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1. Introduction

In this Chapter we shall consider a generalization of Hermite-Biehler Theorem1 given by
Pontryagin in the paper Pontryagin (1955). It should be understood that Pontryagin’s
generalization is a very relevant formal tool for the mathematical analysis of stability of
quasipolynomials. Thus, from this point of view, the determination of the zeros of a
quasipolynomial by means of Pontryagin’s Theorem can be considered to be a mathematical
method for analysis of stabilization of a class of linear time invariant systems with time delay.
Section 2 contains an overview of the representation of entire functions as an infinite product
by way of Weierstrass’ Theorem—as well as Hadamard’s Theorem. Section 3 is devoted to
an exposition to the Theory of Quasipolynomials via Pontryagin’s Theorem in addition to a
generalization of Hermite-Biehler Theorem. Section 4 deals with applications of Pontryagin’s
Theorem to analysis of stabilization for a class of linear time invariant systems with time
delays.

2. Representation of the entire functions by means of infinite products

In this Section we will present the mathematical background with respect to the Theory
of Complex Analysis and to provide the necessary tools for studying the Hermite-Biehler
Theorem and Pontryagin’s Theorems. At the first let us introduce the basic definitions and
general results used in the representation of the entire functions as infinite products2.

2.1 Preliminaries

Definition 1. (Zeros of analytic functions) Let f : Ω −→ C be an analytic function in a region

Ω—i.e., a nonempty open connected subset of the complex plane. A value α ∈ Ω is called a zero of f

with multiplicity (or order) m ≥ 1 if, and only if, there is an analytic function g : Ω −→ C such that

f (z) = (z− α)mg(z), where g(α) �= 0. A zero of order one (m = 1) is called a simple zero.

Definition 2. (Isolated singularity) Let f : Ω −→ C be an analytic function in a region Ω. A value

β ∈ Ω is called a isolated singularity of f if, and only if, there exists R > 0 such that f is analytic in

{z ∈ C: 0 < |z− β| < R} but not in B(β, R) = {z ∈ C: |z− β| < R}.
1 See Levin (1964) for an analytical treatment about the Hermite-Biehler Theorem and a generalization of

this theorem to arbitrary entire functions in an alternative way of the Pontryagin’s method.
2 See Ahlfors (1953) and Titchmarsh (1939) for a detailed exposition.
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Definition 3. (Pole) Let Ω be a region. A value β ∈ Ω is called a pole of analytic function

f : Ω −→ C if, and only if, β is a isolated singularity of f and lim
z−→β

| f (z)| = ∞.

Definition 4. (Pole of order m) Let β ∈ Ω be a pole of analytic function f : Ω −→ C . We say that

β is a pole of order m ≥ 1 of f if, and only if, f (z) =
A1

z− β
+

A2

(z− β)2 + . . . +
Am

(z− β)m
+ g1(z),

where g1 is analytic in B(β, R) and A1, A2, . . . , Am ∈ Cwith Am �= 0.

Definition 5. (Uniform convergence of in�nite products) The in�nite product

+∞

∏
n=1

(1 + fn(z)) = (1 + f1(z))(1 + f2(z)) . . . (1 + fn(z)) . . . (1)

where { fn}n∈IN is a sequence of functions of one variable, real or complex, is said to be uniformly

convergent if the sequence of partial product ρn de�ned by

ρn(z) =
n

∏
m=1

(1 + fm(z)) = (1 + f1(z))(1 + f2(z)) . . . (1 + fn(z)) (2)

converges uniformly in a certain region of values of z to a limit which is never zero.

Theorem 1. The in�nite product (1) is uniformly convergent in any region where the series
+∞

∑
n=1

| fn(z)|

is uniformly convergent.

Definition 6. (Entire function) A function which is analytic in whole complex plane is said to be

entire function.

2.2 Factorization of the entire functions

In this subsection, it will be discussed an important problem in theory of entire functions,
namely, the problem of the decomposition of an entire function—under the form of an in�nite

product of its zeros—in pursuit of the mathematical basis in order to explain the distribution
of the zeros of quasipolynomials.

2.2.1 The problem of factorization of an entire function

Let P(z) = anz
n + . . . + a1z+ a0 be a polynomial of degree n, (an �= 0). It follows of the

Fundamental Theorem of Algebra that P(z) can be decomposed as a �nite product of the
following form: P(z) = an(z− α1) . . . (z− αn), where the α1, α2, . . . , αn are—not necessarily
distinct—zeros of P(z). If exactly kj of the αj coincide, then the αj is called a zero of P(z) of
order kj [see Definition (1)]. Furthermore, the factorization is uniquely determined except for
the order of the factors. Remark that we can also find an equivalent form of a polynomial

function with a �nite product of its zeros, more precisely, P(z) = Czm
N

∏
j=1

(1 − z

αj
), where

C = an
N

∏
j=1

(−αj), m is the multiplicity of the zero at the origin, αj �= 0(j = 1, . . . , N) and

m+ N = n.
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We can generalize the problem of factorization of the polynomial function for any entire
function expressed likewise as an in�nite product of its zeros.
Let’s supposed that

f (z) = zmeg(z)
∞

∏
n=1

(1 − z

αn
) (3)

where g(z) is an entire function. Hence, the problem can be established in following way: the
representation (3) should be valid if the in�nite product converges uniformly on every compact set [see
Definition (5)].

2.2.2 Weierstrass factorization theorem

The problem characterized above was completely resolved by Weierstrass in 1876. As matter
of fact, we have the following definitions and theorems.

Definition 7. (Elementary factors) We can to take

E0(z) = 1 − z, and (4)

Ep(z) = (1 − z) exp(z+
z2

2
+ . . . +

zp

p
), for all p = 1, 2, 3, ... (5)

These functions are called elementary factors.

Lemma 1. If |z| ≤ 1 , then |1 − Ep(z)| ≤ |z|p+1, for p = 1, 2, 3, ....

Theorem 2. Let {αn}n∈IN be a sequence of complex numbers such that αn �= 0 and lim
n−→+∞

|αn| = ∞.

If {pn}n∈IN is a sequence of nonnegative integers such that

∞

∑
n=1

(
r

rn
)1+pn < ∞, where |αn| = rn, (6)

for every positive r, then the in�nite product

f (z) =
∞

∏
n=1

Epn(
z

αn
) (7)

de�ne an entire function f which has a zero at each point αn, n ∈ IN, and has no other zeros in the

complex plane.

Remark 1. The condition (6) is always satis�ed if pn = n− 1. Indeed, for every r, it follows that

rn > 2r for all n > n0, since lim
n−→+∞

rn = ∞. Therefore,
r

rn
<

1
2
for all n > n0, then (6) is valid with

respect to 1 + pn = n.

Theorem 3. (Weierstrass Factorization Theorem) Let f be an entire function. Suppose that f (0) �= 0,
and let α1, α2, . . . be the zeros of f , listed according to their multiplicities. Then there exist an entire

function g and a sequence {pn}n∈IN of nonnegative integers, such that

f (z) = eg(z)
∞

∏
n=1

Epn(
z

αn
) = eg(z)

∞

∏
n=1

(

1 − z

αn

)

e

[

z
αn

+ 1
2 (

z
αn

)2+...+ 1
n−1 (

z
αn

)n−1

]

(8)
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Notice that, by convention, with respect to n = 1 the �rst factor of the in�nite product should be

1 − 1
α1

.

Remark 2. If f has a zero of multiplicity m at z = 0, the Theorem (3) can be apply to the function
f (z)

zm
.

Remark 3. The decomposition (8) is not unique.

Remark 4. In the Theorem (3), if the sequence {pn}n∈IN of nonnegative integers is constant, i.e.,

pn = ρ for all n ∈ IN, then the following in�nite product:

eg(z)
∞

∏
n=1

Eρ(
z

αn
) (9)

converges and represents an entire function provided that the series
1

ρ + 1

∞

∑
n=1

(
R

|αn|
)ρ+1 converges for

all R > 0. Suppose that ρ is the smallest integer for which the series
∞

∑
n=1

1
|αn|ρ+1 converges. In this

case, the expression (9) is denominated the canonical product associated with the sequence {αn}n∈IN

and ρ is the genus of the canonical product 3.

With reference to the Remark (4) we can state:

Hadamard Factorization Theorem. If f is an entire function of �nite order ϑ, then it admits

a factorization of the following manner: f (z) = zmeg(z)
∞

∏
n=1

Ep(
z

αn
), where g(z) is a polynomial

function of degree q, and max{p, q} ≤ ϑ.

The first example of infinite product representation was given by Euler in 1748, viz.,

sin(πz) = πz
∞

∏
n=1

(1 − z2

n2 ), where m = 1, p = 1, q = 0 [g(z) ≡ 0], and ϑ = 1.

3. Zeros of quasipolynomials due to Pontryagin’s theorem

We know that, under the analytic standpoint and a geometric criterion, results concerning
the existence and localization of zeros of entire functions like exponential polynomials have
received a considerable attention in the area of research in the automation field. In this section
the Pontryagin theory is outlined.

Consider the linear difference-differential equation of differential order n and difference order
m defined by

n

∑
μ=0

m

∑
ν=0

aμνx
(μ)(t+ ν) = 0 (10)

3 See Boas (1954) for analysis of the problem about the connection between the growth of an entire
function and the distribution of its zeros.
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where m and n are positive integers and aμν(μ = 0, . . . , n, ν = 0, . . . ,m) are real numbers. The
characteristic function associated to (10) is given by:

δ(z) = P(z, ez), (11)

where P(z, s) =
n

∑
μ=0

m

∑
ν=0

aμνz
μsν is a polynomial in two variables.

Pontryagin’s Theorem, in fact, establishes necessary and sufficient conditions such that the
real part of all zeros in (11) may be negative. These conditions transform the problem a real
variable one.

Definition 8. (Quasipolynomials)4 We call the quasipolynomials or exponential polynomials the

entire functions of the form:

F(z) =
m

∑
ξ=0

fξ(z)e
λξz = f0(z)e

λ0z + f1(z)e
λ1z + . . . + fm(z)e

λmz (12)

where fξ(ξ = 0, . . . ,m) are polynomial functions with real (or complex) coef�cients, and

λξ (ξ = 0, . . . ,m) are real (or complex) numbers. In particular, if the λξ (ξ = 0, . . . ,m) are

commensurable real numbers and 0 = λ0 < λ1, . . . < λm, then the quasipolynomial (12) can be

written in the form (11) studied by Pontryagin.

Notice that, some trigonometric functions, e.g., sin and cos are quasipolynomials since

sin(mz) =
1
2j
ejmz − 1

2j
e−jmz and cos(nz) =

1
2
ejnz +

1
2
e−jnz, where j =

√
−1, and m, n ∈ IN.

Remark 5. If the quasipolynomial F(z) in (12) does not degenerate into a polynomial, then the

quasipolynomial F(z) has an infinite set of zeros whose unique limit point is in�nite. Note that all

roots of F(z) are separated from one another by more than some distance d > 0, therefore it is possible
to determine non-intersecting circles of radius r < d encircling all the roots taken as centers.

Definition 9. (Hurwitz Stable) The quasipolynomial F(z) in (12) is said to be a Hurwitz stable if,

and only if, all its roots lie in the open left-half of the complex plane.

Definition 10. (Interlacing Property) Let f (ω) and g(ω) be two real functions of a real variable. The

zeros of these two functions interlace (or alternate) if, and only if, we have the following conditions:

1. each of the functions has only simple zeros [see De�nition1];

2. between every two zeros of one of these functions there exists one and only one zero of the other;

3. the functions f (ω) and g(ω) have no common zeros.

We cannot refrain from remark that Cebotarev, in 1942, gave the generalization of the Sturm
algorithm to quasipolynomials, therefore we have a general principle for solving that problem
for arbitrary quasipolynomials. Notwithstanding, it is of interest to note that Chebotarev’s
result presuppose a generalization of the Hermite-Biehler Theorem to quasipolynomials.

4 See Pontryagin (1969) for a discussion detailed.
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Theorem 4. (Pontryagin’s Theorem) Pontryagin (1955) Let δ(z) = P(z, ez) be a quasipolynomial,

where P(z, s) is a polynomial function in two variables with real coef�cients as de�ned in ( 11). Suppose

that anm �= 0. Let δ(jω) be the restriction of the quasipolynomial δ(z) to imaginary axis. We can

express δ(jω) = f (ω) + jg(ω), where the real functions (of a real variable) f (ω) and g(ω) are the

real and imaginary parts of δ(jω), respectively. Let us denote by ωr and ωi, respectively, the zeros

of the function f (ω) and g(ω). If all the zeros of the quasipolynomial δ(z) lie to the left side of the

imaginary axis, then the zeros of the functions f (ω) and g(ω) are real, alternating, and

g′(ω) f (ω)− g(ω) f ′(ω) > 0. (13)

for each ω ∈ IR. Reciprocally, if one of the following conditions is satis�ed:

1. All the zeros of the functions f (ω) and g(ω) are real and alternate and the inequality (13) is

satis�ed for at least one value ω;

2. All the zeros of the function f (ω) are real , and for each zero of f (ω) the inequality (13) is satis�ed,

that is, g(ωr) f
′(ωr) < 0;

3. All the zeros of the function g(ω) are real, and for each zero of g(ω) the inequality (13) is satis�ed,

that is, g′(ωi) f (ωi) > 0;

then all the zeros of the quasipolynomial δ(z) lie to the left side of the imaginary axis.

Remark 6. Let us note that the above function δ(jω) in Theorem (4) has, also, the following form:

δ(jω) =
n

∑
μ=0

m

∑
ν=0

aμνωμ

[

ν

∑
ρ=0

(j)μ+ν−ρ ν!
ρ!(ν − ρ)!

(cos ω)ρ(sin ω)ν−ρ

]

. (14)

Consequently, the functions f (ω) and g(ω) can be express as Q(ω) = q(ω, cos(ω), sin(ω)), where

q(ω,u, v) is a real polynomial function in three variables with real coef�cients.

With respect to the Remark (6), it should be pointed out, the polynomial q(ω,u, v) may be
represented in the form:

q(ω,u, v) =
n

∑
μ=0

m

∑
ν=0

ωμφ
(ν)
μ (u, v), (15)

where φ
(ν)
μ (u, v) is a real homogeneous polynomial of degree ν in two real variables u and v.

The formula ωnφ
(m)
n (u, v) is denominated the principal term of the polynomial in (15). From

(15), we can define φ∗
n(u, v) as follows

φ∗
n(u, v) =

m

∑
ν=0

φ
(ν)
n (u, v). (16)

And by substituting u = cos(ω) and v = sin(ω) in (16) we can express

Φ∗
n(ω) = φ∗

n(cos(ω), sin(ω)). (17)

Now, let us consider the above formalization in complex field, that is,
Φ∗

n(z) = φ∗
n(cos(z), sin(z)), where z ∈ C .

6 Time-Delay Systems
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Theorem 5. Pontryagin (1955) Let q(z,u, v) be a polynomial function, as given in (15), with three

complex variables and real coef�cients, in which the principal term is znφ
(m)
n (u, v). If ǫ is such that

Φ∗
n(ǫ + j̺) does not take the value zero for every real ̺, then the function Q(ω + j̺) has exactly

4kn+m zeros—for some suf�ciently large value of k— for (ω, ̺) ∈ [−2kπ + ǫ, 2kπ + ǫ]× IR.

Hence, in order that the restriction of the function Q to IR, denoted by Q(ω), have only

real roots, it is necessary and suf�cient that Q(ω) have exactly 4kn+m zeros in the interval

−2kπ + ǫ ≤ ω ≤ 2kπ + ǫ for suf�ciently large k.

4. Applications of Pontryagin’s theorem to analysis of stabilization for a class of

linear time invariant systems with time delay

In this Section we will explain some relevant applications concerning the Hermite-Biehler
Theorem and Pontryagin’s Theorems in the framework of Control Theory. Apropos to the
several methodological approaches about the subject of the Section 3, we have in technical
literature some significant publications, viz., Bellman & Cooke (1963), Bhattacharyya et
al. (2009) and Oliveira et al. (2009). These methods constitute a set of analytic tools for
mathematical modeling and general criteria for studying of stability of the dynamic systems
with time delays, that is, for setting a characterization of all stabilizing P, PI or PID controllers
for a given plant. It should be pointed out that the definition of the formal concept of
signature—introduced in the reference Oliveira et al. (2003)—allows to extend results of the
polynomial case to quasipolynomial case via property of interlacing in high frequencies of the
class of time delay systems considered 5.
The dynamic behavior of many industrial plants may be mathematically modeled by a linear
time invariant system with time delay. The problem of stability of linear time invariant
systems with time delay make necessary a method for localization of the roots of analytic
functions. These systems are described by the linear differential equations with constant
coefficients and constant delays of the argument of the following manner

n

∑
μ=0

m

∑
ν=0

aμνu
(μ)(t− τν) = h(t) (18)

where the coefficients are denoted by aμν ∈ IR(μ = 0, . . . , n, ν = 0, . . . ,m) and the constant
delays are symbolized by τν ∈ IR(ν = 0, . . . , m) with 0 = τ0 < τ1, . . . < τm.

5 The Hermite-Biehler Theorem provides necessary and sufficient conditions for Hurwitz stability of
real polynomials in terms of an interlacing property. Notice that, if a given real polynomial is not
Hurwitz, the Hermite-Biehler Theorem does not provide information on its roots distribution. A
generalization of Hermite-Biehler Theorem with respect to real polynomials was first derived in a report
by Özgüler & Koçan (1994) in which was given a formula for a signature of polynomial—not necessarily
Hurwitz—applicable to real polynomials without zeros on the imaginary axis except possibly a single
root at the origin. This formula was employed to solve the constant gain stabilization problem. It may
be mentioned that, in Ho et al. (1999), a different formula applicable to arbitrary real polynomials—but
without restrictions on root localizations—was derived and used in the problem of stabilizing PID
controllers. In addition, as a result of Ho et al. (2000), a generalization of the Hermite-Biehler Theorem
for real polynomials—not necessarly Hurwitz—to the polynomials with complex coefficients was
derived and, as a consequence of that extension, we have a technical application to a problem of
stabilization in area of Control Theory.
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We can denominate the equation (18) as an equation with delayed argument, if
the coefficient an0 �= 0 and the remaining coefficients anν = 0(ν = 1, . . . ,m), that is,

an0u
(n)(t) +

n−1

∑
μ=0

m

∑
ν=0

aμνu
(μ)(t− τν) = h(t); analogously, the equation (18) is denominated

an equation with advanced argument, if the coefficient an0 = 0 and, if only for

one ν > 0, anν �= 0, that is, anν0u
(n)(t− τν0) +

n−1

∑
μ=0

m

∑
ν=0

aμνu
(μ)(t− τν) = h(t), for only

one ν0 ∈ {1, . . . , m} and, finally, the equation (18) is denominated an equation of
neutral type, if the coefficient an0 �= 0 and, if only for one ν > 0, anν �= 0, that is,

an0u
(n)(t) + anν0u

(n)(t− τν0) +
n−1

∑
μ=0

m

∑
ν=0

aμνu
(μ)(t− τν) = h(t), for only one ν0 ∈ {1, . . . ,m}.

Let us consider h(t) = 0 in equation (18), we obtain the homogeneous linear equation with
constant coefficients and constant delays of the argument like

n

∑
μ=0

m

∑
ν=0

aμνu
(μ)(t− τν) = 0. (19)

Assuming that u(t) = ezt, where z denotes a complex constant, is a particular solution of the
equation (19) and, by substituting in (19) we obtain the so-called characteristic equation

n

∑
μ=0

m

∑
ν=0

aμνz
μe−τνz = 0. (20)

From the equation (20) we can define the characteristic quasipolynomial in the following form

δ∗(z) =
n

∑
μ=0

m

∑
ν=0

aμνz
μe−τνz. (21)

Note that the equation (20) has an infinite set of roots, therefore to every root zk corresponds

a solution u(t) = ezkt of the equation (19). And, if the sums of infinite series
∞

∑
k=0

Cke
zkt of

solutions converge and admit n− fold term-by-term differentiation, then those sums are also
solutions of the equation (19).
Multiplying the equation (21) by eτmz, it follows that

δ(z) = eτmzδ∗(z) =
n

∑
μ=0

m

∑
ν=0

aμνz
μe(τm−τν)z =

m

∑
ν=0

pν(z)e
(τm−τν)z, (22)

where pν(z) =
n

∑
μ=0

aμνz
μ(ν = 0, . . . ,m). For m �= 0, the function (22) belongs to a general class

of quasipolynomials [see Definition (8)]. It is evident that δ(z) = eτmzδ∗(z) and δ∗(z) have the
same zeros 6. Thus, from this point of view, the zeros of the function δ(z) can be obtained
from the Theorems (4) and (5).

6 see El’sgol’ts (1966) for a fully discussion.
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Now, consider a special class of quasipolynomials (with one delay) given by

δ∗(z) = p0(z) + e−Lzp1(z), (23)

where p0(z) = zn +
n−1

∑
μ=0

aμ0z
μ with aμ0 ∈ IR(μ = 0, . . . , n− 1), p1(z) =

n

∑
μ=0

aμ1z
μ with

aμ1 ∈ IR(μ = 0, . . . , n) and L > 0. Multiplying the (23) by eLz, it follows that

δ(z) = eLzδ∗(z) = eLzp0(z) + p1(z). (24)

We consider the following Assumptions:

Hypothesis 1. ∂(p1) < n [retarded type]

Hypothesis 2. ∂(p1) = n and 0 < |an1| < 1 [neutral type]

where ∂(p1) stands for the degree of polynomial p1. Notice that, Hypothesis (1) implies that
an1 = 0 and aμ1 �= 0 for some μ = 0, . . . , n− 1.
Firstly, in what follows, we will state the Lemma (2) and Hypothesis (3) to establish the
definition of signature of the quasipolynomials.

Lemma 2. Suppose a quasipolynomial of the form (24) given. Let f (ω) and g(ω) be the real and

imaginary parts of δ(jω), respectively. Under Hypothesis (1) or (2), there exists 0 < ω0 < ∞ such

that in [ω0, ∞) the functions f (ω) and g(ω) have only real roots and these roots interlace7.

Hypothesis 3. Let ηg + 1 be the number of zeros of g(ω) and η f be the number of zeros of f (ω) in

(0, ω1). Suppose that ω1 ∈ IR+, ηg, η f ∈ IN are suf�ciently large, such that the zeros of f (ω) and

g(ω) in [ω0, ∞) interlace (with ω0 < ω1). Therefore, if η f + ηg is even, then ω0 = ωgηg
, where ωgηg

denotes the ηg-th (non-null) root of g(ω), otherwise ω0 = ω fη f
, where ω fη f

denotes the η f -th root of

f (ω).

Note that, the Lemma (2) establishes only the condition of existence for ω0 such that f (ω) and
g(ω) have only real roots and these roots interlace, by another hand the Hypothesis (3) has a
constructive character, that is, it allows to calculate ω0.

Definition 11. (Signature of Quasipolynomials) Let δ(z) be a given quasipolynomial

described as in (24) without real roots in imaginary axis. Under Hypothesis (3), let

0 = ωg0 < ωg1 < . . . < ωgηg
≤ ω0 and ω f1 < . . . < ω fη f

≤ ω0 be real and distinct zeros of

g(ω) and f (ω), respectively. Therefore, the signature of δ is de�ned by

σ(δ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{

sgn[ f (ωg0)] + 2
(

∑
ηg−1
k=1 (−1)ksgn[ f (ωgk)]

)

+ (−1)ηgsgn[ f (ωgηg
)]

}

(−1)ηg−1sgn[g(ω+
gηg−1

)],

if η f + ηg is even;
{

sgn[ f (ωg0)] + 2
(

∑
ηg

k=1(−1)ksgn[ f (ωgk)]

)}

(−1)ηgsgn[g(ω+
gηg

)],

if η f + ηg is odd;

7 The proof of Lemma (2) follows from Theorems (4) - (5); indeed, under Hypothesis (2) the roots of δ(z)
go into the left hand complex plane for |z| sufficiently large. A detailed proof can be find in Oliveira et
al. (2003) and Oliveira et al. (2009).
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where sgn is the standard signum function, sgn[g(ω+
λ )] stands for lim

ω−→ω+
λ

sgn[g(ω)] and

ωλ, (λ = 0, . . . , gηg ) is the λ-th zero of g(ω).

Now, by means of the Definition of Signature the following Lemma can be established.

Lemma 3. Consider a Hurwitz stable quasipolynomial δ(z) described as in (24) under Hypothesis (1)

or (2). Let η f and ηg be given by Hypothesis (3). Then the signature for the quasipolynomial δ(z) is

given by σ(δ) = η f + ηg.

Referring to the feedback system with a proportional controller C(z) = kp, the resulted
quasipolynomial is given by:

δ(z, kp) = eLzp0(z) + kpp1(z) (25)

where p0(z) and p1(z) are given in (24). In the next Lemma we consider δ(z, kp)
under Hypothesis (1) or (2). Consequently, we obtain a frequency range signature for
the quasipolynomial given by the product δ(z, kp)p1(−z) which is used to establish the
subsequent Theorem with respect to the stabilization problem.

Lemma 4. For any stabilizing kp, let ηg + 1 and η f be, respectively, the number of real and distinct

zeros of imaginary and real parts of the quasipolynomial δ(jω, kp) given in (25). Suppose ηg and

η f suf�ciently large, it follows that δ(jω, k p) is Hurwitz stable if, and only if, the signature for

δ(jω, kp)p1(−jω) in [0, ω0] with ω0 as in Hypothesis (3), is given by ηg + η f − σ(p1), where σ(p1)

stands for the signature of the polynomial p1.

Definition 12. (Set of strings) Let 0 = ωg0 < ωg1 < . . . < ωgk ≤ ω0 be real and distinct zeros of

g(ω). Then the set of strings Ak in the range determined by frequency ω0 is de�ned as

Ak = {s0, . . . , sk : s0 ∈ {−1, 0, 1}; sl ∈ {−1, 1}; l = 1, . . . , k} (26)

with sl identi�ed as sgn[ f (ω gl)] in the De�nition (11).

Theorem 6. Let δ(z, kp) be the quasipolynomial given in (25). Consider

f (ω, kp) = f1(ω) + kp f2(ω) and g(ω) as the real and imaginary parts of the quasipolynomial

δ(jω, kp)p1(−jω), respectively. Suppose there exists a stabilizing kp of the quasipolynomial

δ(z, kp), and by taking ω0 as given in Hypothesis (3) associated to the quasipolynomial δ(z, kp). Let
0 = ωg0 < ωg1 < . . . < ωgι ≤ ω0 be the real and distinct zeros of g(ω) in [0, ω0]. Assume that

the polynomial p1(z) has no zeros at the origin. Then the set of all kp—denoted by I—such that

δ(z, kp) is Hurwitz stable may be obtained using the signature of the quasipolynomial δ(z, kp)p1(−z).

In addition, if Iι = ( max
st∈A+

ι

[− 1
G(jωgt)

], min
st∈A−

ι

[− 1
G(jωgt)

]), where
1

G(jω)
=

f1(ω)− jg(ω)

f2(ω)
,

Aι is a set of string as in De�nition (12) , A+
ι = {st ∈ Aι : st.sgn[ f2(ωgt )] = 1} and

A−
ι = {st ∈ Aι : st.sgn[ f2(ωgt )] = −1}, such that max

st∈A+
ι

[− 1
G(jωgt)

] < min
st∈A−

ι

[− 1
G(jωgt)

],

then I =
⋃

Iι, with ι the number of feasible strings.
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4.1 Stabilization using a PID Controller

In the preceding section we take into account statements introduced in Oliveira et al. (2003),
namely, Hypothesis (3), Definition (11), Lemma (2), Lemma (3), Lemma (4), and Theorem (6).
Now, we shall regard a technical application of these results.
In this subsection we consider the problem of stabilizing a first order system with time delay
using a PID controller. We will utilize the standard notations of Control Theory, namely, G(z)
stands for the plant to be controller and C(z) stands for the PID controller to be designed. Let
G(z) be given by

G(z) =
k

1 + Tz
e−Lz (27)

and C(z) is given by

C(z) = kp +
ki
z
+ kdz,

where kp is the proportional gain, ki is the integral gain, and kd is the derivative gain.

The main problem is to analytically determine the set of controller parameters (kp, ki, kd) for
which the closed-loop system is stable. The closed-loop characteristic equation of the system
with PID controller is express by means of the quasipolynomial in the following general form

δ(jω, kp, ki, kd)p1(−jω) = f (ω, ki, kd) + jg(ω, kp) (28)

where
f (ω, ki, kd) = f1(ω) + (ki − kdω2) f2(ω)

g(ω, kp) = g1(ω) + kpg2(ω)

with
f1(ω) = −ω[ω2po0(−ω2)po1(−ω2) + pe0(−ω2)pe1(−ω2)] sin(Lω) + ω2[ω2po1(−ω2)pe0(−ω2)−
po0(−ω2)pe1(−ω2)] cos(Lω)

f2(ω) = pe1(−ω2)pe1(−ω2) + ω2po1(−ω2)po1(−ω2)

g1(ω) = ω[ω2po0(−ω2)po1(−ω2) + pe0(−ω2)pe1(−ω2)] cos(Lω) + ω2[ω2po1(−ω2)pe0(−ω2) −
po0(−ω2)pe1(−ω2)] sin(Lω)

g2(ω) = ω f2(ω) = ω[pe1(−ω2)pe1(−ω2) + ω2po1(−ω2)po1(−ω2)]

where pe0 and po0 stand for the even and odd parts of the decomposition
p0(ω) = pe0(ω

2) + ωpo0(ω
2), and analogously for p1(ω) = pe1(ω

2) + ωpo1(ω
2). Notice

that for a fixed kp the polynomial g(ω, kp) does not depend on ki and kd, therefore we can
obtain the stabilizing ki and kd values by solving a linear programming problem for each
g(ω, kd), which is establish in the next Lemma.

Lemma 5. Consider a stabilizing set (kp, ki, kd) for the quasipolynomial δ(jω, kp, ki, kd) as given in

(28). Let ηg + 1 and η f be the number of real and distinct zeros, respectively, of the imaginary and real

parts of δ(jω, kp, ki, kd) in [0, ω0], with a suf�ciently large frequency ω0 as given in the Hypothesis

(3). Then, δ(jω, kp, ki, kd) is stable if, and only if, for any stabilizing set (kp, ki, kd) the signature of the
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quasipolynomial δ(z, kp, ki, kd)p1(−z) determined by the frequency ω0 is given by ηg + η f − σ(p1),

where σ(p1) stands for the signature of the polynomial p1.

Finally, we make the standing statement to determine the range of stabilizing PID gains.

Theorem 7. Consider the quasipolynomial δ(jω, kp, ki, kd)p1(−jω) as given in (28). Suppose there

exists a stabilizing set (kp, ki, kd) for a given plant G(z) satisfying Hypothesis (1) or (2). Let η f , ηg
and ω0 be associated to the quasipolynomial δ(jω, kp, ki, kd) be choosen as in Hypothesis (3). For a

�xed k p, let 0 = ωg0 < ωg1 < . . . < ωgι ≤ ω0 be real and distinct zeros of g(ω, kp) in the frequency

range given by ω0. Then, the (ki, kd) values—such that the quasipolynomial δ(jω, kp, ki, kd) is

stable—are obtained by solving the following linear programming problem:

{

f1(ωgt ) + (ki − kdω2
gt) f2(ωgt) > 0, for st = 1,

f1(ωgt ) + (ki − kdω2
gt) f2(ωgt) < 0, for st = −1;

with st ∈ Aι(t = 0, 1, . . . , ι) and, such that the signature for the quasipolynomial

δ(jω, kp, ki, kd)p1(−jω) equals ηg + η f − σ(p1), where σ(p1) stands for the signature of the

polynomial p1.

Now, we shall formulate an algorithm for PID controller by way of the above theorem. The
algorithm8 can be state in following form:

Step 1: Adopt a value for the set (kp, ki, kd) to stabilize the given plant G(z). Select η f and
ηg, and choose ω0 as in the Hypothesis (3).

Step 2: Enter functions f1(ω) and g1(ω) as given in (28).

Step 3: In the frequency range determined by ω0 find the zeros of g(ω, kp) as defined in (28)
for a fixed kp.

Step 4: Using the Definition(11) for the quasipolynomial δ(z, kp, ki, kd)p1(−z), and find the
strings Aι that satisfy σ(δ(z, kp, ki, kd)p1(−z)) = ηg + η f − σ(p1).

Step 5: Apply Theorem (7) to obtain the inequalities of the above linear programming problem.

5. Conclusion

In view of the following fact concerning the bibliographic references (in this Chapter): all
the quasipolynomials have only one delay, it follows that we can express δ(z) = P(z, ez) as
in (24), where P(z, s) = p0(z)s+ p1(z) with ∂(p0) = 1, ∂(p1) = 0 and ∂(p0) = 2, ∂(p1) = 1
in Silva et al. (2000), ∂(p0) = 2, ∂(p1) = 0 in Silva et al. (2001), ∂(p0) = 2, ∂(p1) = 2 in Silva
et al. (2002), ∂(p0) = 2, ∂(p1) = 2 in Capyrin (1948), ∂(p0) = 5, ∂(p1) = 5 in Capyrin (1953),
and ∂(p0) = 1, ∂(p1) = 0 [Hayes’ equation] and ∂(p0) = 2, ∂(p1) = 0, 1, 2 [particular cases] in
Bellman & Cooke (1963), respectively. Similarly, in the cases studied in Oliveira et al. (2003)
and Oliveira et al. (2009)—and described in this Chapter—the Hypothesis (3) and Definition
(11) take into account Pontryagin’s Theorem. In addition, if we have particularly the following
form F(z) = f1(z)e

λ1z + f2(z)e
λ2z, with λ1, λ2 ∈ IR (noncommensurable) and 0 < λ1 < λ2, we

can write F(z) = eλ1zδ(z), where δ(z) = f1(z) + f2(z)e
(λ2−λ1)z with ∂( f2) > ∂( f1), therefore

δ(z) can be studied by Pontryagin’s Theorem.

8 See Oliveira et al. (2009) for an example of PID application with the graphical representation.
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It should be observed that, in the state-of-the-art, we do not have a general mathematical
analysis via an extension of Pontryagin’s Theorem for the cases in which the quasipolynomials
δ(z) = P(z, ez) have two or more real (noncommensurable) delays .
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