C X=  (40b) 

where 

 
1

2
p

x
X

x

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (41a) 

 
0 1

0 1
pA

a a

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 (41b) 

 
0

0
pB

b

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (41c) 

 [ ]1 0T
pC =  (41d) 

 

After that, we define two state variables 1w  and 2w  as: 

 1 1-w hw u= +$  (42) 

and  

 2 2- pw hw y= +$  (43) 

The control input u  can be described as 
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 1 1 2 2 0 pu Kr Q w Q w Q y= + + +  (44) 

                = Tθ φ   

where 

[ ]1 2 0
T K Q Q Qθ =  

and 

1 2 
T

pr w w yφ ⎡ ⎤= ⎣ ⎦  

where γ  is the reference command. Combining (40a),(42), and (43), we can obtain  a new 

dynamic equation as  

 1 1

2 2

0 0

0 - 0 1

00 -

p p p p

T
p

X A X B

w h w u

w wC h

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$

$
$

 (45) 

Substituting (44) into (45), we can obtain  

 

0 1 2

1 0 1 2 1

2 2

-

00 -

T
p p p p pp p p

T
p

T
p

A B Q C B Q B QX X B K

w Q C h Q Q w K r

w wC h

⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$

$
$

 (46) 

Define  *K K K= −# ， *
1 1 1Q Q Q= −# ， *

2 2 2Q Q Q= −# ， *
0 0 0Q Q Q= −#  

Then, equation (46) can be rearranged as  

 

* * * *
0 1 2

* * * *
1 0 1 2

2

- 1

0 00 -

T
p p p p p pp p

T T
p

T
p

A B Q C B Q B Q B KX B

w Q C h Q Q K r

w C h

θ φ

⎡ ⎤ ⎡ ⎤+⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$
#$

$
 (47) 

Where 1 2 0
T K Q Q Qθ ⎡ ⎤= ⎣ ⎦

# # ## #  is the parameter errors. It is possible to rearrange equation 

(47) as a simplified form  

 

*

*

0

p

T
c m c m

B K

X A X K r B θ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥= + +
⎢ ⎥
⎢ ⎥
⎣ ⎦

$ #  (48) 

and 

 T
c m cY C X=  (49) 
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where 

* * *
0 1 2

* * *
1 0 1 2

2

,  -  ,

0 -

1 0 , 0 0 .

T
p p p p pp

T
c m p

T
p

T T T
m p m p

A B Q C B Q B QX

X w A Q C h Q Q

w C h

B B C C

⎡ ⎤+⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦

 

After that, the referencing model of the closed-loop system can be described as : 

 *
m m m mX A X B K r= +$  (50) 

and 

 T
m m mY C X=  (51) 

where * * *
1 2

T
m pX X w w⎡ ⎤= ⎣ ⎦  is the vector of the state variables, and mY  is the output of the 

referencing model. Now, we define the derivation of the state variable error and the output 

error as:  

 c me X X= −$ $$  (52) 

and  

 1 c me Y Y= −  (53) 

Substituting (50)-(51) into (52) and (53), one can obtain  

 T
m me A e B θ φ= + #$  (54a) 

and  

 1
T
me C e=  (54b) 

By letting  *
m mB B K= , it is not difficult to rearrange (54a) as  

 
*

1 T
m me A e B

K
θ φ= + #$  (55a) 

Combining (54b) and (55a), one can obtain  

 ( )-11 *

1 T T
m m me C sI A B

K
θ φ= − #$  (56) 

 

It is essential that the degree of the referencing model equal the uncontrolled plant. As a 

result, equation (55a) has to be revised as [12]: 
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 1 *

1 T
m me A e B

K
θ φ= + #$  (57a) 

where  ( )1m m sB B L= ， ( )
-1
sLφ φ= ， ( ) ;  0sL s F F= + > ’  

After that, we can obtain  

 ( )-11 1*

1 T T
m m me C sI A B

K
θ φ= − #$  (58) 

Now, selecting a Lyapunov function as  

 -1

*

1 1 1
V

2 2

T T
me P e

K
θ θ= + Γ# #  (59) 

where mP  is a symmetry positive real matrix, and Γ  is a positive real vector. 

The matrix mP  satisfies the following two equations: 

 QT
m m m mA P P A+ = −  (60) 

and  

 1
T

m m mP B C=  (61) 

where Q  is a symmetry positive real matrix . Taking the derivation of equation (59) and 

substituting (60), (61) into the derivation equation, we can obtain  

 

-1
1 * *

-1
1 * *

-1 1 1
V Q

2

-1 1 1
   Q

2

T T T T
m m

T T T

e e e P B
K K

e e e
K K

θ φ θ θ

θ φ θ θ

= + + Γ

= + + Γ

$$ # # #

$# # #
 (62) 

It is possible to select the adaptive law as 

 1*

1
-sgn( ) e

K
θ φ= Γ$  (63) 

where 

*

* *

1
sgn( )

K

K K
= , substituting (63) into (62), we can obtain : 

 
-1

V Q 0
2

Te e= ≤$  (64) 

Next, by using Barbalet Lemma, we can obtain that the system is asymmetrical and   

 lim
t→∞

1( )e t =0 (65) 

Finally, we can obtain  
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( ) ( ) ( )

-1

   

T T
p s s s

T T T T T

u L L L

F

θ φ θ φ

θ φ θ φ θ φ θ φ θ φ

= =

= + + = +$$ $
 (66) 

The block diagram of the model-reference control system is shown in Fig. 3, which includes 

referencing model, adaptive controller, and adaptive law. 
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Fig. 3. The block diagram of the model reference adaptive controller. 

4. Implementation  

The implemented system is shown in Fig. 4. The system includes two major parts: the 

hardware circuits and the software programs. The hardware circuits include: the 

synchronous reluctance motor, the driver and inverter, the current and voltage sensors, and 

the A/ D converters. The software programs consist of the torque estimator, the flux 

estimator, the speed estimator, the adaptive speed controller, and the direct torque control 

algorithm. As you can observe, the most important jobs are executed by the digital signal 

processor; as a result, the hardware is quite simple. The rotor position can be obtained by 

stator flux, which is computed from the stator voltages and the stator currents.  The digital 

signal processor outputs triggering signals every 50 sμ ; as a result, the switching frequency 

of the inverter is 20 kHz.  In addition, the sampling interval of the speed control loop is 1 ms 
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although the adaptive controllers are quite complicated. The whole drive system, therefore, 

is a multi-rate fully digital control system.              

 

DSP

Driver

and

Inverter

SynRM

Voltage

and

Current

Sensors

av

bv

bi

ai

'

1 1,  T T

'

2 2,  T T

'

3 3,  T T

 

Fig. 4. The implemented system. 

A. Hardware Circuits 

The hardware circuits of the synchronous reluctance drive system includes the major parts. 

The details are discussed as follows. 

a. The delay circuit of the IGBT triggering signals.   

Fig. 5 shows the proposed delay circuit of the IGBT triggering signals. The delay circuit is 

designed to avoid the overlapping period of the turn-on interval of the upper IGBT and the 

lower IGBT for the inverter. Then, the inverter can avoid a short circuit. In this paper, the 

delay time of the delay circuit is set as 2 sμ . To achieve the goal, two integrated circuit chips 

are used: 74LS174 and 74LS193. The basic idea is described as follows. First, the digital 

signal processor sends a clock signal to 74LS193. The time period of the clock is 62.5 sμ . The 

74LS193 executes the dividing frequency function and finally generates a clock signal with a 

0.5 sμ  period. After that, the 74LS193 sends it into the CLK  pin of 74LS174. The 74LS174 

provides 6 series D-type flip-flop to generate a 3 sμ  delay. Finally, an AND gate is used to 

make a 3 sμ  for a rising-edge triggering signal but not a falling-edge triggering signal.  

b. The driver of the IGBTs 

The power switch modules used in the paper are IGBT modules, type 2MBI50-120. Each 

module includes two IGBTs and two power diodes. The driver of the IGBT is type EX-B840, 

made by Fuji company. The detailed circuit of the driver for an IGBT is shown in Fig. 6. In 

Fig. 6, the EX-B840, which is a driver, uses photo-couple to convert the control signal into a 
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Fig. 5. The delay circuit of the IGBT triggering signals. 

triggering signal for an IGBT. In addition, the EX-B840 provides the isolation and over-

current protection as well.  

When the control signal is “High”, the photo transistor is turned on. Then, the photo diode 

is conducted. A 15V can across the gate and emitter of the IGBT to turn on the IGBT. On the 

other hand, when the control signal is “Low”, the photo transistor is turned off. As a result, 

the photo diode is cut off. A -5V can across the gate and emitter of the IGBT to make IGBT 

turn off immediately.  

The protection of the IGBT is included in Fig. 6. When the IGBT has over-current, the 

voltage across the collector and emitter of the IGBT is obviously dropped. After the 6-pin of 

EX-B840 detects the dropped voltage, the 5-pin of the EX-B840 sends a “Low” voltage to the 

photo diode. After that, the photo diode is opened, and a -5V across the gate and emitter of 

the IGBT is sent to turn off the IGBT.       

c. The snubber circuit   

The snubber circuit is used to absorb spike voltages when the IGBT is turned off. As we 

know, the synchronous reluctance motor is a kind of inductive load. In Fig. 7, when the 

upper leg IGBT T is turned off, the low leg IGBT 'T  cannot be turned on immediately due to 

the required dead-time, which can avoid short circuits. A new current path to keep the 

current continuous flow is required. The new current path includes the fast diode D and the 

snubber capacitor sC . So, the current can flow through the fast diode D and the 

capacitor SC , and then stores its energy into the capacitor SC . On the other hand, when the 

IGBT is turned on in next time interval, the stored energy in the capacitor SC  can flow 

through the resistance sR  and the IGBT T . Finally, the energy dissipates in the resistance 

sR . By suitably selecting the parameter sC  and sR , a snubber circuit with satisfactory 

performance can be obtained.   

d. The current  detecting circuit 

The current detecting circuit is used to measure the stator current of the synchronous 

reluctance motor, and can be shown in Fig. 8. The Hall current sensor, typed LP-100, is used 

to sense the stator current of the motor and to provide the isolation between the power stage 
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and the control circuit. The primary side of the LT-100P can measure 0 to 100 A with a 

bandwidth of 100 kHz. The basic principle is discussed as follows. The primary of the LT-

100P has 5 turns. As a result, when 1A flows into the primary side, the secondary side of the 

LT-100P can generate 5mA. The current flows from the M pin of the LP-100P to the 0.1 KΩ  

resistance, and then provides 0.5V voltage drop. As a result, in this chapter, for every 1A 

primary current, the circuit can output 0.5V.  A low-pass filter is designed to eliminate the 

high-frequency noise. 
 

 

Fig. 6. The circuit of the driver for IGBTs.   

 

 

Fig. 7. The snubber circuit. 

www.intechopen.com



 Torque Control 

 

270 

 

Fig. 8. The current detecting circuit. 

e. The voltage  detecting circuit 

The voltage detecting circuit is used to sense the stator voltage of the synchronous 

reluctance motor, which is an important item for computing the estimated flux of the motor. 

A voltage isolation amplifier, AD210, is selected to isolate the input side and output side. In 

the chaper, 0R  and 1R   are used to attenuate the input voltage to be 0.05 abv  . As a result, 

the input of AD 210 is limited under 10 .V±  

 

 

Fig. 9. The voltage detecting circuit. 

f. The A/ D conversion circuit 

The measured voltages and currents from Hall current sensor and AD210 are analog signals. 

In order to be read by a digital signal processor, the A/ D conversion is required. In this 

chapter, the 12 bit A/ D converter with a 3 sμ conversion time is used. The A/ D converter is 

www.intechopen.com



Controller Design for Synchronous Reluctance 
Motor Drive Systems with Direct Torque Control   

 

271 

typed AD578. The detailed circuit is shown in Fig. 10. There are two sets: one for voltage 

conversion, and the other for current conversion.  

 When the analog signal is ready, the digital signal processor outputs a triggering signal to 

the A/ D converter. Then, each AD578 converter starts to convert the analog signal into a 

digital signal. When the conversion process finishes, an EOC signal is sent from the AD578 

to latch the 74LS373. Next, the digital signal processor reads the data. In this chapter, a timer 

with a fixed clock is used to start the conversion of the AD578 and then the digital signal 

processor can read the data. By using the method, we can simplify the software program of 

the digital signal processor.   
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Fig. 10. A/ D converter circuit. 
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Fig. 11. The interfacing circuit of the DSP. 
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g. The interfacing circuit of the digital signal processor 

In the chapter, the digital signal processor, type TMS320-C30, is manufactured by Texas 

Instruments. The digital signal processor is a floating-point operating processor. The 

application board, developed by Texas Instruments, is used as the major module. In 

addition, the expansion bus in the application board is used to interface to the hardware 

circuit. The voltage, current, speed, and rotor position of the drive system are obtained by 

using the expansion bus. As a result, the address decoding technique can be used to provide 

different address for data transfer. In addition, the triggering signals of the IGBTs are sent 

by the following pins: CLKX1, DX1, and FSX1. The details are shown in Fig. 11.   

A. Software Development 

a. The Main Program 

Fig. 12 shows the flowchart of the initialization of the main program. First, the DSP enables 

the interrupt service routine. Then, the DSP initializes the peripheral devices. Next, the DSP 

sets up parameters of the controller, inverter, A/ D converter, and counter.  After that, the 

DSP enables the counter, and clear the register. Finally, the DSP checks if the main program 

is ended. If it is ended, the main program stops; if it is not, the main program goes back to  

the initializing peripheral devices and  carries out the following processes mentioned.  

 
 

 

 

Fig. 12. The flowchart of the initialization of the main program. 
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b. The interrupt service routines 

The interrupt service routines include: the backstepping adaptive controller, the reference 

model adaptive controller, and the switching method of the inverter. The detailed 

flowcharts are shown in Fig. 13, Fig. 14, and Fig. 15. 

 

 

 

 

  

d̂

 
  

 

 

 

 

Fig. 13. The subroutine of the backstepping adaptive controller. 
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Fig. 14. The subroutine of the reference model adaptive controller. 
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Fig. 15. The subroutine of the switching method of the inverter. 
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5. Experimental results 

Several experimental results are shown here. The input dc voltage of the inverter is 150V. 

The switching frequency of the inverter is 20 kHz. In addition, the sampling interval of the 

minor loop is 50 sμ , and the sampling interval of the speed loop is 1 ms. The parameters of 

the PI controller are PK  =0.006 and IK =0.001. The parameters of the adaptive backstepping 

controller are M=3 and γ   =0.8. The parameters of the model referencing controller are Γ =  

[ -0.0002  -0.004  -0.004  -0.0006]. Fig. 16(a)(b) show the measured steady-state waveforms.  

Fig. 16(a) is the measured a-phase current and Fig. 16(b) is the measured line-line voltage, 

abv . Fig. 17(a) is the simulated fluxes at 1000 r/ min. Fig. 17(b) is the simulated flux 

trajectory at 1000 r/ min. Fig. 17(c) is the measured fluxes at 1000 r/ min. Fig. 17(d) is the 

measured flux trajectory at 1000 r/ min.  As you can observe, the trajectories are both near 

circles in both simulation and measurement. Fig. 18(a) shows the comparison of the 

measured estimating rotor angle and the measured real rotor angle at 50 r/ min. As we 

know, when the motor is operated at a lower speed, the flux becomes smaller. As a result, 

the motor cannot be operated well at lower speeds due to its small back emf. The estimating 

error, shown in Fig. 18(b) is obvious. Fig. 19(a)(b) show the measured estimating rotor angle 

at 1000 r/ min. Fig. 19(a) shows the comparison of the measured estimating rotor angle and 

the measured real rotor angle at 1000 r/ min. Fig. 19(b) shows the estimating error, which is 

around 2 degrees. As a result, the estimating error is reduced when the motor speed is 

increased. In addition, Fig. 19(b) is varied more smoothly than the Fig. 18(b) is. The major 

reason is that the back emf has a better signal/ noise ratio when the motor speed increases. 

Fig. 20(a) shows the measured transient responses at 50 r/ min. Fig. 20(b) shows the 

measured load disturbance responses under 2 N.m external load. The model reference 

control performs the best. The steady-state errors of Fig. 20(a)(b) are: 2.7 r/ min for PI 

controller, 0.5 r/ min for ABSC controller, and 0.1 r/ min for MRAC controller, respectively. 

According to the measured results, the MRAC controller performs the best and the PI 

controller performs the worst in steady-state. Fig. 21(a)(b) show the measured speed 

responses at 1000 r/ min. Fig. 21(a) is the measured transient responses. Fig. 21(b) is the load 

disturbance responses under 2 N.m. According to the measured results, the model-reference 

controller performs better than the other two controllers in both transient response and load 

disturbance response again. The steady-state errors of Fig. 21(a)(b) are: 7.3 r/ min for PI 

controller, 1.9 r/ min for ABSC controller, and 0.1 r/ min for MRAC controller, respectively. 

As you can observe, the conclusions are similar to the results of Fig. 20(a)(b). Fig. 22(a) 

shows the measured external - d̂  of the adaptive backstepping control. Fig. 22(b) shows the 

measured speed error of the adaptive backstepping control by selecting different 

parameters. Fig. 23(a)(b)(c)(d) show the relative measured parameters K, 1 2 0, , ,K Q Q Q of the 

model-reference controller. All the parameters converge to constant values. Fig. 24(a)(b)(c) 

show the measured speed responses of a triangular speed command. The PI controller has a 

larger steady-state error than the adaptive controllers have. Fig. 25(a)(b)(c) show the 

measured speed responses of a sinusoidal speed command. As you can observe, the model-

reference controller performs the best. The model- reference controller has a smaller steady-

state error and performs a better tracking ability than the other controllers.      
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(a) 

 

 
 

(b) 

Fig. 16. The measured steady-state waveforms. (a) phase current (b) line voltage.  
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(a) 
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(c) 

 

 

(d) 

Fig. 17. The stator flux trajectories at 1000 r/ min. simulated fluxes (b) simulated trajectory 

(c) measured fluxes (d) measured trajectory. 
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(a) 

 
(b) 

Fig. 18. The measured estimating rotor angle at 50 r/ min.  (a) comparison (b) estimating 

error. 
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(a) 

 

 
(b) 

Fig. 19. The measured estimating rotor angle at 1000 r/ min. (a) comparison (b) estimating 

error. 
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(a) 

 

 
(b) 

Fig. 20. The measured speed responses at 50 r/ min, (a) transient responses (b) load 

disturbance responses                                                       
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(a) 

 

 
(b) 

Fig. 21. The measured speed responses at 1000 r/ min. (a) transient responses (b) load 

disturbance responses. 
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(a) 

 

 
(b) 

 

Fig. 22. The measured responses of adaptive backstepping control. (a) ˆ-d  (b) speed error. 
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(c) 

 

 
 

(d) 

Fig. 23. The measured responses of model-reference control. (a) K  (b) 1Q  (c) 2Q  (d) 0Q . 
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(c) 

Fig. 24 The measured speed responses of a triangular speed command. 

(a) PI (b) backstepping (c) model-reference.  

 

 
(a) 

www.intechopen.com



Controller Design for Synchronous Reluctance 
Motor Drive Systems with Direct Torque Control   

 

289 

 
(b) 

 
(c) 

Fig. 25. The speed responses of a sinusoidal speed command. (a) PI (b) backstepping (c) 

model-reference.   
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6. Future trends  

In this chapter, by using the torque control, a closed-loop sensorless speed drive system has 

been implemented. The proposed system can be operated from 30 r/ min to 2000 r/ min with 

satisfactory performance. Unfortunately, the proposed system cannot be operated from 

standstill to 30 r/ min. As a result, it is necessary in the future to continuously improve the 

controller design, hardware design, and software design to reduce the torque pulsations and 

then provide better performance in low-speed operating range. In addition, it is another aim 

to realize a closed-loop high performance position control system by using a torque control 

method.      

7. Conclusions 

In this chapter, two different adaptive controllers have been proposed for a synchronous 

reluctance motor drive system. The parameters of the controllers are on-line tuned. The 

adaptive backstepping controller has simple control algorithm. It is more easily 

implemented than the model reference adaptive controller is. On the other hand, the model 

reference adaptive controller performs better in transient responses and steady-state 

characteristics. A digital signal process is used to execute the control algorithm. As a result, 

the hardware circuit is very simple. The implemented system shows good transient 

responses, load disturbance responses, and tracking ability in triangular and sinusoidal 

commands. This paper provides a new direction in the application of adaptive controller 

design for a synchronous reluctance motor drive system.  
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