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1. Introduction  

Measurement of pedestrian traffic in public areas (e.g., stations, airports, shopping malls or 
complex buildings) provides valuable information. For safety management, congestions can 
be detected to prevent accidents in their early stage by monitoring the pedestrian traffic 
continuously. Knowing the number of people working in a large building may help to when 
designing evacuation plans. For marketing purposes, value assessments of shopping areas 
can be achieved based on traffic data because higher pedestrian traffic is directly linked to 
more sales. In building management, pedestrian traffic data can be utilized to optimize the 
number and working hours of staff. Power savings can be achieved by adjusting air-
conditioning and heating based on pedestrian traffic. 
Over the last decade, various computer vision methods have been studied to automatically 
measure the pedestrian traffic. One popular approach to pedestrian traffic measurement is 
the use of top-view cameras. In this approach, a camera is mounted vertically at the top of a 
gate or over a region of interest. Because of the superior viewpoint of the camera, 
pedestrians do not obscure each other in video frames. Hence the problem of pedestrian 
traffic measurement may be solved easily by detecting moving objects using foreground 
segmentation and tracking the detected blobs (Sexton et al., 1995; Kim et al., 2003). 
However, these methods fail when a number of people move close or slightly touch each 
other creating a single blob. Chen et al. resolved this problem by comparing the area of 
detected moving object with the area of one person to estimate the number of people in the 
blob (2006). Velipasalar et al. employed two-level hierarchical tracking to deal with 
pedestrians of complex movements interacting with each other (2006). 
Pedestrian traffic also can be studied by detecting humans using standard surveillance 
cameras that do not require a specific viewpoint. Similar to top-view camera based methods, 
some of these methods perform foreground segmentation to distinguish moving objects. 
However, for oblique camera angles, multiple pedestrians easily appear as merged blobs in 
a video frame. The detected foreground blobs are segmented into individuals by modeling 
humans as ellipsoids (Zhao et al, 2004, 2008) or rectangles (Liu et al, 2005; Beleznai et al., 
2006) cooperating with the known camera geometry. Based on based on their shapes and 
apperances, humans can also be detected directly from image frames without separating out 
foreground blobs. Viola et al. detected humans using appearance and motion information 
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together in a boosting sceheme (2003). Dalal and Triggs used histograms of oriented 
gradients as features to describe human shapes (2005). Detection of whole human bodies 
often suffer due to occlusions in dense crowds. To resolve miss-detection due to occlusions, 
only upper body shapes (Sidla et al., 2006) or contours around heads (Yuk et al., 2006) may 
be used in detection. Part-based detection methods have been studied extensively (Wu and 
Nevatia, 2005; Lin et al., 2007) to improve detection performance in dense crowds. Once 
pedestrians are detected, they are then tracked to analyze their movement and to collect 
traffic data. Bayesian inference (Zhao et al., 2004 & 2008), Kalman filter (Sidla, 2006) or other 
trackers (Yuk et al, 2006) have been used to track individual pedestrians.  
Even though various efforts have been made, existing methods are not suitable for 
measuring pedestrian traffic in large public areas. The top-view camera based method 
shows good performance with relatively low computational burden. However the top-view 
camera based methods cannot be applied to exisitng CCTV systems because they require a 
dedicated camera system of specific angles. Currently, most of large buildings have their 
own video surveillance system but they have oblique views to enable wide coverage of 
cameras and to deliver better scene understanding to human operators. Installation of 
additional video camera system only for pedestrian traffic measurement would be a great 
burden. Unlike the top-view camera based methods, the detection-based methods can be 
applied to ordinary CCTV cameras with an oblique view. However, the computational 
complexity of detection-based methods is relatively high in general. This complexity is a 
restriction to real systems where the computational power is low and the number of 
cameras is large. Moreover, the computation time tends to increase as the scene gets more 
complex with large crowds because more pedestrians should be detected and tracked.  
A pedestrian traffic measurement method should satisfy the following requirements to be 
useful in a practical system that covers a large public area: 

• Low computational complexity: The computational complexity of the algorithm should 
be as low as possible. Real-time execution on a PC is not sufficient for large systems 
because tens or hundreds of cameras are often used in a complex building. When such a 
large number of cameras is involved, the algorithm should be able to process a number 
of CCTV inputs on a single computer or the method should be executable on an 
embedded system with a computational power that is much lower than that of a 
standard PC.  

• Compatibility with existing system: Most large buildings have their own video 
surveillance systems. The pedestrian traffic measurement method should make use of 
existing surveillance systems. To achieve this compatibility, traffic measurement 
algorithms solely rely on video camera input, and not require other kinds of input such 
as range data. This also implies that the algorithms should not be constrained by 
camera angle.  

• Stability under high traffic: In public places, such as railway stations or shopping malls, 
the number of people can be large. Hence the method should be able to measure 
pedestrian traffic successfully not only for small numbers of people, but also for large 
crowds. Moreover, the computation time of the method should not increase for larger 
numbers of people. 

An alternative method for measuring pedestrian traffic is introduced in this chapter. The 
method is a statistical approach which uses feature-based regression. The feature-based 
regression is widely used for crowd size estimation. In crowd size estimation, the number of 
people or the level of crowdedness in an image frame is measured by examining image 
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features. As image features, foreground pixels (Velastin et al., 1994; Celik et al., 2006), edges 
(Cho et al., 1999), textures (Manara et al., 1999) or combinations of various features (Kong et 
al., 2006; Chan et al., 2008) are employed. Based on the extracted image features, the count of 
people or the level of crowdedness is measured by linear relation (Velastin et al., 1994), a 
neural network (Cho et al., 1999; Kong et al., 2006), a SVM classifier (Xiohua et al., 2006) or a 
Gaussian process regression (Chan et al., 2008). 
In a similar manner to the crowd size estimation, the size of pedestrian traffic is estimated 

from the amount of image features. That is, the traffic is measured by setting a relation 

between image features and the number of pedestrians. To count passing people rather than 

static humans, the analysis is performed in a spatiotemporal domain rather than an image 

domain. Because it is a statistical method which is applied in the spatiotemporal domain, it 

requires very low computation, its performance remains stable under high traffic and it is 

also less sensitive to camera viewpoints. 

2. Overview 

The basic concept underlying the pedestrian traffic measurement method can be easily 

understood from Fig. 1. In the video frame, a measurement line, called a virtual gate, is set 

up as in Fig. 1 (a). Here s connects a pixel location (x, y) to the corresponding pixel on the 

virtual gate. Fig. 1 (b) is an example of a spatiotemporal image. 

  

 
(a) (b) 

Fig. 1. (a) A virtual gate to measure pedestrian traffic size, (b) a spatiotemporal image 
created using the virtual gate 

Observing the image pixels on the virtual gate over time can be interpreted as examining a 

spatiotemporal image whose two coordinates correspond to time t and the linear coordinate 

along the virtual gate s, respectively. When a person passes the virtual gate, his body shape 

is produced in the spatiotemporal image as in Fig. 1 (b). The spatiotemporal image, which is 

obtained over a certain period of time, contains the images of people who passed the gate 

during that period. Hence the pedestrian traffic or the number of people passing the virtual 

gate, can be acquired by counting the number of people in this spatiotemporal image. 

When counting pedestrians in spatiotemporal images, we cannot use conventional detection 

or segmentation techniques because human shapes suffer severe distortions in the 

spatiotamporal images. Fig. 2 shows some examples of these distortions. In Fig. 2 (a) the 
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shape of objects are slanted because they changed direction while passing the virtual gate.  

Fig. 2 (b) gives an example of size variations of people in the spatiotemporal image. Because 

the two people on the left side moved very slowly, their shapes are elnogated resulting in a 

larger image size that of the people on the right side. Also, in Fig 2. (c), part of some people 

are occluded by others and their whole body shapes cannot be seen.  

 

(a) (b) (c) 

Fig. 2. Distortions occur in the spatiotemporal image. (a) Slanted shape occurred due to a 
pedestrian passing to the left. (b) Elongated shape caused by very slow pedestrian 
movement. (c) Occlusions due to dense crowd. 

Because of these problems, counting pedestrians as individuals in spatiotemporal images 
using conventional detection or segmentation method is not feasible. Rather than trying to 
detect individuals, a statistical method is adopted to count pedestrians as a whole from 
image features.  
Fig. 3 shows the block diagram of the traffic flow measurement method. As shown in the 
figure, image features are extracted first followed by feature integration process to measure 
pedestrian traffic. Foreground pixels and motion vectors are extracted as image features. In 
the traffic flow measurement step, the foreground pixels are accumulated along the virtual 
gate over continuous frames to calculate pedestrian traffic. In the feature accumulation, a 
feature normalization process is employed to account for size variation of the human images 
caused by perspective projection. Also, different moving speeds of individuals are 
considered to adapt different motions of pedestrians. Because occlusions due to a dense 
crowd yields under-estimation of pedestrian traffic size, the accumulated feature size is 
compensated to deliver an accurate estimate of pedestrian traffic. 
 

Input
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Motion
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Fig. 3. Block diagram of the traffic flow measurement method 
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3. Feature extraction 

3.1 Foreground segmentation 
As the image feature for human traffic estimation, regions of moving objects are first 
isolated. We avoided using other features such as edges or textures because of their 
sensitivity to noise level or lighting changes. Foreground segmentation is achieved by 
comparing an input frame with a reference background. In creating and updating the 
reference background, a background modeling method proposed by Stauffer and Grimson 
(1999) is employed with a light modification. 
In the Stauffer and Grimson’s method, each pixel in a video frame is modeld by mixture of 
Gaussian distributions. An update of the background model is performed incrementally by 
the online K-means algorithm given by (1): 

 ( ) ( ), , 1 , 1( ) 1 ( ) ( ), ( ) .α α− −Θ = − ⋅Θ + ⋅Λ Θ
k t k t t k t

x x I x x  (1) 

In (1), Θk,t and It are model k and an observation at time t for a pixel x. Each model updates 
its parameter based upon a local estimate Λ(It(x), Θk,t-1(x)). The learning rate ǂ is a small 
constant which determines the learning speed of the background model. Because the model 
parameters are updated incrementally using online K-means, the background model is 
adaptable to scene changes such as lighting variation or new background objects. 
The incremental update of the model parameter in (1) can be thought as a pixel observation 
process that uses a temporal window of length L = 1/a. The underlying assumption of the 
model update is that the background pixel occurs most frequently in this temporal window. 
Hence the model update process tries to find the dominant mode by estimating its density 
using online clustering. However, such assumption is often violated when high traffic of 
pedestrians occurs constantly in a scene. For example, if pedestrians pass the observation 
area continuously leaving only a small time window for backgroud pixels, foreground 
pixels may occupy the majority of the pixel statistics resulting in a defective background 
models as shown in Fig. 4. 
Because the traffic flow measurement method introduced in this chapter is designed for use 
in public areas with high traffic rates, the background modeling method must be able to 
cope with the defective backgrounds with high traffic. To resolve this problem, another 
assumption is made which is that background pixels are not only the most frequent but also 
are static. Hence, to avoid creating an erroneous background model, the learning rate of 
each pixel is adjusted by examining its static level. If a pixel is not static at a time, a lower 
learning rate is applied because the pixel might belong to a foreground object. 
 

 
(a) (b) (c) 

Fig. 4. (a) a scene with continuous pedestrian movements, (b) method clear background 
model under low human traffic, (c) a defected background model due to continuous 
movements of humans. 
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To identify static pixels, we first define its activity of a pixel as (2). In (2), A(x, t) represents 
the activity of a pixel x at time t and Id(x, t) is interframe difference which is defined as |I(x, 
t) – I(x, t-1)|. Hence, the activity is decided as the maximum value between the interframe 
difference and the activity of previous frame decreased by a constant ratio ǃ.  

 ( )( , 1) max ( , ), ( , 1)dA x t I x t A x tβ− = ⋅ −  (2) 

By comparing its activity to a given threshold level Tact, each pixel is classified as static or non-

static. Fig. 5 shows an example of a static pixel classification where (a) is the input frame and 

(b) is the classification result. In Fig. 5 (b), static pixels and non-static pixels are represented in 

black and white, respectively. Pixels around moving objects show large activity values and are 

labelled as non-static pixels. We used 0.2 for ǃ and 40 for Tact. 

Even though pixels around moving objects show large activity values, pixels inside a large 
object or nearly static objects might be labeled as static pixels as shown in Fig. 5 (b). Hence the 
labeled result is expanded using a morphological operation. The size of the window used for 
the morphological operation is determined as the expected size of a human at each pixel 
location, which will be explained in Section 5.1. Fig. 5 (b) shows the result of the morphological 
operation in which gray pixels indicate non-static pixels reclassified from static pixels. 

 

 
(a) (b) 

Fig. 5. Distinguishing static and non-static pixels: (a) input video frame; (b) black pixels and 
white pixels correspond to static and non-static pixels, respectively. Gray pixels are 
expanded from white pixels by morphological operations.  

Once static and non-static pixels are distinguished, a low learning rate is used for the model 
to update to the non-static pixels. The lower learning rate ǂl is set to be 10 times lower than 
the regular learning rate. Controlling the learning rate according to the activity of the pixel 
can be thought as changing background model update according to the history of the pixel. 
When a pixel shows static characteristic, its background model is updated by a general 
Gaussian mixture model. If a pixel is determined to be non-static, its update rate is 
significantly reduced making the background model similar to a static reference. 
To reduce computational complexity, the background model is generated and maintained 
only for the pixels at the virtual gate. The activity value is computed only for regions around 
the virtual gate to control the learning rate of the background models. Because computation 
of activity value is quite simple compared to the maintenance of background models, the 
overall computational load is significantly reduced. 
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3.2 Motion estimation 
To measure pedestrian traffic separately in different directions, the moving directions must 
be observed. Motion information is also required to obtain the exact traffic size because the 
size of an object in the spatiotemporal image varies according to the time taken the object to 
pass the virtual gate. For these reasons, a motion vector is chosen as a feature to examine 
moving directions and speeds of pedestrians. Hence, motion vectors are employes as image 
features too. 
Motion vectors are obtained by a coarse-to-fine estimation of optical flow using pyramids 
(Bouguet, 1999). Because the estimation of optical flow includes a differential equation, 
which is solved iteratively, it introduces computational complexity. Hence, to reduce 
computation, motion vectors are computed for every two pixels on the line of the virtual 
gate and then interpolated. 
Fig. 6 illustrates an example of motion vector computation. The computed motion vectors are 
displayed in different colors. The green lines indicate motion vectors that pass the virtual gate 
in the upward direction and the red lines represents motion vectors in the downward 
direciton. The lengths of the lines coincide with the maginitudes of the motion vectors. 
 

 

Fig. 6. An example of extracted motion vectors 

4. Feature accumulation  

4.1 Estimating human traffic flow from image features 
As a result of the feature extraction described in the previous section, a foreground map fg(t, 
s) and a motion vector map v(t, s) for the spatiotemporal image are created. In the 
foreground map, fg(t, s) is equal to one when a pixel s on the virtual gate belongs to the 
foreground at time t, otherwise it is zero. Similarly, the motion vector map v(t, s) contains 
the motion vector for a pixel s on the virtual gate at time t. Fig. 7 gives an example of the 
foreground map and the motion vector map. Fig. 7 shows an example of feature extraction. 
For convenience, the traffic away from the camera is refered to as the upward direction and 
the opposite as the downward direction. To determine the traffic flow size of humans for 

upward and downward directions separately, the direction of traffic flow k ∈{+1, −1} is 

introduced. The direction of traffic flow is defined as +1 when the inner product of the 
motion vector and the normal vector of the virtual gate line is equal to or greater than zero 
and vice versa. 
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(a) (b) (c) 

Fig. 7. Feature extraction results: (a) spatiotemporal image, (b) foreground map, (c) motion 
vector map 

Based on the assumption that the number of people in the image is proportional to the 
amount of image features, the traffic flow size for a direction k during the time from ti to tj is 
obtained by integrating the extracted image features by using the following formula. 

  ( )
2

1

1 2
1

( , ) ( ) ( , ) , ( , ) .
t N

k
t t s

F t t s fg t s k d t sα ρ δ
= =

= ⋅ ⋅ ⋅∑∑  (3) 

In (3), N is the number of pixels on the virtual gate and d(t, s) is the direction of the traffic 
flow for a pixel s at time t. A delta function δ(i, j) (which equal one if i = j, but otherwise is 
zero) is used to integrate the image features from one direction only. Hence, the summation 
of fg() multiplied by δ() gives us the amount of foreground pixels that have the same 
direction and occur between time t1 and t2.  
The amount of image features (i.e., foreground pixels) is converted into the number of 
pedestrians by introducing two scaling factors ǂ and ρ(s) in (3). To determine ρ(s), humans 
are modeled as rectangles with sizes that vary linearly with vertical image coordinates as 
shown in Fig. 8. The rectangle size for each pixel position can be easily calculated by 
annotating the human size manually at several locations and interpolating. Then, for a pixel 
s, ρ(s) is set to 1/W(s)·H(s) where W(s) and H(s) are the width and height of a rectangle. 
Because the area covered by a human is generally smaller than its bounding box, another 
scaling factor ǂ is employed to fill this gap. The scaling factor ǂ can be determined using a 
short video sequence with a known number of pedestrians. 
 

h1

w1

h2

w2

 

Fig. 8. Pixel size normalization 
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4.2 Adaptation to motions of pedestrians 
As mentioned in Section 2.1, different moving speeds and directions of people influences to 

feature observation in the spatiotemporal domain. For example, a person who moves slowly 

produces larger traffic estimate by taking a longer time to pass through the virtual gate. To 

deal with the different moving speeds and direction of pedestrians, the feature 

accumulation in (3) is modified to (4). 

 ( )
2

1

1 2
1

( , ) ( ) ( , ) cos ( , ) , ( , ) .
t N

k
t t s

F t t s t s fg t s k d t sα ρ θ δ
= =

= ⋅ ⋅ ⋅ ⋅ ⋅∑∑ v
v  (4) 

In this equation, the motion magnitude is multiplied to include the moving speeds of people 

in the traffic flow. Also, to consider only the motion components that contribute to passing 

by the virtual gate, the motion vector is projected onto the normal vector of the virtual gate 

where θv is the angle between the motion vector v(t, s) and the normal vector of the line of 

the virtual gate. 

Fig. 9 shows some examples of this pixel counting process. Fig. 9 (a), (b) and (c) are 

examples of the test sequence in which one person passes the gate. Fig. 9(d), (e) and (f) are 

the results of pixel counting obtained by integrating F(). Therefore, the feature integration 

results approached one because the pixel count was normalized by the average area of one 

person using ǂ and ρ(s). Note that the moving speeds of (a) and (b) are different (21 frames 

vs. 16 frames, respectively). Also, the viewpoints are different in (a) and (c). However, the 

traffic flow obtained by (4) approach to one in all three sequences proving its robustness to 

changes in camera angle and different speeds of pedestrians.  

 

 

(a) (b) (c) 
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(d) (e) (f) 

Fig. 9. Examples of traffic flow estimation for one person 
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4.3 Compensating feature loss due to a dense crowd 
Although different pedestrian speeds and directions can be handled using motion vectors, 
the pedestrian traffic given by (4) cannot handle the problems caused by a dense crowd. 
When a scene is crowded, occlusions take place between individuals that make foreground 
pixels less observable. Hence, the traffic estimates obtained from (4) tend to underestimate 
the actual traffic value when the scene becomes crowded. 
To compensate for the loss of feature observation due to occlusion, the traffic flow 
computed by (4) is compensated using nonlinear regression, 

 '
1 2 1 2( , ) ( , ) .b

k kF t t a F t t= ⋅  (5) 

where a and b are the regression parameters that are learned during initial training. Because 
the loss of feature observation increases as the crowd level in the scene grows, a function of 
the power form is chosen for the regression. The measurement duration t2-t1 must be fixed 
because the feature integration result of (4) is used as input to the nonlinear regression. It 
was set to 60 seconds in our experiments. For parameter learning, the gradient descent 
method is employed as the optimization algorithm. 
Fig. 10 shows an example of nonlinear regression used to compensate for the under-estimation 
in a dense crowd. In the graphs, 40 sample data are displayed. The points were obtained by 
estimating the sizes of the pedestrian traffic in one minute video segments. The x-axis 
represents the actual number of people passing in a video segment and the y-axis indicates the 
estimated human traffic size for the same video segment. Sample data were obtained from the 
two different video sequences containing low and high pedestrian traffic, which are 
represented as “o” and “+” in the graphs. Samples from each video were fitted linearly, as 
illustrated by solid and dotted lines for better comparison. The estimated flow size (obtained 
by (4)) versus ground truth is given in Fig. 10 (a). As shown in the figure, the slope of the fitted 
line for the video containing high pedestrian traffic is lower than that of the video for low 
pedestrian traffic. This indicates that the pedestrian traffic was underestimated for the high 
traffic segments. On the other hand, we can see that the lines nearly coincide in Fig. 10 (b) 
where the flow estimation results were adjusted by nonlinear regression as in (5). 
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(a) (b) 

Fig. 10. Result of the nonlinear regression to compensate for feature loss. Graphs of ground 
truth vs. estimates (a) without and (b) with feature loss compensation as in (5). 
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5. Experiments 

For the evaluation, an experimental dataset of 4 hours of video sequences was used. The 

video data were acquired at two different locations of the most crowded shopping mall in 

Korea. Fig. 11 shows an example of the test video of two different locations ((a) Video 1 and 

(b) Video 2). Because the characteristics of traffic flow in the shopping mall differ early and 

late in the day, we recorded video sequences at two different times (10:00 – 11:00 AM and 

7:00 – 8:00 PM). 
 

 
(a) (b) 

Fig. 11. Test sequences for the evaluation: (a) Video 1 and (b) Video 2. 

As the ground truth for evaluation, the number of people passing the virtual gate was 
counted manually each minute. The initial 20 minutes of each sequence were employed as a 
training set to calculate parameters (i.e., ǂ, a and b in (4) and (5)) and the remaining 40 
minutes of the video sequences were used for evaluation. The same coefficients were 
maintained across experiments for video sequences obtained from the same camera. 
Table 1 summarizes the evaluation results. The relative accuracy of the proposed method was 
95% to 100% and 97.20% on average. The processing speed of the proposed method reached 70 
frames/second on an Intel Pentium IV 2.67 GHz PC. Figs. 12 and 13 provide evaluation results 
for Video 1 and Video 2 in a graphical representation. It should be noted that the accuracy 
remained stable in spite of the significant differences of traffic levels between video sequences 
of different times (200 at minimum and 1,200 at maximum in for 40 minutes). 
 

Upward Downward 
 Ground 

Truth 
Estimation Accuracy 

Ground 
Truth 

Estimation Accuracy 

10 
AM 

268 257 95.98 522 522 100 
Video 1 

7 PM 910 901 98.98 1025 1054 97.12 

10 
AM 

813 785 96.58 211 201 95.22 
Video 2 

7 PM 1194 1238 96.32 1215 1284 97.44 

Table 1. Evaluation results 
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Fig. 12. Evaluation results for Video 1: (a) 10 AM and upward, (b) 10 AM and downward, (c) 
7 PM and upward, (d) 7 PM and downward 
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Fig. 13. Evaluation results for Video 2: (a) 10 AM and upward, (b) 10 AM and downward, (c) 
7 PM and upward, (d) 7 PM and downward 
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6. Discussions 

The method introduced in this chapter is a statistical approach that estimates the size of 

human traffic flow from the amount of image features. This basic concept, estimating 

traffic size from image features, is discovered from (3), which integrates foreground pixels 

of the same directions. This process in (3) is similar to that used for crowd size estimation, 

but the proposed method performs an online update. Instead of gathering image features 

from a whole frame, the proposed method extracts image features only from the virtual 

gate line and accumulates them over sequential frames. This incremental accumulation 

makes the traffic measurement process the same as image analysis in the spatiotemporal 

domain. 

The use of statistical analysis in the spatiotemporal domain yields some advantages in the 

pedestrian traffic measurement method. First, the computational burden of the method is 

greatly reduced. Human traffic is measured by extracting image features and 

accumulating them, not by detection or tracking. Instead of analyzing an entire video 

frame, only pixels on the line of the virtual gate are reqruied to be processed, requiring 

much less computation. Hence the proposed method incurs much lower computational 

complexity than previous methods. Second, the performance of the method remains stable 

in high traffic areas in terms of both accuracy and computation time. Because previous 

methods are based on the identification of objects, as the number of people in a scene is 

increased, the accuracy of previous methods decreases while the computation time 

increases. In the proposed method, the measurement process is not related to individual 

objects; hence the same execution time can be maintained regardless of the number of 

people in the scene. Because of the statistical method relies on training, it shows good 

performance even for scenes with high traffic. 

When comparing to previous methods, the human traffic measurement method 

introduced in this chapter provides similar or even a higher accuracy with much less 

computation. It has been reported that the top-view camera method proposed by Chen et 

al. (2006) showed an accuracy of 100% with simple movements of a few people. However, 

the accuracy was reduced to 85% for pedestrians with complex moving patterns. The 

frame rate of their method varied from 10 Hz to 30 Hz depending on the number of 

people in the scene. The detection-based by Sidla et al. (2006), which used a head-shoulder 

shape for human detection, counted passing people with 98% accuracy with a 15 Hz 

frame rate. However, they applied a linear regression to the result of human detection 

because the automatic count was overestimated. Without the aid of linear regression, the 

accuracy fell to 85%–90%. Since all of their test sequences contain only one hour of video, 

it is not guaranteed that the same linear regression could be applied to other video 

showing a different level of pedestrian traffic. Zhao et al. (2008) employed elliptical 

human models to detect pedestrians from foreground area and to track located humans. 

Because Zhao et al. evaluated the accuracy of tracking rather than pedestrian count, their 

accuracy was relatively low as 62%. Their method also could process about 2 frames per 

second on a 2.8GHz Pentium IV PC. 

Besides the accuracies, it is also be noted that the statistical method is tested for video 

sequences of highly different traffic levels. Previous methods rarely tested for videos of 

different crowd levels. Hence the stability in varying level of pedestrian traffic, which is 

important for practical use, is not guranteed for the previous methods. On the contrary, the 
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statistical method have been verified using two video sequences of mild and heavy traffic. 

Even though the test sequences showed huge differences in the level of crowdedness (six 

times at most), both the computation time and accuracy of the statistical method remained 

stable. 

The main drawback of the statistical method is that it is based on training. The problems of 
training based methods are twofold. First they require human intervention during initial 
training process. This could be an obstacle applying the same method to multiple different 
locations. Another problem is that the performance could be dependent to the amount of 
training data and might not be guaranteed to a new input which is far from training data. 
Celik et al. (2006) proposed a pixel counting method for crowd size estimation that does not 
include training phase. It is expected that a similar concept could be applied to the statistical 
method to relieve its shortcomings. 

7. Conclusions 

In this chapter, a statistical method for measuring human traffic flow was introduced. 
Unlike previous methods that tried to count individuals by detection and tracking, the 
statistical method count pedestrians based on image features. Because it is a statistical 
method which does not include time consuming detection and tracking, it requires much 
smaller computation compared to previous methods. Through experiments on video data 
from real environments, it is shown that the proposed method gives similar or higher 
accuracy compared to previous methods even with the low computational cost. Because it 
does not rely on a specific camera viewpoint unlike blob-based methods, the method can be 
applied to existing CCTVs with oblique views. The low complexity, high accuracy and 
flexibility in viewpoints make the proposed method highly applicable to real systems. 

8. References 

Beleznai, C.; Fruhstuck, B. & Bishof, H. (2006). Human tracking by fast mean shift mode 

seeking. Journal of Multimedia 1(1): 1. 

Bouguet, J. (1999). Pyramidal implementation of the Lucas Kanade feature tracker 

description of the algorithm. Technical Report, Intel Corporation, Microprocessor 

Research Labs. 

Celik, H.; Hanjalic, A. & Hendriks, E. (2006). Towards a robust solution to people counting, 

Proceedings of International Conference on Image Processing, pp. 2401-2404 

Chan, A.; Liang, Z. & Vasconcelos, N. (2008). Privacy preserving crowd monitoring: 

Counting people without people models or tracking. Proceedings of IEEE Conference 

on Computer Vision and Pattern Recognition, Anchorage. 30: 40-50. 

Cho, S.; Chow, T. & Leung, C. (1999). A neural-based crowd estimation by hybrid global 

learning algorithm, IEEE Transactions on Systems, Man, and Cybernetics--Part B: 

Cybernetics, 29(4): 535. 

Dalal, N.; Triggs, B., Rhone-Alps, I. & Montbonnot, F. (2005). Histograms of oriented 

gradients for human detection, Proceedings of IEEE Conference on Computer Vision 

and Pattern Recognition, vol. 1, pp. 8860893. 

www.intechopen.com



Measurement of Pedestrian Traffic Using Feature-based Regression in the Spatiotemporal Domain 

 

261 

Kim, J.-W.; Choi, K.-S., Choi, B.-D., Lee, J.-Y. & Ko, S.-J. (2003). Real-Time System for 

Counting the Number of Passing People Using a Single Camera. Pattern 

Recognition, Springer Berlin / Heidelberg. 2781: 466-473. 

Kong, D.; Gray, D & H. Tao. (2006). A viewpoint invariant approach for crowd counting, 

Proceedings of International Conference on Pattern Recognition, pp. 1187-1190. 

Lin, Z.; Davis, L., Doermann, D. & DeMenthon D. (2007). Hierarchical part-template 

matching for human detection and segmentation,Proceedings of International 

Conference on Computer Vision, pp. 1-8. 

Liu, X.; Tu, P., Rittscher, J., Perera, A., & Krahnstoever, N. (2005). "Detecting and counting 

people in surveillance applications." Proceedings of Advanced Video and Signal Based 

Surveillance, pp. 306-311. 

Marana, A.; Costa, L. & Velastin, S. (1999). Estimating crowd density with Minkowski fractal 

dimension, Proceedings of IEEE International Conference on Acoustics, Speech, and 

Signal Processing, vol. 6, pp. 3521-3524. 

Sexton, G.; Zhang, X., Redpath, G. & Greaves, G. (1995). Advances in automated pedestrian 

counting, Proceedings of European Convention and Security and Detection, pp. 

106-110. 

Sidla, O.; Lypetskyy, Y. Brandle, N. & Seer, S. (2006). Pedestrian detection and tracking for 

counting applications in crowded situations, Proceedings of International Conference 

on Video and Signal Based Surveillance, pp. 70-70. 

Stauffer, C. & Grimson, W. (1999). Adaptive background mixture models for real-time 

tracking, Proceedings of IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 246-252. 

Thou-Ho, C.; Tsong-Yi, C. & Chen, Z.-X. (2006). An Intelligent People-Flow Counting 

Method for Passing Through a Gate, Proceedings of International Conference on 

Robotics, Automation and Mechatronics, pp. 1-6. 

Velastin, S.; Yin, J., Davies, A., Vicencio-Silva, M., Allsop, R. & Penn. A. (1994). Automated 

measurement of crowd density and motion using image processing, Proceedings of 

International Conference on Road Traffic Monitoring and Control, pp. 127-132. 

Velipasalar, S.; Ying-Li, T. & Hampapur, A.(2006). Automatic Counting of Interacting People 

by using a Single Uncalibrated Camera, Proceedings of International Conference on 

Multimedia and Extp, pp. 1265-1268. 

Viola, P.; M. Jones & D.  Snow. (2005). Detecting pedestrians using patterns of motion and 

appearance, Proceedings of International Journal of Computer Vision pp. 153-161. 

Wu, B. & Nevatia, R. Detection of multiple, partially occluded humans in a single image by 

bayesian combination of edgelet part detectors,Proceedings of International 

Conference on Computer Vision, pp. 90-97. 

Xiaohua, L.; Lansun, S. & Huanqin, L. (2006). Estimation of crowd density based on wavelet 

and support vector machine,  Transactions of the Institute of Measurement & Control, 

Vol. 28, pp. 299. 

Yuk, J.; Wong, K, Chung, F & Chow, K. (2006). Real-time multiple head shape detection and 

tracking system with decentralized trackers, Proceedings of Intelligent Systems Design 

and Applications, pp. 382-389. 

www.intechopen.com



 Video Surveillance 

 

262 

Zhao, T. & R. Nevatia (2004). Tracking multiple humans in crowded environment, 

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. II-406 – 

II-415. 

Zhao, T. & Nevatia, R. and Wu, B. (2008). Segmentation and tracking of multiple humans in 

crowded environments, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 30, pp. 1198-1211. 

 

www.intechopen.com



Video Surveillance

Edited by Prof. Weiyao Lin

ISBN 978-953-307-436-8

Hard cover, 486 pages

Publisher InTech

Published online 03, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book presents the latest achievements and developments in the field of video surveillance. The chapters

selected for this book comprise a cross-section of topics that reflect a variety of perspectives and disciplinary

backgrounds. Besides the introduction of new achievements in video surveillance, this book also presents

some good overviews of the state-of-the-art technologies as well as some interesting advanced topics related

to video surveillance. Summing up the wide range of issues presented in the book, it can be addressed to a

quite broad audience, including both academic researchers and practitioners in halls of industries interested in

scheduling theory and its applications. I believe this book can provide a clear picture of the current research

status in the area of video surveillance and can also encourage the development of new achievements in this

field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gwang-Gook Lee and Whoi-Yul Kim (2011). Estimation of Human Traffic Flow Using Feature-based

Regression in the Spatiotemporal Domain, Video Surveillance, Prof. Weiyao Lin (Ed.), ISBN: 978-953-307-436-

8, InTech, Available from: http://www.intechopen.com/books/video-surveillance/estimation-of-human-traffic-

flow-using-feature-based-regression-in-the-spatiotemporal-domain



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


