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1. Introduction     

1.1 Classes of systems to be considered 

It should be noticed that in some systems we must consider their character of dynamic and 
static state at the same time. Singular systems (also referred to as degenerate, descriptor, 
generalized, differential-algebraic systems or semi-state) are those, the dynamics of which 
are governed by a mixture of algebraic and differential (difference) equations. Recently 
many scholars have paid much attention to singular systems and have obtained many good 
consequences. The complex nature of singular systems causes many difficulties in the 
analytical and numerical treatment of such systems, particularly when there is a real need 
for their control. 
It is well-known that singular systems have been one of the major research fields of control 
theory. During the past three decades, singular systems have attracted much attention due 
to the comprehensive applications in economics as the Leontief dynamic model (Silva & Lima 
2003), in electrical (Campbell 1980) and mechanical models (Muller 1997), etc. Discussion of 
singular systems originated in 1974 with the fundamental paper of (Campbell et al. 1974) and 
latter on the anthological paper of (Luenberger 1977). 
The research activities of the authors in the field of singular systems stability have provided 
many interesting results, the part of which were documented in the recent references. Still 
there are many problems in this field to be considered. This chapter gives insight into a 
detailed preview of the stability problems for particular classes of linear continuous and 
discrete time delayed systems. Here, we present a number of new results concerning 
stability properties of this class of systems in the sense of Lyapunov and non-Lyapunov and 
analyze the relationship between them. 

1.2 Stability concepts 

Numerous significant contributions have been made in the last sixty years in the area of 
Lyapunov stabilty for different classes of systems. Listing all contributions in this, always 
attractive area, at this point would represent a waste of time, since all necessary details and 
existing results, for so called normal systems, are very well known.  
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But in practice one is not only interested in system stability (e.g. in sense of Lyapunov), but 
also in bounds of system trajectories. A system could be stable but completely useless 
because it possesses undesirable transient performances. Thus, it may be useful to consider 
the stability of such systems with respect to certain sub-sets of state-space, which are a priori 
defined in a given problem.  
Besides, it is of particular significance to concern the behavior of dynamical systems only 
over a finite time interval. These bound properties of system responses, i. e. the solution of 
system models, are very important from the engineering point of view.  
Realizing this fact, numerous definitions of the so-called technical and practical stability 
were introduced. Roughly speaking, these definitions are essentially based on the 
predefined boundaries for the perturbation of initial conditions and allowable perturbation 
of system response. In the engineering applications of control systems, this fact becomes 
very important and sometimes crucial, for the purpose of characterizing in advance, in 
quantitative manner, possible deviations of system response. Thus, the analysis of these 
particular bound properties of solutions is an important step, which precedes the design of 
control signals, when finite time or practical stability concept are concerned. 

2. Singular (descriptor) systems 

2.1 Continuous singular systems 
2.1.1 Continuous singular systems – stability in the sense of Lyapunov 
Generally, the time invariant continuous singular control systems can be written, as: 

 ( ) ( ) ( ) ( )0 0,E t A t t t= =x x x x$ ,  (1) 

where ( ) nt ∈x {  is a generalized  state space (co-state, semi-state) vector, n nE ×∈{  is a 

possibly singular matrix, with rank E r n= < .  
Matrices E and A are of the appropriate dimensions and are defined over the field of real 
numbers.  
System (1) is operatinig in a free regime and no external forces are applied on it. It should be 
stressed that, in a general case, the initial conditions for an autonomus and a system 
operating in the forced regime need not be the same.  
System models of this form have some important advantages in comparison with models in 
the normal form, e.g. when E I=  and an appropriate discussion can be found in (Debeljkovic et 
al. 1996, 2004).  
The complex nature of singular systems causes many difficultes in analytical and numerical 
treatment that do not appear when systems represented in the normal form are considered. 
In this sense questions of existence, solvability, uniqueness, and smothness are presented 
which must be solved in satisfactory manner. A short and concise, acceptable and 
understandable explanation of all these questions may be found in the paper of (Debeljkovic 
2004). 

STABILITY DEFINITIONS 

Stability plays a central role in the theory of systems and control engineering. There are 
different kinds of stability problems that arise in the study of dynamic systems, such as 
Lyapunov stability, finite time stability, practical stability, technical stability and BIBO 
stability. The first part of this section is concerned with the asymptotic stability of the 
equilibrium points of linear continuous singular systems.   
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As we treat the linear systems this is equivalent to the study of the stability of the systems.  
The Lyapunov direct method (LDM) is well exposed in a number of very well known 
references.  
Here we present some different and interesting approaches to this problem, mostly based on 
the contributions of the authors of this paper. 

Definition 2.1.1.1 System (1) is regular if there exist s ∈C , ( )det 0sE A− ≠ , (Campbell et al. 

1974). 
Definition 2.1.1.2 System (1) with A I=  is exponentially stable if one can find two positive 

constants 1 2,c c  such that ( ) ( )1
2 0c tt c e− ⋅≤ ⋅x x  for every solution of (1), (Pandolfi 1980). 

Definition 2.1.1.3 System (1) will be termed asymptotically stable if and only if, for all 

consistent initial conditions 0x , ( ) ast t→ → ∞x 0 , (Owens  & Debeljkovic 1985). 

Definition 2.1.1.4 System (1) is asymptotically stable if all roots of ( )det sE A− , i.e. all finite 

eigenvalues of this matrix pencil, are in the open left-half complex plane, and system under 

consideration is impulsive free if there is no 0x  such that ( )tx exhibits discontinuous 

behaviour  in the free regime, (Lewis 1986). 
Definition 2.1.1.5 System (1) is called asymptotically stable if and only if all finite eigenvalues 

iλ , i = 1, … , 1n , of the matrix pencil ( )E Aλ −  have negative real parts, (Muller 1993). 

Definition 2.1.1.6 The equilibrium =x 0 of system (1) is said to be stable if for every 0ε > , 

and for any 0t ∈ ℑ , there exists a ( )0, 0tδ δ ε= > , such that ( )0 0, ,t t ε<x x  holds for all 

0t t≥ , whenever 0 k∈x W  and 0 δ<x ,  where ℑ  denotes time interval such that 

0 0, , 0t tℑ = + ∞ ≥⎡ ⎡⎣ ⎣ ,  and kW  is the subspace of consistent intial conditions (Chen & Liu 

1997). 

Definition 2.1.1.7 The equilibrium =x 0  of a system (1) is said to be unstable if there exist a 

0ε > , and  0t ∈ ℑ , for any 0δ > , such that there exists a 0t t∗ ≥ , for which ( )0 0, ,t t ε∗ ≥x x  

holds, although 0 k∈x W 1 and 0 δ<x , (Chen & Liu 1997). 

Definition 2.1.1.8 The equilibrium =x 0  of a system (1) is said to be attractive if for every 

0t ∈ ℑ , there exists an ( )0 0tη η= > , such that  ( )0 0lim , ,
t

t t
→∞

=x x 0 , whenever 0 k∈x W  and 

0 η<x ,  (Chen  & Liu 1997). 

Definition 2.1.1.9 The equilibrium =x 0  of a singular system (1) is said to be asymptotically 

stable if it is stable and attractive, (Chen & Liu  1997). 

 Definition 2.1.1.5 is equivalent to ( )lim
t

t
→+∞

=x 0 . 

Lemma 2.1.1.1 The equilibrium =x 0  of a linear singular system (1) is asymptotically stable if 

and only if it is impulsive-free, and ( ),E Aσ −⊂ C , (Chen & Liu  997). 

                                                 
1 The solutions of continuous singular system models in this investigation are continuously 
differentiable functions of time t  which satisfy the considered equations of the model. Since for 
continuous singular systems not all initial values 0x of ( )tx  will generate smooth solution, those that 
generate such solutions (continuous to the right) we call consistent. Moreover, positive solvability 
condition guarantees uniqueness and closed form of solutions to (1). 
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Lemma 2.1.1.2 The equilibrium =x 0  of a system (1) is asymptotically stable if and only if it is 

impulsive-free, and ( )lim
t

t
→∞

=x 0 , (Chen & Liu 1997). 

Due to the system structure and complicated solution, the regularity of the systems is the 
condition to make the solution to singular control systems exist and be unique.  
Moreover if the consistent initial conditions are applied, then the closed form of solutions 
can be established. 

STABILITY THEOREMS 

Theorem 2.1.1.1 System (1), with A I= , I  being the identity matrix, is exponentially stable if 

and only if the eigenvalues of  E  have non positive real parts,  (Pandolfi 1980). 

Theorem 2.1.1.2 Let 
k

IW be the matrix which represents the operator on n{  which is the 

identity on kW  and the zero operator on kW .  

 System  (1), with A I= ,  is stable if an ( )n n×  matrix P  exist, which is the solution of the 

matrix equation: 

  
k

TE P PE I+ = − W ,  (2)  

with the following properties: 

 P = TP ,  (3) 

  ,P = ∈q 0 q V , (4) 

  0, ,T
kP > ≠ ∈q q q 0 q W , (5) 

where: 

 ( )D
k I EE= ℵ −W  (6)  

 ( )DEE= ℵV , (7) 

where kW  is the subspace of  consistent  intial conditions, (Pandolfi  1980) and ( )ℵ denotes 

the kerrnel or null space of the matrix ( ) . 
Theorem 2.1.1.3 System (1) is asymptotically stable if and only if (Owens & Debeljkovic 1985): 

a. A is invertible.  

b. A  positive-definite, self-adjoint operator P  on n{   exists,  such that: 

  T TA PE E PA Q+ = − ,  (8) 

where Q  is self-adjoint and positive in the sense that: 

 ( ) ( ) 0T t Q t >x x  for all ( ) { }\
k

t ∗∈x 0W .  (9) 

Theorem 2.1.1.4  System (1)  is asymptotically stable if and only if (Owens & Debeljkovic 1985): 

a. A  is invertible, 
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b.  there exists a positive-definite, self-adjoin operator P , such that: 

 ( )( ) ( ) ( ) ( )T T T Tt A PE E PA t t I t+ = −x x x x ,  (10) 

 for all 
k∗∈x W ,  where  

k∗W  denotes the subspace of consistent initial conditions. 

2.1.2 Continuous singular systems – stability over finite time interval 

Dynamical behaviour of the system (1) is defined over time interval { }0 0:t t t t Tℑ = ≤ ≤ + , 

where quantity T  may be either a positive real number or symbol +∞ , so finite time 
stability and practical stability can be treated simultaneously. Time invariant sets, used as 
bounds of system trajectories, are assumed to be open, connected and bounded.  

Let index β  stand for the set of all allowable states of system and index α for the set of all 

initial states of the system, such that α β⊆S S .  
In general, one may write: 

 ( ){ } ( ) { }: , \ 0kQ
t t℘ = <℘ ∈x x x WS , (11) 

where Q  will be assumed to be symmetric, positive definite, real matrix and where kW  

denotes the sub-space of consistent  initial conditions generating the smooth solutions.  
A short and concise, acceptable and understandable explanation of all these questions can 
be found in the paper of (Debeljkovic 2004). Vector of initial conditions is consistent if  there 
exists continuous, differentiable solution to (1).  

A geometric treatment (Owens & Debeljkovic 1985) yields kW  as the limit of the sub-space 

algorithm: 

  ( )1
0 1, , 0n

j jA E j−
+= = ≥{W W W ,  (12) 

where ( )1A− ⋅  denotes inverse image of ( )⋅  under the operator A . 

Campbell et al. (1974) have shown that sub-space kW represents the set of vectors satisfying: 

 ( ) 0
ˆ ˆDI E E− =x 0 ,  or  ( )ˆ ˆD

k I E E= ℵ −W ,  (13) 

where ( ) 1
Ê E A Eλ −= − . c  is any complex scalar such that: 

 ( )det 0E Aλ − ≠  or ( ) { }0k E∩ℵ =W .  (14) 

This condition guarantees the uniqueness of solutions that are generated by kW  and 

( )E Aλ −  is invertible for some λ ∈{ . The null space of matrix F  is denoted by ( )Fℵ , 

range space with ( )Fℜ  and superscript " D " is used to indicate Drazin inverse. Let 

( ) ( )
t

⋅
x  be any vector norm (i. g. 1,2,⋅ = ∞ ) and ( )⋅  the matrix norm induced by this 

vector. 
The matrix measure, for our purposes, is defined as follows: 
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 ( ) ( )1
max

2
i

i
F F Fμ λ ∗= + ,  (15) 

for any matrix n nF ×∈} . Upper index ∗  denotes transpose conjugate. In case of n nF ×∈{  it 

follows TF F∗ = , where superscript T  denotes  transpose. 

The value of a particular solution at the moment t , which at the moment 0t =  passes 

through the point 0x , is denoted as ( )0,tx x , in abbreviated notation ( )tx .  

The set of all points iS , in the phase space ,n n
i ⊆{ {S , which generate smooth solutions 

can be determined via the Drazin inverse technique.  

STABILITY DEFINITIONS 

Definition 2.1.2.1 System (1) is finite time stable w.r.t.{ }, , ,Qα β α β, , ℑ <  iff ( )0 0 kt∀ = ∈x x W , 

satisfying 
2

0 Q
α<x , implies ( ) 2

,
Q

t tβ< ∀ ∈ ℑx , (Debeljkovic & Owens 1985). 

Definition 2.1.2.2 System (1) is finite time instable w.r.t. { }, ,Qα β α β, , ℑ < , iff for 

( )0 0 kt∀ = ∈x x W , satisfying  2

0 Q
α<x , exists  t∗ ∈ ℑ   implying ( ) 2

Q
t β∗ ≥x , (Debeljkovic & 

Owens 1985). 

Preposition 2.1.2.1 If ( ) ( ) ( )T t M tϕ =x x x  is quadratic form on n{  then it follows that there 

exist numbers ( )min Mλ  and ( )max Mλ , satisfying ( ) ( )min maxM Mλ λ−∞ < ≤ < +∞ , such 

that: 

 ( ) ( ) ( )
( ) ( ) { }min max , \

T

k

t M t
M M

V
λ λ≤ ≤ ∀ ∈

x x
x 0

x
W .  (16) 

If TM M=  and ( ) ( ) { }0, \T
kt M t > ∀ ∈x x x 0W , then ( )min 0Mλ >  and ( )max 0Mλ > , 

where ( )min Mλ  and ( )max Mλ  are defined in such way: 

  

( )
( ) ( ) { }

( ) ( )

( )
( ) ( ) { }

( ) ( )

min

max

, \ ,
min ,

1

, \ ,
max .

1

T
k

T T

T
k

T T

t M t
M

t E PE t

t M t
M

t E PE t

λ

λ

⎧ ⎫∈⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

⎧ ⎫∈⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

x x x 0

x x

x x x 0

x x

W

W
 (17) 

It is convenient to consider, for the purposes of this exposure, the aggregation function for 
the system (1) in the following manner: 

 ( )( ) ( ) ( )T TV t t E PE t=x x x ,   (18) 

with particular choice P I= , I  being identy matrix. 

STABILITY THEOREMS 

Theorem 2.1.2.1 The system is finite stable with respect to { }, ,α β α β, ℑ < , if the following 

conditiones are satisfied: 

www.intechopen.com



Stability of Linear Continuous Singular  
and Discrete Descriptor Systems over Infinite and Finite Time Interval   

 

21 

(i) 
( )
( )

2

1

Q

Q

γ
β α

γ
>   (19) 

(ii) ( ) ( )
( )

2

1

ln ln ,
Q

Q t
Q

γ
β α

γ
> Λ + ∀ ∈ ℑ .  (20) 

with ( )max Qλ  as in Preposition 2.1.2.1,  (Debeljkovic & Owens 1985). 

Preposition 2.1.2.2 There exists matrix 0TP P= > , such that ( ) ( )1 2 1Q Qγ γ= = , (Debeljkovic 

& Owens 1985). 

Corollary 2.1.2.1 If 1β α > , there exist choice of P  such that 

 
( )
( )

2 Q

Q

γβ
α γ1

> . (21) 

The practical meaning of this result is that condition (i) of Definition 2.1.2.1 can be satisfied 

by initial choice of free parameters of matrix P . Condition (ii) depends also on the system 

data and hence is more complex but it is also natural to ask whether we can choose P  such 

that ( )max 0Qλ < , (Debeljkovic & Owens 1985). 

Theorem  2.1.2.2 System (1)  is finite time stable  w.r.t. { }, , ,Iα β ℑ   if the following condition is 

satisfied 

  ( ) ,CSS t t
β
α

Φ < ∀ ∈ ℑ ,  (22) 

( )CSS tΦ  being the fundamental matrix of linear singular system (1),  (Debeljkovic et al. 1997). 

Now we apply matrix mesure approach. 

Theorem 2.1.2.3 System (1) is finite time stable w.r.t. { }, , ,Iα β ℑ , if the following condition is 

satisfied (Debeljkovic et al. 1997). 

 ( ) ,
t

e t
μ β

α
ϒ ⋅ < ∀ ∈ ℑ ,  (23) 

where: 

 ( ) ( )1 1ˆ ˆˆ ˆ, ,DE A A sE A A E sE A E
− −ϒ = = − = − .  (24) 

Starting with explicit solution of system (1), derived in (Campbell 1980). 

 ( ) ( )0
ˆˆ

0 0 0
ˆ ˆ,

DE A t t Dt e EE
−= =x x x x , (25) 

and differentiating equitation (25), one gets: 

 ( ) ( )ˆˆ

0
ˆ ˆˆ ˆDD E A t Dt E Ae E A t⋅= ⋅ =x x x$ ,  (26)  

so only the regular singular systems are treated with matrices given in (24). 
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Theorem 2.1.2.4 For given constant matrix ˆˆ DE A  any solution of (1) satisfies the following 
inequality (Kablar & Debeljkovic 1998). 

 ( ) ( )( ) ( ) ( ) ( )( )0 0
ˆ ˆˆ ˆ

0 0 ,
D DE A t t E A t t

t e t t e t
μ μ− − − −

≤ ≤ ∀ ∈ ℑx x x  (27) 

Theorem 2.1.2.5 In order for the system (1) to be finite time stable w.r.t. { }, ,Iα β α β, , ℑ < , it is 

necessary that the following condition is satisfied: 

 
( ) ( )0

ˆˆ

,
DE A t t

e t
μ β

δ
− − ⋅ −

< ∀ ∈ ℑ ,  (28) 

where 0 δ α< ≤ , (Kablar & Debeljkovic 1998). 

Theorem  2.1.2.6 In order for system (1) to be finite time instable w.r.t. { }, ,Iα β α β, , ℑ < , it is 

necessary that there exists t∗ ∈ ℑ  such that the following condition is satisfied: 

 
( ) ( )0

ˆˆ

,
DE A t t

e t
μ β

α

∗⋅ − ∗≥ ∈ ℑ .  (29) 

Theorem 2.1.2.7 System (1) is finite time instable w.r.t. { }, ,Iα β α β, , ℑ < , if , 0δ δ α∃ < ≤  and 

t∗ ∈ ℑ  such that the following condition is satisfied: 

 
( ) ( )0

ˆˆ

,
DE A t t

e t
μ β

δ

∗− − ⋅ − ∗< ∈ ℑ .  (30) 

Finally, we present Bellman–Gronwall  approach to derive our  results, earlier given in Theorem 
2.1.2.7. 

Lemma 2.1.2.1 Suppose the vector ( )0,t tq  is defined in the following manner (Debeljkovic & 

Kablar 1999): 

 ( ) ( ) ( )0 0 0
ˆ ˆ, , Dt t t t E E t= Φq v .  (31) 

So if: 

 ( ) ( ) ( )0 0 0
ˆ ˆ, , DE t t E t t E E t= Φq v ,  (32) 

then: 

  ( ) ( ) ( )( )max 0
2 2

0 0,
T T

M t t

E E E E
t t t e

λ −≤q v ,  (33) 

where: 

 
( ) ( ) ( ) ( ) { }

( ) ( )
max 0 0 0

0 0

max{ , , : , \ 0 ,

, , 1, }

T
k

T T T T

M t t t t t t

t t E E t t A E E A

λ = Ξ ∈

= Ξ = +

q q q

q q

W
  (34) 

 ( ) ( )0 0 0,t t t=v q . (35) 
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Using this approach the results of Theorem 2.1.2.1 can be reformulate in the following 
manner. 

Theorem 2.1.2.8 System (1) is finite time stable w.r.t. ( ){ }2
, , , ,

Q
aα β β⋅ ℑ < , if the following 

condition is satisfied: 

  ( ) ( )max 0 ,
t t

e t
λ β

α
Ξ ⋅ − < ∀ ∈ ℑ ,  (36) 

with ( )max Mλ given (34), (Debeljkovic & Kablar 1999). 

2.2 Discrete descriptor system 
2.2.1 Discrete descriptor system – stability in sense of Lyapunov 

Generally, the time invariant linear discrete descriptor control systems can be written, as:  

 ( ) ( ) ( )0 01 ,E k A k k+ = =x x x x ,  (37) 

where ( ) nt ∈x {  is a generalized state space (co-state, semi-state) vector, n nE ×∈{  is a 

possibly singular matrix, with rank E r n= < . Matrices E and A are of the appropriate 

dimensions and are defined over the field of real numbers.  

NECESSARY CONSIDERATIONS 

In the discrete case, the concept of smoothness has little meaning but the idea of consistent 

initial conditions being these initial conditions 0x , that generate solution sequences 

( )( ): 0k k ≥x  has a physical meaning. 

The fundamental geometric tool in the characterization of the subspace of consistent initial 

conditions dW ,is the subspace sequence: 

 ,0
n

dW = R , ( ) ( )1
, 1 , , 0d j d jA E j−

+ = ≥W W .  (38) 

Here ( )1A− ⋅  denotes the inverse image of ( )⋅  under the operator A  and we will denote by 

( )Fℵ  and ( )Fℜ  the kernel and range of any operator F , respectively. 

Lemma 2.2.1.1 The subspace sequence { },0 ,1 ,2, , , ...d d dW W W  is nested in the sense that: 

 ,0 ,1 ,2 ,3d d d d⊃ ⊃ ⊃ ⊃AW W W W .  (39) 

Moreover: 

 ( ) ( ), , 0d jA jℵ ⊂ ≥W , (40) 

and there exists an integer 0k ≥ ,  such that: 

 , 1 ,d k d k+ =W W ,   (41) 

and hence , 1 ,d k d k+ =W W  for 1j ≥ .  
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If k∗  is the smallest such integer with this property, then: 

 ( ) { } ( ), 0 ,d k E k k∗∩ℵ = ≥W ,  (42) 

provided that ( )E Aλ −  is invertible for some λ ∈R ,  (Owens & Debeljkovic 1985). 

Theorem 2.2.1.1 Under the conditions of Lemma 2.2.1.1, 0x  is a consistent initial condition 

for (37) if 0 ,
.

d k∗∈x W  Moreover 0x  generates a unique solution ( ) ( ),
, 0

d k
t k∗∈ ≥x W  that is 

real - analytic on { }: 0k k ≥ ,  (Owens & Debeljkovic 1985). 

Theorem 2.2.1.1 is the geometric counterpart of the algebraic results of Campbell (1980). A 

short and concise, acceptable and understandable explanation of all these questions can be 

found in the papers of (Debeljkovic 2004). 

Definition 2.2.1.1 The linear discrete descriptor system (37) is said to be regular if 

( )det sE A−  is not identically equal to zero, (Dai 1989). 

Remark 2.2.1.1 Note that the regularity of matrix pair (E, A) guarantees the existence and 

uniqueness of solution x (⋅) for any specified initial condition, and the impulse immunity 

avoids impulsive behavior at initial time for inconsistent initial conditions.  It is clear that, 

for nontrivial case, det E ≠ 0, impulse immunity implies regularity. 

Definition 2.2.1.2 The linear discrete descriptor system (37) is assumed to be non-degenerate 

(or regular), i.e. ( )det 0zE A− ≠ . Otherwise, it will be called degenerate, (Syrmos et al. 1995).  

If ( )zE A−  is non-degenerate, we define the spectrum of ( )zE A− , denoted as { },E Aσ  as 

those isolated values of z where ( )det 0zE A− ≠  fails to hold. The usual spectrum of 

( )zI A−  will be denoted as { }Aσ . 

Note that owing to (possible) singularity of E , { },E Aσ  may contain finite and infinite 

values of z .  
Definition 2.2.1.3 The linear discrete descriptor system (37) is said to be causal if (37) is 

regular and ( )degree det rankzE A E− = , (Dai 1989). 

Definition 2.2.1.4 A pair (E, A) is said to be admissible if it is regular, impulse-free and stable, 

Hsiung, Lee (1999). 

Lemma 2.2.1.2 The linear discrete-time descriptor system (37) is regular, causal and stable if 

and only if there exists an invertible symmetric matrix n nH ×∈R  such that the following two 
inequalities holds (Xu & Yang  1999):  

  0TE HE ≥ , (43) 

  0T TA HA E HE− < .  (44) 

STABILITY DEFINITIONS 

Definition 2.2.1.5 Linear discrete descriptor system (37) is said to be stable if and only if (37) 

is regular and all of its finite poles are within region Ω(0,1), (Dai 1989).  

Definition 2.2.1.6 The system in (37) is asymptotically stable if all the finite eigenvalues of 

the pencil ( )zE A−  are inside the unit circle, and anticipation free if every admissible ( )0x  

in (37) admits one-sided solutions,  (Syrmos et al. 1995). 
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Definition 2.2.1.7 Linear discrete descriptor system (37) is said to be asymptotically stable if, 

for all consistent initial conditions 0x , we have that ( )t →x 0  as t → +∞ , (Owens & 

Debeljkovic 1985).  

STABILITY THEOREMS 

First, we present the fundamental work in the area of stability in the sense of Lyapunov 
applied to the linear discrete descriptor systems,  (Owens & Debeljkovic 1985). 

Our attention is restricted to the case of singular (i.e. noninvertible) E  and the construction 

of geometric conditions on 0x  for the existence of causal solutions of (37) in terms of the 

relative subspace structure of matrices E  and A . The results are hence a geometric 

counterpart of the algebraic theory of (Campbell 1980) who established the required form of 

0x  in terms of the Drazin inverse and the technical trick of replacing E  and A by 

commuting operators. 

The ideas in this paper work with E  and A  directly and commutability is not assumed. The 

geometric theory of consistency leads to a natural class of positive-definite quadratic forms 

on the subspace containing all solutions. This fact makes possible the construction of a 

Lyapunov stability theory for linear discrete descriptor systems in the sense that asymptotic 

stability is equivalent to the existence of symmetric, positive-definite solutions to a weak form 

of Lyapunov equation. 

Throughout this exposure it is assumed that ( )E Aλ −  is invertible at all but a finite number 

of points λ ∈C  and hence that if a solution ( ) ( ), 0k k ≥x  of ( )( ): 0,1,...k k =x  exists for a 

given choice of 0x , it  is unique, (Campbell 1980). 

The linear discrete descriptor system is said to be stable if (37) is regular and all of its finite 

poles are within region Ω(0,1), (Dai 1989), so careful investigation shows there is no need for 

the matrix A  to be invertible, in comparison with continuous case, see (Debeljkovic et al. 

2007) so it could be noninvertible.  

Theorem 2.2.1.2 The linear discrete descriptor system (37) is asymptotically stable if, and 

only if, there exists a real number 0λ∗
>  such that, for all λ  in the range 0 λ λ∗

< < , there 

exists a self-adjoint, positive-definite operator Hλ  in n
R  satisfying: 

 ( ) ( )T TA E H A E E H E Qλ λ λλ λ− − − = − ,  (45) 

for some self-adjoint operator Qλ  satisfying the positivity condition  (Owens & Debeljkovic 

1985): 

  ( ) ( ) ( ) { },
0, \ 0T

d k
t Q t tλ ∗∀ ∈x x x W> .  (46) 

Theorem 2.2.1.3 Suppose that matrix A  is invertible. Then the linear discrete descriptor 
system (37) is asymptotically stable if, and only if, there exists a self-adjoint, positive-definite 

solution H  in n
R  satisfying 

   T TA HA E HE Q− = − ,  (47) 

where Q  is self-adjoint and positive in the sense that (Owens & Debeljkovic 1985): 
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  ( ) ( ) ( ) { },
0, \ 0T

d k
t Q t t ∗∀ ∈x x x W> .  (48) 

Theorem 2.2.1.4 The linear discrete descriptor system (37) is asymptotically stable if and only if 

there exists a real number 0λ∗
>  such that, for all λ  in the range 0 λ λ∗

< < , there exists a 

self-adjoint, positive-definite operator Hλ  in n
R  satisfying Owens, Debeljkovic (1985): 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ,
,

TT T T
d k

t A E H A E E H E t t t tλ λλ λ ∗− − − = − ∀ ∈x x x x x W .  (49) 

Corollary 2.2.1.4 If matrix A  is invertible, then the linear discrete descriptor system (37) is 

asymptotically stable if and only if (49) holds for 0λ =  and some self-adjoint, positive-

definite operator 0H , (Owens & Debeljkovic 1985). 

2.2.2 Discrete descriptor system – stability over infinite time interval 

Dynamical behaviour of system (37) is defined over time interval ( ){ }0 0, Nk k k= +K , where 

quantity Nk  may be either a positive real number or symbol +∞ , so finite time stability and 

practical stability can be treated simultaneously.  
Time invariant sets, used as bounds of system trajectories, are assumed to be open, 

connected and bounded.  

Let index β  stands for the set of all allowable states of system and index α  for the set of all 

initial states of the system, such that ( )0 0 dk∀ = ∈x x W .  
Sets are assumed to be open, connected and bounded and defined by (11) in discrete case 
sense. 
Under assumption that discrete version of the Preposition 2.1.2.1 is acceptable here, without 

any limitation, we can give the following Definitions. 

STABILITY DEFINITIONS 

Definition 2.2.2.1 System (37) is finite time stable w.r.t { }, , , , dGα β K W , if and only if a 

consistent initial condition, 0 d∈x W , satisfying 
2

0 , T

G
G E PEα =x < , implies 

( ) 2
,

G
k kβ ∀ ∈x K< . G  is chosen to represent physical constraints on the system variables 

and it is assumed, as before, to satisfy TG G= , ( ) ( ) ( ) { }0, \ 0T
dk G k k> ∀ ∈x x x W , 

(Debeljkovic 1985, 1986), (Debeljkovic, Owens 1986), (Owens, Debeljkovic 1986). 

Definition 2.2.2.2 System (37) is finite time unstable w.r.t respect to { }, , , , qK G Wα β , if and 

only if there is a consistent initial condition, satisfying 
2

0 ,
G

αx < ,TG E PE=  and there exists 

discrete moment k K∗ ∈ , such that the next condition is fulfilled 

( ) 2
* *, for some ,

G
x k kβ> ∈K  (Debeljkovic & Owens 1986), (Owens & Debeljkovic 1986). 

STABILITY THEOREMS 

Theorem 2.2.2.1 System (37) is finite time stable w.r.t  { }, , ,α β β αK > , if the following 

condition is satisfied:  

www.intechopen.com



Stability of Linear Continuous Singular  
and Discrete Descriptor Systems over Infinite and Finite Time Interval   

 

27 

  ( )max / ,k Q kλ β α< ∀ ∈K ,  (50) 

where ( )max
k Qλ  is defined by: 

 ( ) ( ) ( ) ( ) { } ( ) ( ){ }T T T T
max max : \ 0 , 1k

dQ k A PA k k k E PE kλ = ∈ =
x

x x x x xW  (51) 

with matrix 0,TP P= >  (Debeljkovic  1986), (Debeljkovic & Owens  1986). 

Theorem 2.2.2.2 System (37) is finite time unstable w.r.t { }, , ,α β β αK >  if there exists a 

positive scalar 0,γ α∈ ⎤ ⎡⎦ ⎣  and a discrete moment k∗ , ( )0k k∗∃ > ∈K  such that the 

following condition is satisfied (Debeljkovic & Owens 1986):  

 ( )min / , forsomek Q kλ β γ
∗ ∗> ∈K   (52) 

where ( )k Qλ  being defined by:  

 ( ) ( ) ( ) ( ) { } ( ) ( ){ }T T T T
min min : \ 0 , 1 .k

dQ k A PA k k k E PE kλ = ∈ =
x

x x x x xW   (53) 

Theorem 2.2.2.3. System (37) is finite time stable w.r.t  { }, , ,α β β αK > ,  if the following 

condition is satisfied:  

 ( ) / , .k k Kβ αΨ < ∀ ∈   (54) 

where: ( ) ( )ˆˆ
k

Dk E AΨ =   and ( ) 1ˆ ,E cE A E
−= − ( ) 1

Â cE A A
−= − , (Debeljkovic  1986). 

3. Conclusion 

This chapter considers important stability issues of linear continuous singular and discrete 

descriptor systems over infinite and finite time interval. Here, we present a number of new 

results concerning stability properties of this class of systems in the sense of Lyapunov and 

non-Lyapunov and analyze the relationship between them over finite and infinite time 

interval. 

In the first part of the chapter continuous singular systems were considered. Basic stability 

concepts were introduced, starting with a preview of important stability definitions. 

Stability in the sense of Lyapunov, as well as the stability over finite time interval were 

addressed in detail.  

Second part of this chapter deals with stability issues for discrete descriptor systems in the 
sense of Lyapunov and over infinite and finite time interval. 
The chapter also represents a comprehensive survey on important stability theorems which 
apply to studied classes of systems. 
The geometric theory of consistency leads to the natural class of positive definite quadratic 
forms on the subspace containing all solutions. This fact makes possible the construction of 
Lyapunov stability theory even for the time delay systems in that sense that asymptotic 
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stability is equivalent to the existence of symmetric, positive definite solutions to a weak 
form of Lyapunov continuous (discrete) algebraic matrix equation (Owens, Debeljkovic 1985) 
respectively, incorporating condition which refers to time delay term. 
Time delay systems represent a special and very important class of systems and therefore 
their investigation deserves special attention. Detailed consideration of time delayed 
systems, together with important new results of the authors, will be presented in the 
subsequent chapter, which concerns continuous singular as well as discrete descriptor time 
delay systems. Presented chapter is therefore a necessary premise as an introduction to the 
stability issues of continuous singular and discrete descriptor time delay system, which 
provides consistency and comprehensibility of the presented topics. 
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