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1. Introduction 

Coupled heat and mass transfer by natural convection in a fluid-saturated porous medium 
is a dynamic domain of research, due to many important engineering and geophysical 
applications, see the  books by (Nield & Bejan, 2006), (Ingham & Pop, 1998; 2002; 2005), (Pop 
& Ingham, 2001), (Ingham et al., 2004)  where a comprehensive account of the available 
information in the field is presented.   
In the present context, the following assumptions will be used: a) the fluid and the porous 
medium are in local thermodynamic equilibrium; b) the flow is laminar, steady and two-
dimensional; c) the porous medium is isotropic and homogeneous; d) the properties of the 
fluid and porous medium are constants; e) the Boussinesq approximation is valid and the 
boundary-layer approximation is applicable. 
Thermal diffusion (thermodiffusion or Soret effect) corresponds to species differentiation 
developing in an initial homogeneous mixture submitted to a thermal gradient, (Soret, 
1880). The energy flux caused by a composition gradient is called Dufour (diffusion-thermo) 
effect. These effects are considered as second order phenomena, on the basis that they are of 
smaller order of magnitude than the effects described by Fourier’s and Fick’s laws, but they 
may become significant in clear fluids, according to (Eckert & Drake, 1972), but also in 
porous media in areas such geosciences or hydrology, see (Benano-Melly et al., 2001) and 
the references quoted there. Consequently, Dufour and Soret effects on convective flows in 
porous media have been analyzed in a growing body of literature in the last years. 
However, the majority of the papers issued in the journals, in the last period, do not offer 
unfortunately a physical basis to calculate Dufour and Soret coefficients.  
Restricting our considerations to porous media, let us refer further to the textbook by (Nield 
& Bejan, 2006) where some basic information are given on pages 42-44. According to the 
references quoted there  

• In most liquid mixtures the Dufour effect is inoperative, but that this may not be the 
case in gases (Platten & Legros, 1984). This fact was confirmed also by (Mojtabi & 
Charrier-Mojtabi, 2000), who found that in liquids the Dufour coefficient is an order of 
magnitude smaller than the Soret effect.  

• A not encouraging conclusion was drawn by these later authors, (Mojtabi and Charrier-
Mojtabi, 2000), in the sense that for saturated porous media, the phenomenon of cross 
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diffusion is complicated due to the interaction between the fluid and the porous matrix. 
This is the reason why accurate values of these coefficients are not available. 

(Benano-Melly et al, 2001) analyzed the problem of thermal diffusion in binary fluid 
mixtures, lying within a porous medium and subjected to a horizontal thermal gradient. The 
reader is directed to the references quoted in that paper for related information concerning 
the measurements and the Dufour coefficient.  
Another possibility to deal with these effects is to use the theory of thermodynamics of 
irreversible processes, like in (Li et al., 2006) who considered a strongly endothermic 
chemical reaction system in a porous medium formed by spherical carbonate pellets in a 
reactor. However, orders of magnitude are given for these coefficients, in dimensional form, 
without physical justification and results are reported taking these coefficients as equal. For 
other references along this direction, the interested reader may consult those presented in 
the 9th chapter from the book by (Ingham and Pop, 2005). 
In a general form the energy and concentration equations are expresed as 

 
( )
( ) ( )m

T TC

f

c T
T D T D C

c t

ρ
ρ

∂
+ ⋅∇ = ∇ ⋅ ∇ + ∇

∂
V  (1a) 
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( ) ( )m
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f

c T
T D T D C
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ρ
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∂
V  (1b) 

see  (Nield and Bejan, 2006), where φ  is the porosity of the medium, ( )/T m f
D k cρ=  is the 

thermal diffusivity, C mD D=  is the mass diffusivity, while /TC TD D  and /CT CD D  may be 

considered as Dufour and Soret coefficients (numbers) of the porous medium. In the last time, 

basically in all papers dealing with this subject, the previous equations were used in the form 

 
2 2
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where mm is the thermal diffusivity, Cp and Cs are the specific heat at constant pressure and 
concentration susceptibility and kT is the thermal diffusion ratio. It seems that this form 
originates from a paper by (Kafoussias & Williams, 1995), where Dufour and Soret effects have 
been introduced in a free convection boundary-layer past a vertical plate in a viscous fluid 
The recent literature offers a couple of papers, where the Dufour and Soret effects are 
quantified by dimensionless parameters, resulted from a non-dimensionalization procedure, 
associated usually with the search for similarity solutions of the governing equations of 
momentum, energy and mass transfer (which are partial differential equations).  

1.1 Vertical plate, Darcy model 

The Darcy law applies when the Reynolds number is less than 1 (Bear, 1988), otherwise non-
Darcy models must be used. Consequently, the basic equations of motion are, in the Darcy 
formulation 
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u v

x y

∂ ∂
+ =

∂ ∂
 (3) 

 ( ) ( )T C

gK
u T T C Cβ β

υ ∞ ∞= ⎡ − + − ⎤⎣ ⎦  (4) 

1.1.1 Prescribed wall temperature and concentration 

The boundary conditions of the problem are 

 0y = : 0v = , wT T= , wC C=  (5a) 

 :y → ∞  0u → ,  T T∞→ , C C∞→  (5b) 

(Anghel et al., 2000) looked for the free convection past this common geometry, by using 
then by (Bejan & Khair, 1985)  

 ( )1/2
m xRa fψ α η= , ( ) ( ) / wT T T Tθ ∞ ∞= − − , ( ) ( ) / wC C C Cφ ∞ ∞= − − , 1/2

x

y
Ra

x
η =  (6) 

where ( ) ( ) /x T w mRa gK T T xβ να∞= −  is the local Rayleigh number. In order to stay close to 

(Bejan & Khair, 1985), the stream function ψ is defined as /u yψ= −∂ ∂  , /v xψ= ∂ ∂ . The 

governing equations become 

 'f Nθ φ= − −  (7) 
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'' ' '' 0
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where Le, Df  and Sr are Lewis, Dufour and Soret numbers, respectively 
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while   
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β
β

∞

∞

−
=

−
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is the sustentation parameter, which measures the relative importance of mass and thermal 
diffusion in the buoyancy-driven flow. We notice that N it is positive for thermally assisting 
flows, negative for thermally opposing flows and zero for thermal-driven flows. The 
transformed boundary conditions are 

 ( )0 0f = , ( )0 1θ = , ( )0 1φ =  (11a) 
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 ' 0f → , 0θ → , 0φ → , as η → ∞  (11b) 

We notice that the problem reduces to that formulated by (Bejan and Khair, 1985) when  Df  

= 0 and Sr = 0. The parameters of engineering interest are the local Nusselt and the 

Sherwood numbers, which are given by the expressions 

 ( )1/2/ ' 0x xNu Ra θ= − , ( )1/2/ ' 0x xSh Ra φ= −  (12) 

Three cases were considered by (Anghel et al., 2000): 

• Case I: Le = 1, N = 1, (Df , Sr) = ( (0.05, 1.2), (0.075, 0.8), (0.03, 2.), (0.037, 1.6), (0.6, 0.1) ) 

• Case II: Le = 1, N = 1, Df  = 0.15, Sr = 0.4 

• Case III: Le = 1, (N, Df , Sr) = ( (0.2, 0.15, 0.4), (0.5, 0.075 0.8), (0.8, 0.03, 2.0) ). 
Many other subsequent papers used these combinations of Dufour and Soret coefficients. 

(Postelnicu, 2004a) extended the work by (Anghel et al., 2000), by including the effects of a 

magnetic field, such as Eq. (7) becomes 

 ( )21 'M f Nθ φ+ = − −  (13) 

where M is the magnetic parameter, defined as 2 2 2
0 /eM K Hσμ μ=  The parameters involved  

in the present problem are M, Le, N, Df and Sr.  
Table 1 presents local Nusselt and Sherwood numbers calculated for each set of parameters. 

Figs 1 and 2 show the dimensionless velocity, temperature and concentration when M =  0 

and 1, for the following values of the parameters: N = 1, Df = 0, Sr = 0, and Le = (1, 2, 4, 6, 8, 

10, 100). We remark that as M increases, the thickness of the hydrodynamic/concentration 

boundary layer increases. 
 

M Le N Df Sr 1/2/x xNu Ra  1/2/x xSh Ra  

0 1 0.2 0.15 0.4 0.46331 0.38100 

1 1 0.2 0.15 0.4 0.32762 0.26942 

2 1 0.2 0.15 0.4 0.20723 0.17044 

0 1 0.5 0.075 0.8 0.55508 0.28764 

1 1 0.5 0.075 0.8 0.39250 0.20339 

2 1 0.5 0.075 0.8 0.24825 0.12866 

0 1 0.8 0.03 2.0 0.67028 -0.13736 

1 1 0.8 0.03 2.0 0.47936 -0.09712 

2 1 0.8 0.03 2.0 0.29976 -0.06142 

Table 1. Values of Nusselt and Sherwood numbers in case III 

To this end, we notice that, as remarked by Magyari (2010), if one defines a modified 

Rayleigh number as 

 ( ) ( ) ( ) ( )2 2
,  / / 1 / 1x M T w m xRa gK T T x M Ra Mβ να∞= − + = +  (14) 

then the magnetic parameter is eliminated from the analysis and Eqs. (8-9) and (13) reduces 

to (7-9). One obtains the wall gradients ( )' 0; Mθ  and ( )' 0; Mφ  for non-zero M, which can be 

calculated from their counterparts ( )' 0;0θ  and ( )' 0;0φ  for 0M =  by the relationships 
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Fig. 1. Variations of velocity across the boundary layer for N = 1, Df = 0, Sr = 0 : M = 0 (left), 
M = 1 (right) 
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Fig. 2. Variations of temperature across the boundary layer for N = 1, Df = 0, Sr = 0: M = 0 
(left), M = 1 (right) 
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Fig. 3. Variations of the concentration across the boundary layer for N = 1, Df = 0, Sr = 0: 
M = 0 (left), M = 1 (right) 
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1.1.2 Prescribed wall heat and mass fluxes 

At our best knowledge, in a single paper by (Lakshmi Narayana & Murthy, 2007), both Soret 
and Dufour effects have been considered in a free convection boundary layer along a 
vertical surface placed in porous medium, subject to wall heat and mass fluxes. In a paper 
by (Magyari & Postelnicu, 2010a), there is performed a thorough analysis of how wall heat 
and mass fluxes can be prescribed in order to get similarity solutions. 

1.1.3 Other contributions for vertical flows 

(Partha et al., 2006) looked for the effect of double dispersion, thermal-diffusion and 
diffusion-thermo effects in free convection heat and mass transfer in a non-Darcy electrically 

conducting fluid saturating a porous medium. In a related paper, (Lakshmi Narayana & 
Murthy, 2006) studied the Soret and Dufour effects in a doubly stratified Darcy porous 
medium.  
More effects, besides thermal-diffusion and diffusion-thermo phenomena, such as thermal 
dispersion and temperature-dependent viscosity have been introduced by (Afify, 2007a) and 
(Afify, 2007b) in the analysis of non-Darcy MHD free convection past a vertical isothermal 
surface embedded in a porous medium. Unfortunately, this kind of approaches seems to be 
of marginal interest for practical applications, due to the large number of parameters.  
(Lakshmi Narayana et al. 2009a; b) analyzed cross-diffusion effects on free convection of 
Non-Newtonian power-law fluids from a vertical flat plate in saturated porous media. 

1.2 Other geometries 

• Hiemenz flow with cross-diffusion through a porous medium was analyzed by (Tsai 
and Huang, 2009), where, by combining also various other effects, such as variable 
viscosity, heat source, radiation and chemical reaction. Moreover, both wall-
temperature and wall-concentration are taken as power-law functions of the 
coordinates along the plate. The number of problem parameters is well above 10, while 
their impact on the relevant quantities (skin-friction, Nusselt and Sherwood numbers, 
velocity, temperature and concentration profiles in the boundary layer) is presented in 7 
tables and 8 figures. 

• (Cheng, 2009) studied the Soret and Dufour effects on the boundary layer flow due to 
natural convection heat and mass transfer over a downward-pointing vertical cone in a 
porous medium saturated with Newtonian fluids. Constant wall temperature and 
concentration boundary conditions were considered in that paper and similarity 
equations have been obtained and solved by a cubic spline collocation method. 

• Another variation on geometry can be found in the very recent paper by (Rathish Kumar 
and Krishna Murthy, 2010), on a free convection flow from a corrugated vertical surface in 
a non-Darcy porous medium, under constant wall temperature and concentration 
boundary conditions. They used for Forchheimer extended non-Darcy model and 
performed a similarity transformation followed by a wavy to flat surface transformation. 
The resulting equations were solved having as parameters Grashof and Lewis numbers, 
buoyancy ratio, wavy wall amplitude, Soret and Dufour numbers. Comparisons of local 
and average Nusselt and Sherwood numbers have been presented. 
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1.3 Mixed convection 

Mixed convection in the presence of Soret and Dufour effects was tackled by (Chamkha and 
Ben-Nakhi, 2008). Additional effects included in that paper were MHD, radiation and 
permeability of the plate (placed in a porous medium). This time, the set of governing 
equation is no more reduced to ordinary differential equations, but to partial ones, of 
parabolic type, through appropriate transformation of variables. (Beg, Bakier and Prasad, 
2009) presented a numerical study of magnetohydrodynamic heat and mass transfer from a 
stretching surface placed in a porous medium with Soret and Dufour effects. 

1.4 Stagnation-point flows 

Consider the natural convection in a two dimensional stagnation-point flow in a fluid 

saturated porous medium. The temperature and concentration of the ambient medium are 

T∞ and C∞ , respectively, where the wall temperature and concentration are such that 

wT T∞>  and wC C∞> . The x-coordinate is measured along the body surface and the y-

coordinate normal to it. The momentum equation takes the form 

 ( ) ( ) ( )T C

gK
u T T C C S xβ β

ν ∞ ∞= ⎡ − + − ⎤⎣ ⎦  (16) 

where S is the shape factor. In general ( ) sinS x γ= , where γ is the angle between the 

outward normal from the body surface and the downward vertical. For a two dimensional 

stagnation-point flow, ( ) /S x x l=  where l is an appropriate length scale. (Postelnicu, 2010) 

considered also the effect of blowing/suction, therefore the boundary conditions of the 

problem are as in (5), except for wv v= , where vw is the suction/injection velocity. 

In order to get similarity solutions, the stream function is expressed as ( )xf yψ = , using 

now the more common definition /u yψ= ∂ ∂ , /v xψ= −∂ ∂ , the governing equations 

become after non-dimensionalization 

 'f Nθ φ= +  (17) 

 '' ' '' 0ff Dθ θ φ+ + =  (18) 

 1
'' ' '' 0rf S

Le
φ φ θ+ + =  (19) 

where primes denote differentiation with respect to y. The transformed boundary conditions are 

 ( )0 wf f= , ( )0 1θ = , ( )0 1φ =  (20a) 

 0θ → , 0φ →  as y → ∞  (20b) 

Besides the numerical attack of the problem (17-20), in (Postelnicu, 2010a) it was performed 
also an asymptotic analysis, for large suction rates. 

1.5 Effect of a chemical reaction 

Another situation which can arise in practice is a chemical reaction produced in the porous 
medium. In engineering applications, when chemical reactions occur, they can be either 
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homogeneous or heterogeneous. Homogeneous chemical reactions occur uniformly in the 
domain of a given phase, while heterogeneous reactions develop along the boundary of a 
phase. 

Some principles on the modeling of a chemical reaction in a porous medium are discussed 

by (Nield and Bejan, 2006), pages 38-39. The rate equation for a reagent of concentration C is: 

/ n
m m mdC dt k C= − , where Cm = C/m is the concentration in moles per unit volume of the 

fluid mixture, m denotes the molar mass of the reagent and n is the order of the reaction. 

Further, the rate coefficient k is in general a function of the temperature, described for 

instance by the Arrhenius equation. However, in many studies k is considered as a constant. 

In his book, (Probstein, 1994) stated that most known chemical reactions are of first and 

second order.  
Several recent papers related to this topic have been published. (El-Amin et al. 2008) studied 

the effects of chemical reaction and double dispersion on the non-Darcy free convection and 

heat and mass transfer, for constant temperature and concentration at the wall. (Chamkha et 

al. 2010) carried-out an unsteady analysis of natural convective power-law fluid flow past a 

vertical plate embedded in a non-Darcian porous medium in the presence of a first order 

homogeneous reaction. 

Let us focus on the chemical reaction in the presence of cross-diffusion effects for natural 
convection boundary layer flow along a vertical flat plate. Besides Eqs. (2a, 3, 4) which keep 
their forms, now Eq. (2b) is modified as follows 

 ( )
2 2

12 2

nm T
m

m

D kC C C T
u v D K C C

x y Ty y
∞

∂ ∂ ∂ ∂
+ = + − −

∂ ∂ ∂ ∂
 (21) 

The nondimensionalization scheme id the same as in (6), to give same Eqs. (7) and (8), while 
the concentration equation becomes 

 
1

'' ' '' 0n
rf S

Le
φ φ γφ θ+ − + =  (22) 

where again primes denote differentiation with respect to η, while Le, Df , Sr and N are 

Lewis, Dufour, Soret numbers and sustentation parameter as defined previously. Further, in 

order to get similarity solutions, the constant dimensionless chemical reaction parameter 

( )2
1 / m xK x Raγ α=  was introduced in Eq. (22). The transformed boundary conditions are 

precisely (11). Local Nusselt number and local Sherwood number are given by the same 

expressions as in (12). The problem has been solved numerically by (Postelnicu, 2007a), using a 

version of the Keller-box method adapted to solve ordinary differential equations was used.  
The parameters involved in the present problem are Le, N, Df, Sr, γ and n, the last two 
quantities pertaining to the chemical reaction. As expected, the Sherwood number is much 
more sensitive than the Nusselt number to the variation of parameters γ and n. 

In Figures 3 and 4 Nusselt and Sherwood local numbers vs γ are plotted for Df = 0.6, Sr = 0.1, 
Le = 1, N = 1 and n = (1, 2, 3). Then, Fig. 5 depicts the concentration profiles when Df = 0.6,  

Sr = 0.1, Le = 1 and N = 1, for various combinations of n and γ. Another case with nonzero 
Dufour and Soret numbers was considered in Fig. 6: Df  = 0.15, Sr = 0.4, Le = 1 and N = 1, 

using the same combinations of n and γ, as in Fig. 4. The general behaviour is similar to that 

depicted in Fig. 4, but now we remark the strong overshoot when n = 2 and γ = 1. 
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Fig. 3. Nusselt number variation with ┛ for Df  = 0.6, Sr = 0.1, Le = 1, N = 1 and n = (1, 2, 3) 

 

 

Fig. 4. Sherwood number variation with ┛ for Df  = 0.6, Sr = 0.1, Le = 1, N = 1 and n = (1, 2, 3) 

 

 

Fig. 5. Concentration profiles for Df  = 0.6, Sr = 0.1, Le = 1 and N = 1 
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Fig. 6. Concentration profiles for Df  = 0.15, Sr = 0.4, Le = 1 and N = 1 

The present problem subject to boundary conditions of prescribed wall heat and mass fluxes  
is under investigation in a paper by (Magyari and Postelnicu, 2010b). 

2. Mass transfer (only) with chemical reaction  

In this section we will analyze the convective diffusive-transport with chemical reaction in 

natural convection in fluid saturated porous medium. A vertical plate is composed of a 

chemical species maintained at a given concentration and immersed in a fluid-saturated 

porous medium. Far away from the plate the concentration is constant, at a value C∞  The 

species on the plate is first transferred from the plate to the adjacent medium. Following 

(Postelnicu, 2009a), the basic equations in the boundary layer approximation are 

 0
u v

x y

∂ ∂
+ =

∂ ∂
 (23) 

 ( )gK
u C C

υ ∞= −  (24) 

 
2

2
'''m

C C C
u v D C

x y y

∂ ∂ ∂
+ = +

∂ ∂ ∂
$  (25) 

where x and y are the coordinates along and normal to the plate, respectively, the 

orientation of the x-axis being upwards. The reaction-rate term is modelled by a power-law 

model  

 ( )'''
n

C k C C∞= − −$  (26) 

where k is the reaction-rate constant and n is the order of the reaction. The boundary 

conditions are 
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 0u v= = , C = C0(x), at y = 0 (27) 

Similarity solution is sought in the form 

 ( )1/2
,x CRa fψ α η= , 1/2

,x C

y
Ra

x
η = , 

0

C C

C C
φ ∞

∞

−
=

−
 (28) 

 

where ( ) ( ), /x C mRa gK C C x Dβ υ∞= −  is the concentration Rayleigh number. Using (28), the 

problem transforms to 

 'f φ=  (29) 

 ( )
2

,

1
'' ' 0

n n

m x C

k x
f C C

Le D Ra
φ φ φ∞+ − ⋅ − =  (30) 

The last term in (30) can be rewritten as 

 ( ) ( )
2

,

n n

m x C

k x
x C C

D Ra
ε φ∞= ⋅ −

( ) 1n
n

C

k C C x

gK

υ
φ

β

−
∞−

=  (31) 

 

and, on physical basis, this quantity is small. The boundary conditions are 

 ( )0 0f = , ( )0 1φ = , ( ) 0φ ∞ =  (32) 

 

Since we are considering a regular perturbation problem, there is no need for matching of 
layers or for multiple scales. The unknown functions of the problem are expanded as 
follows 

 ( ) ( ) ( )0 1 ...f f fη η ε η= + + , ( ) ( ) ( )0 1 ...φ η φ η εφ η= + +  (33) 

 

and retaining the terms up to the first order, we obtain the following problems] 

 0 0'f φ= , 0 0 0

1
'' ' 0f

Le
φ φ+ =  (34a) 

 

 ( )0 0 0f = , ( )0 0 1φ = , ( )0 0φ ∞ =  (34b) 

 1 1'f φ= , 1 0 1 0 0 0

1
'' ' ' 0nf f

Le
φ φ φ φ+ + − =  (35a) 

 ( )1 0 0f = , ( )1 0 0φ = , ( )1 0φ ∞ =  (35b) 

 

Two parameters Le and n are involved in the present problem. A quantity which dictates on 

the final solution is the small parameter ε. 
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Le = 0.1 
f0’’(0) = -0.19948 

Le = 1 
f0’’(0) = -0.62756 

Le = 10 
f0’’(0) = -1.98450 

Le = 100 
f0’’(0) = -6.27554 

n f1’’(0) n f1’’(0) n f1’’(0) n f1’’(0) 

1 -0.218055 1 -0.69979 1 -2.17852 1 -6.53320 

2 -0.13900 2 -0.43593 2 -1.32077 2 -3.62634 

3 -0.10427 3 -0.32418 3 -0.95866 3 -2.42976 

4 -0.08407 4 -0.25950 4 -0.74983 4 -1.75969 

5 -0.07066 5 -0.21659 5 -0.61186 5 -1.331435 

Table 2. Dimensionless wall shear-stress for n = (1, ..., 5) and Le = 0.1, 1, 10, 100 

 
 

 
 

Fig. 7. Dimensionless stream function  when n = 1 and  n = 3 

In Fig. 7 there is shown the variation of the dimensionless stream function across the 

boundary layer, when n = 1 and 3, for Le = 0.1, 1, 10 and 100. Figs. 8 and 9 depict the 

velocity profiles across the boundary layer for n = 1 and 3. It is worth to remark that the 

dimensionless velocity is equal to the dimensionless concentration according to Eq. (7). 

It is readily seen from Table 2 and Fig. 7 that as n increases, the impact of the first order 

solution on the zeroth order solution (which describes the situation without reaction) 

decreases. In clear fluids, there are regions close to the wall where the flow accelerates,  

see (Aris, 1965). A similar behaviour is observed for porous media, see for instance Figs. 8 

and 9. 

A final comment is on the small parameter ε. From our Table 1 and from the figures it is 

seen that the order of magnitude of the first order solution is roughly the same as that of the 

zeroth order solution. So, a choice of a maximum 0.01 should be appropriate, in order to get 

appropriate results. On the other hand, the definition of ε given in (8) does not give us much 

chances to calculate it on a physical basis. So, it was decided to show graphically the stream 

function and velocity across the boundary layer for the zeroth and first order solutions. 
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Fig. 8. Velocity profiles, n = 1, zeroth and first order solutions 

 

 
 

Fig. 9. Velocity profiles, n = 3, zeroth and first order solutions 

3. Effects of thermophoresis particle deposition in free convection boundary 
layers 

In the phenomenon of thermophoresis small sized (submicron) particles suspended in an 
isothermal gas acquire velocities relative to the gas in the direction of decreasing 
temperature. Thermophoresis is important when the particle sizes are small and the 

www.intechopen.com



 Advanced Topics in Mass Transfer 

 

590 

temperature gradients are large. When the wall is cold, the particles tend to deposit on the 
surface, while when the wall is hot the particles tend to repel from that surface. 

3.1 Vertical plate  

(Chamka and Pop, 2004) and (Chamka et al, 2006) looked to the effect of thermophoresis 

particle deposition in free convection boundary layer from a vertical flat plate embedded in 

a porous medium, without and with heat generation or absorption, respectively. 

3.2 Horizontal plate  

We are going into details by using the paper by (Postelnicu, 2007b), where it was analyzed 

the effect of thermophoresis particle deposition in free convection from a horizontal flat 

plate embedded in a porous medium. The plate is held at constant wall temperature Tw and 

constant wall concentration Cw. The temperature and concentration of the ambient medium 

are T∞ and C∞ , respectively. The x-coordinate is measured along the plate from its leading 

edge, and the y-coordinate normal to it. The following assumptions are used for the present 

physical model: a) the fluid and the porous medium are in local thermodynamic 

equilibrium; b) the flow is laminar, steady-state and two-dimensional; c) the porous medium 

is isotropic and homogeneous; d) the properties of the fluid and porous medium are 

constants; e) the Boussinesq approximation is valid and the boundary-layer approximation 

is applicable. 

In-line with these assumptions, the governing equations describing the conservation of 

mass, momentum, energy and concentration can be written as follows 

 0
u v

x y

∂ ∂
+ =

∂ ∂
 (36) 

 
pK

u
xμ

∂
= −

∂
, 

pK
v g

y
ρ

μ
⎛ ⎞∂

= − +⎜ ⎟
∂⎝ ⎠

 (37) 

 
2

2m

T T T
u v

x y y
α∂ ∂ ∂

+ =
∂ ∂ ∂

 (38) 

 
( ) 2

2
T

m

v CC C C
u v D

x y y y

∂∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 (39) 

together with the Boussinesq approximation ( ) ( )1 T CT T C Cρ ρ β β∞ ∞ ∞= ⎡ − − − − ⎤⎣ ⎦ , where 

the thermophoretic deposition velocity in the y-direction is given by 

 T

T
v k

T y

ν ∂
= −

∂
 (40) 

where k is the thermophoretic coefficient. We remark that only the velocity component 

given by (40) is to be considered within the boundary-layer framework. The boundary 

conditions are 
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 0y =  : wT T= , wC C= , 0v =   (41a) 

 y → ∞ : 0u → ,  T T∞→ ,  C C∞→  (41b) 

Introducing the stream function ψ in the usual way, in order to identically satisfy the 
continuity equation, and using the dimensionless quantities 

 ( )1/3
m xRa fψ α η= , ( )

w

T T

T T
θ η ∞

∞

−
=

−
, ( )

w

C C

C C
φ η ∞

∞

−
=

−
, 1/3

x

y
Ra

x
η =  (42) 

equations (36-39) become 

 
2 2

'' ' ' 0
3 3

f Nηθ ηφ− − =  (43) 

 
1

'' ' 0
3

fθ θ+ =  (44) 

 21 1 Pr
'' ' ' ' '' ' 0

3 t t

k
f

Le N N

φφ φ θ φ θ φ θ
θ θ

⎛ ⎞
+ + + − =⎜ ⎟

+ +⎝ ⎠
 (45) 

where the sustentation parameter N, the thermophoresis parameter Nt, the local Rayleigh 
number Rax and the Prandtl number Pr are defined as follows  

 
( )
( )

C w

T w

C C
N

T T

β
β

∞

∞

−
=

−
, t

w

T
N

T T
∞

∞
=

−
, 

( )T w
x

g K T T x
Ra

ρ β
μα

∞ ∞−
= , Pr

m

ν
α

=  (46) 

The set of ordinary differential equations (43-45) must be solved along the following 
boundary conditions 

 ( )0 0f = , ( )0 1θ = , ( )0 1φ =  (47a) 

 ( )' 0f ∞ = , ( ) 0θ ∞ = , ( ) 0φ ∞ =  (47b) 

Of technical interest is the thermophoretic deposition velocity at the wall, which is given by 

the expression ( )Pr
' 0

1
tw

t

k
V

N
θ= −

+
. Some graphs are reproduced below, from the paper by 

(Postelnicu, 2007b).  
Fig. 10 shows the effects of N on concentration profiles for  k = 0.5, Nt = 100, when Le = 10. In 
comparison with the vertical case, Fig. 2 from (Chamka and Pop, 2004), the behaviour of the 
concentration profiles shown in our Fig. 2 is quite similar.  
The effects of Le and N on thermophoretic deposition velocity Vtw can be seen in Fig. 11 
when k = 0.5 and Nt = 100. Once again, it is instructive to compare our results with those 
obtained by Chamka and Pop (2004), see Fig. 1 from that paper, where the parameters have 
the same values as ours. The general behaviour is the same, but the values of Vtw are larger 
in present case. In Fig. 12 there is represented the thermophoretic deposition velocity as a 
function of k and N when Le = 10 and Nt = 100. Similar plots may be obtained for other 
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Fig. 10. Effects of N on concentration profiles, Le =10, k = 0.5, Nt = 100 

 

Fig. 11. Effects of Le and N on thermophoretic deposition velocity, k = 0.5, Nt = 100 

 

Fig. 12. Effects of k and N on thermophoretic deposition velocity, Le = 10, Nt = 100 
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values of the Lewis number. The thermophoretic deposition velocity increases as k increases, 
at a fixed value of N, as in the vertical case. 

The problem may be extended on many directions, but the first one seems to be to consider 

a power law variation of the wall temperature with x: wT T Axλ= ± , where the “+” and “-“ 

signs are for a heated plate facing upward and for a cooled plate facing downward 

respectively and A is a positive constant, but the general behaviour portrayed previously 

remains. 

3.3 Other contributions 

In a paper by (Chamkha et al., 2004), the steady free convection over an isothermal vertical 
circular cylinder embedded in a fluid-saturated porous medium in the presence of the 
thermophoresis particle deposition effect was analyzed.  
The effect of suction / injection on thermophoresis particle deposition in a porous medium 
was studied by Partha (2009). Using again the boundary layer assumptions, but with a non-
Darcy formulation, he found that the heat transfer is intensified when second order effects 
(thermal dispersion and cross-diffusion) are present.  
Very recently, (Postelnicu, 2010b) analyzed thermophoresis particle deposition in natural 
convection over inclined surfaces in porous media. In this case, Eqs. (37) must be replaced 
with 

 sin cos sin cosT Cg K g Ku T T C C

y y x y x

β β
δ δ δ δ

υ υ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

= − + −⎜ ⎟ ⎜ ⎟
∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (48) 

where the angle of inclination of the plate with respect to horizontal is denoted by δ. The 
problem is no longer amenable to a set of ordinary differential equations, but partial ones, as 
follows 

 ( )2 1 1
'' ' ' ' '

3 3 3
f N N N

θ φθ φ ξ θ φ
ξ ξ

⎛ ⎞∂ ∂
− + = + − −⎜ ⎟∂ ∂⎝ ⎠

 (49a) 

 

 
1 1

'' ' ' '
3 3

f
f f

θθ θ ξ θ
ξ ξ

∂⎛ ⎞∂
+ = −⎜ ⎟∂ ∂⎝ ⎠

 (49b) 

 
21 1 Pr ' 1

'' ' ' ' '' ' '
3 3t t

fk
f f

Le N N

φθ φφ φ θ φ θ φ ξ φ
θ θ ξ ξ

⎛ ⎞ ∂⎛ ⎞∂
+ + + − = −⎜ ⎟ ⎜ ⎟⎜ ⎟+ + ∂ ∂⎝ ⎠⎝ ⎠

 (49c) 

subject to the boundary conditions which are essentially (47), at every ξ . The streamwise 

variable ξ  is defined as ( )1/3
cos tanxRaξ δ δ= ,where the local Rayleigh number Rax is 

defined as in (46). This system of partial differential equations is of parabolic type and may 

be solved by one of the well-known appropriate numerical methods, such as the Keller-box 

method, Local Nonsimilarity Method, etc. Aiming to throw some insight on the application 

of the last method to the present problem, we will refer shortly to this aspect. 

This method was introduced by (Sparrow et al., 1970), then applied to thermal problems by 

(Sparrow & Yu, 1971), where a good description of the algorithm may be found. In the so-
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called 2-equations model, one neglects in a first step the first-order derivatives with respect 

to ξ in Eqs. (49). In the second step, there is performed the differentiation of (49) with respect 

to ξ  and the second-order derivatives 
22

/ ξ∂∂ are neglected. Proceeding so and introducing 

the notations  

f
F

ξ
∂

=
∂

, 
θ
ξ

∂
Θ =

∂
 and 

φ
ξ

∂
Φ =

∂
, 

we get the system of equations 

 ( )2 1 1
'' ' ' ' '

3 3 3
f N N Nθ φ ξ θ φ⎛ ⎞− + = + − Θ − Φ⎜ ⎟

⎝ ⎠
 (50a) 

 ( )1 1
'' ' ' '

3 3
f f Fθ θ ξ θ+ = Θ −  (50b) 

 ( )
21 1 Pr ' 1

'' ' ' ' '' ' '
3 3t t

k
f f F

Le N N

φθφ φ θ φ θ φ ξ φ
θ θ

⎛ ⎞
+ + + − = Φ −⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (50c) 

 ( )2 1 1
'' ' ' ' '

3 3 3
f N N Nθ φ ξ θ φ

ξ ξ
⎛ ⎞∂Θ ∂Φ

− + = + − −⎜ ⎟∂ ∂⎝ ⎠
 (50d) 

 ( ) ( )1 1 1 1
'' ' ' ' ' ' '

3 3 3 3
f F f F F Fθ ξ θ ξΘ + Θ + = Θ − + Θ − Θ  (50e) 

 ( ) ( )1 1 1 2 1 Pr
'' ' ' ' ' ' ' ' ' ' ''

3 3 3 3 t

k
F F f F f

Le N
ξ ϕ θ ϕ θ

θ
Φ + Φ − Φ + Φ + − Φ + Φ + Θ + Φ

+
 (50f) 

( )
( ) ( )

( )
2

2 3

Pr 2 Pr
' ' '' 2 ' ' ' ' 0

t t

k k

N N
θ ϕ θ ϕ ϕθ θ ϕθ

θ θ
⎡ ⎤− + Θ + Θ + Φ + Θ =⎣ ⎦+ +

 

that must be solved along the boundary conditions 

 ( ),0 0f ξ = , ( ),0 1θ ξ = , ( ),0 1φ ξ = , ( ),0 0F ξ = , ( ),0 0ξΘ = , ( ),0 0ξΦ =  (51) 

 ( )' , 0f ξ ∞ = , ( ), 0θ ξ ∞ = , ( ), 0φ ξ ∞ = , ( )' , 0F ξ ∞ = , ( ), 0ξΘ ∞ = , ( ), 0ξΦ ∞ =  (52) 

Now the problem was reduced to the set of differential ordinary equations (50) that must be 

solved subject to the boundary conditions (51) and (52) by any standard numerical method. 

4. Convective flows on reactive surfaces in porous media 

This kind of chemical reactions may undergo throughout the volume of (porous) region, or 
along interfaces / boundaries of this region. Real-world applications include chemical 
engineering systems, contaminant transport in groundwater systems, or geothermal 
processes. The catalytic systems are modeled usually by including the description of the 

www.intechopen.com



Topics in Heat and Mass Transfer in Porous Media:  
Cross-Diffusion, Thermophoresis and Reactive Surfaces 

 

595 

reaction kinetics of the catalytic process and the transport of momentum, heat, and mass 
coupled to this process. Concerning the transport phenomena, access to the catalyst is 
determined by the transport of mass and energy in a reactor. In heterogeneous catalysis, the 
access to the catalyst is maximised through the use of porous structures. Examples of 
catalytic surface reactions are methane/ammonia and propane oxidation over platinum, see 
for instance (Song et al., 1991) and (Williams et al, 1991). Our interest in the present section 
is related to the chemical reactions which take place along interfaces / boundaries of the 
flow region. 

4.1 External flows 

It is now recognized that chemical reactions affect buoyancy driven flows at least in two 
directions: the transition from conduction-reaction regimes to conduction-convection-
reaction regimes and the influence of natural convection on the development of the chemical 
reaction.  
Models for convective flows on reactive surfaces in porous media have been proposed for 
external flows by (Merkin and Mahmood, 1998), (Mahmood and Merkin, 1999), (Minto et al., 
1998), (Ingham et al., 1999). In these studies bifurcation diagrams were presented for various 
combinations of the problem parameters and hysteresis bifurcation curves were identified, 
whenever they exist. 
The study by (Merkin and Mahmood, 1998) was extended by (Postelnicu, 2004b) for porous 

media saturated with non-Newtonian fluids. We shall follow this later author and we will 

focus on the free convection near a stagnation point of a cylindrical body in a porous 

medium saturated with a non-Newtonian fluid. We point-out that many fluids involved in 

practical applications present a non-Newtonian behaviour. Such practical applications in 

porous media could be encountered in fields like ceramics production, filtration and oil 

recovery, certain separation processes, polymer engineering, petroleum production. 

The fluid which saturates the porous medium is considered of power-law type. The 

governing equations of this process are 

 
* *

* *
0

u v

x y

∂ ∂
+ =

∂ ∂
 (53a) 

 ( ) ( ) ( )
* *

*
*

n gK n x
u T T

l

β
ν ∞= −  (53b) 

 
2

* *
* * *2m

T T T
u v

x y y
α∂ ∂ ∂

+ =
∂ ∂ ∂

 (53c) 

 
2

* *
* * *2m

C C C
u v D

x y y

∂ ∂ ∂
+ =

∂ ∂ ∂
 (53d) 

in standard notations, where stars mean dimensional quantities. The x and y-coordinates are 

taken along the body surface and normal to it, respectively. Moreover, the flow velocity and 

the pores of the porous medium are assumed to be small so that Darcy’s model can be used. 

The modified permeability K*(n) is given by 
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• 

1

* 6
( )

25 3 1 3(1 )

nn
n d

K n
n

φ φ
φ

+
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

, according to (Christopher and Middleman, 1965); 

• 

3(10 3)12
10 11* 2 6 1 16

( )
8(1 ) 10 3 75

nn
nd n

K n
n

φ
φ φ

−+
+⎛ ⎞ + ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠

, according to (Darmadhikari and Kale, 1985), 

where d is the particle diameter and φ is the porosity. 
Heat is released by the first order reaction  

 A B heat→ + , rate= 0 exp
E

k C
RT

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (54) 

with a heat of reaction Q > 0 which is taken from the body surface into the surrounding 

fluid-porous medium by conduction. We notice that (54) describes an exothermic catalytic 

reaction, of Arrhenius type, where the reactant A is converted to the inert product B. Here E 

is the activation energy, R is the universal gas constant, k0 is the rate constant, T is the 

temperature and C is the concentration of reactant A within the convective fluid. This 

reaction scheme is a realistic one and has been used in the past in modelling of combustion 

processes, and also for reactive processes in porous media. 

The boundary conditions are 

 * 0v = , 0*
expm

T E
k k QC

RTy

∂ ⎛ ⎞= − −⎜ ⎟∂ ⎝ ⎠
, 0*

expm

C E
D k C

RTy

∂ ⎛ ⎞= −⎜ ⎟∂ ⎝ ⎠
, on * 0y = , * 0x ≥  (55a) 

 * 0v → ,  T T∞→ , C C∞→  as *y → ∞ , * 0x ≥  (55b) 

 

Using the stream function: * * */u yψ= ∂ ∂ , * * */v xψ= −∂ ∂ , we proceed to render the 

problem in non-dimensional form by introducing the following quantities 

 
*x

x
l

= , 
*y

y Ra
l

= , 
*1

mRa

ψψ
α

= , 
2

T T

RT l
θ ∞

∞

−
= , 

C

C
ϕ

∞
=  (56) 

where 
( )

1/* 2

*

nn

n
m

gK n RT l
Ra

β
ν α

∞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
is the Rayleigh number and l is a length scale. We obtain 

 

n

x
y

ψ θ
⎛ ⎞∂

=⎜ ⎟
∂⎝ ⎠

 (57a) 

 
2

2
 

y x x y y

ψ θ ψ θ θ∂ ∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂ ∂
 (57b) 

 
2

2

1
 

y x x y Le y

ψ φ ψ φ θ∂ ∂ ∂ ∂ ∂
− =
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 (57c) 
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 0ψ = , exp
1

w
w

wy

θθ δϕ
εθ

⎛ ⎞∂
= − ⎜ ⎟

∂ +⎝ ⎠
, exp

1
w

w
wy

θϕ λδϕ
εθ

⎛ ⎞∂
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∂ +⎝ ⎠
, on y = 0, 0x ≥  (58a) 

 0
y

ψ∂
→

∂
, 0θ → , 1ϕ → , as y → ∞ , 0x ≥  (58b) 

Looking for similarity solutions, we introduce the following quantities 

 ( )xf yψ = , ( )1nx g yθ −= , ( )1nx h yϕ −=  (59) 

that render the problem (57-58) in the form 

 ( )' n
f g=  (60a) 

 ( )'' ' 1 ' 0g fg n f g+ − − =  (60b) 

 ( )1
'' ' 1 ' 0h fh n f h

Le
+ − − =  (60c) 

 ( )0 0f = , ( )
1

1
' 0 exp

1

n
w

w n
w

x g
g h

x g
λ

ε

−

−

⎛ ⎞
= − ⎜ ⎟⎜ ⎟+⎝ ⎠

, ( )
1

1
' 0 exp

1

n
w

w n
w

x g
h h

x g
λδ

ε

−

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

 (61a) 

 0g → , 1h → , as y → ∞  (61b) 

Using the transformations ( )1/2
wf g F Y=  , ( )n

wg g G Y= , ( ) ( )1 1 wh h H Y= − − , 1/2
wY g y= , 

Eqs (60-61) become 

  ( )' n
F G=  (62a) 

 ( )'' ' 1 ' 0G FG n F G+ − − =  (62b) 

 ( ) ( )1
'' ' 1 1 1 ' 0wH FH n h H F

Le
⎡ ⎤+ − − − − =⎣ ⎦  (62c) 

 ( )0 0F = , ( )0 1G = , ( )0 1H =  (63a) 

 ( ) 0G ∞ = , ( ) 0H ∞ =  (63b) 

where now primes denote differentiation with respect to Y. It is worth to remark that the 

problems in (F, G) and in H are now no more coupled. The last two boundary conditions 

from (63a) become 

 
1

1/2
1

0

exp
1

n
n w

w w n
Y w

x gdG
g h

dY x g
λ

ε

−
+

−
=

⎛ ⎞⎛ ⎞ = − ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
 (64a) 
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 ( )
1

1/2
1
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1 exp
1

n
w

w w w n
Y w

x gdH
h g h

dY x g
λδ

ε

−

−
=
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 (64b) 

i.e. two equations in the unknowns gw and hw. Eliminating hw between (64) gives 

 
( )1

1/2
1

1 0

exp /
1

nn
ww

w n
w

gx g
g

C Cx g

δλ
ε

−−

−
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 (65) 

where ( )0 0
/

Y
C dG dY == −  and ( )1 0

/
Y

C dH dY == . We remark that C0 depends only on n, 

while C1 depends on n, Le, ┝, ├ and hw.  
a.  Case of no reactant consumption 

In this case, ├ = ┛= 0 and 1wh ≡  so that Eq. (65) simplifies to  

 
1

1/2
0 1

exp
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n
n w

w n
w

x g
C g

x g
λ

ε

−
+

−

⎛ ⎞
= −⎜ ⎟⎜ ⎟+⎝ ⎠

 (66) 

 

The critical points on the graphs gw vs. λ are obtained from the condition: / 0wd dgλ =  and 

are given by 

 
( ) ( )

( )
(1,2)

2 1

1 2 1 1 2 2 1

2 1
w n

n n
g

n x

ε ε

ε −

− + ± − +
=

+
 (67) 

The following conclusions can be obtained from (67) 

• For ( )0 0.5 / 2 1nε< < +  , there are two critical points ( )(1)
1 wgλ λ=  and ( )(2)

2 wgλ λ= . 

• At ( )0.5 / 2 1nε = + , there is a hysteresis bifurcation, where the slope becomes vertical.  

• For ( )0.5 / 2 1nε > + , gw increases with λ 

• In the case 1ε << ,  one obtains using (67),  

 ( )(1) 12 1
~ 1 2 1 ...

2
n

w

n
g n xε −+

⎡ + + + ⎤⎣ ⎦ , 
( ) ( )

( )

2 2

(2) 1
2

1
2 2 1 2 1 ...

2~
2 1

n
w

n n
g x

n

ε ε

ε
−

− + − + +

+
 (68) 

so that  

 (1) 12 1

2
n

w

n
g x −+

→  and (2)
wg → ∞  as 0ε →   (69) 

Some curves gw vs. λ are represented in Fig. 13, for no reactant consumption, when ε = 0 and 

δ = 0.5. 
b.  General case, reactant consumption 

In this case, we have to cope with equation (65). Looking again for the critical points, the 

condition / 0wd dgλ =  gives 
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( )
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11 0 01

1
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g x g n C C n
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δδ

ε
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−
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 (70) 

In deriving this equation, it was necessary to compute 1 / wdC dg , which is obtained after 

some algebra as  

 
10 21

1

n
w

w

n C CdC
g

dg C

δ −=  (71a) 

 1
2

0w Y

dC dS
C

dh dY =

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (71b) 

In order to find the hysteresis bifurcation curve in the (ε, γ) space, with (n, x, δ) as remainder 
parameters, it is needed to solve equation (70) together with its derivative with respect to gw. 
The following values of the index parameter have been considered: n = 0.25, 0.5, 0.75, 1.5 

and 2.0. In each case, parameters ┝, ├ and Le have been varied as follows: ┝ = (0, 0.05, 0.1 and 

0.15), ├= (0.5 and 1.0), Le = (1, 10 and 100), while x was taken as 0.1, 0.5 and 1.0. We found 

that the basic shape of the bifurcation diagram does not depend basically on x, once the 

other parameters are held at fixed values.  

Let us proceed firstly with the case n = 0.25. Fig. 14 shows a typical plot gw as a function of ┛ 

for ┝= 0, ├= 0.5 and Le = 1. Basically, this types of variation, known also for Newtonian 

fluids, is found for any combination of (┝, ├, Le) and they do not lead to hystheresis. 

The case n = 0.5 presents many interesting features. Figs. 15 and 16 show two cases when the 

vertical slope becomes infinite for x = 0.1, but not for x = 0.5 and 1.0. We found that this 

characteristic for any case associated with Le = 1. But for Le = 10 and several cases 

associated with Le = 100 the vertical slope becomes infinite for any x, see Fig. 17 and 18.  

 

 

Fig. 13. Curves gw vs. λ: no reactant consumption, ┝= 0, ├ = 0.5 
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Fig. 14. Bifurcation diagrams for the case of reactant consumption n  = 0.25, x = 0.1 

 

Fig. 15. Bifurcation diagrams for the case of reactant consumption n  = 0.5, ┝ = 0.1, ├ = 1.0 and 
Le = 1 

 

Fig. 16. Bifurcation diagrams for the case of reactant consumption n  = 0.5, ┝= 0.15, ├= 1.0 and 
Le = 1 
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Fig. 17. Bifurcation diagrams for the case of reactant consumption n  = 0.5, ┝ = 0.15, ├ = 1.0, 
Le = 10 

 

Fig. 18. Bifurcation diagrams for the case of reactant consumption n  = 0.5, ┝ = 0.1, ├ = 1.0,  
Le = 100 

One kind of behaviour in the case n = 1.5 is shown in Fig. 19 specific for Le = 1. A thorough 
investigation, peformed also for Le = 10 and 100 leads to the conclusion is that there are not 
chances to obtain hystheresis conditions for n = 1.5 irrespective of ┝, ├ and Le. 
Finally the bifurcation diagrams in the case n = 2.0 look like in Fig. 20. These shapes are 
similar to those obtained in the n = 1.5 case, for Le = 10 and 100 but this time they are 
obtained for any Lewis number. We conclude that no hysteresis conditions can be obtained 
in the case n = 2. 
In conclusion, we proved that in the case of no reactant consumption it is possible to 
proceed entirely analytically, and the hysteresis bifurcation was found at a certain value of 
the activation parameter ┝, similarly as in the Newtonian fluids. But in the case of reactant 
consumption, it is no more possible to use analytical means of analysis. Our numerical runs 
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revealed that the most prolific case in bifurcation diagrams shapes is when the index 
parameter n = 0.5. Cases leading to hysteresis were found to be n = 0.5 and n = 0.75. Finding 
hysteresis bifurcation curves is more difficult due to the increased number of parameters as 
compared to the Newtonian case. 
 

 

Fig. 19. Bifurcation diagrams for the case of reactant consumption n  = 1.5, ┝ = 0.05, ├ = 1, Le = 1 

 

 
Fig. 20. Bifurcation diagrams for the case of reactant consumption n  = 2.0, x = 0.1 

4.2 Onset of convection in a horizontal porous layer driven by catalytic surface 
reaction on the lower wall 

We consider in this subsection the situation when the convective flow in a horizontal porous 

layer is driven by an exothermic catalytic reaction taking place on the lower surface 

whereby a reactive species A reacts to form an inert product B. The upper wall is subjected 

to uniform temperature and concentration, while on the lower wall there is an exothermic 
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surface reaction, whereby reactant P is converted to an inert product B, via the first-order 

Arrhenius kinetics non-isothermal reaction (54). The surface reaction releases heat, which 

produces a convective flow close to the surface and, in turn, fresh reactant will replace that 

used up in the reaction. In this way, an interaction will occur between the convective flow, 

heat transfer and mass transport of the reactant. 

Using usual notations, the governing equations which describe the problem at hand are 

mass conservation, Darcy’s law, equation of energy and that of concentration 

 0
u v

x y

∂ ∂
+ =

∂ ∂
 (72) 

 
pK

u
xμ

∂
= −

∂
f , ( )r

p g KK
v T T

y

ρ β
μ μ

∂
= − + −

∂
 (73) 

 
2 2

2 2m

T T T T T
u v

t x y x y
α

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (74) 

 
2 2

2 2m

C C C C C
u v D

t x y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (75) 

 

where Tr is a reference temperature and over-bars refer to dimensional quantities. The  x  

and y  axes are taken along the porous layer and normal to it respectively, and the lower 

wall is located at 0y = . We point out that in writing equations (73), the Boussinesq 

approximation was invoked and differences in reactant concentration (which may induce 

buoyancy forces) are assumed to be small. The Darcy model is justifiable when the heat of 

reaction is small or moderate. Otherwise, when the heat of reaction is large, non-Darcy 

models must be used. 
The thermal boundary conditions on the lower wall are 
 

 
0 expT

T E
k Qk C

y RT

∂ ⎛ ⎞= − −⎜ ⎟∂ ⎝ ⎠
, 0 exp

C E
D k C

y RT

∂ ⎛ ⎞= −⎜ ⎟∂ ⎝ ⎠
 (76) 

 

where kT is the thermal conductivity of the surface, Q is the heat of reaction, which is taken 

as positive, meaning that heat is taken from the  surface into the surrounding fluid-porous 

medium by conduction. Eliminating the pressure, using the streamfunction ψ and 

introducing dimensionless quantities, Eqs.  (72-75) become 

 
2 2

2 2
Ra

xx y

ψ ψ θ∂ ∂ ∂
+ =

∂∂ ∂
 (77) 

 
2 2

2 2
u v

t x y x y

θ θ θ θ θ∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
 (78) 
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2 2

2 2

1
u v

t x y Le x y

ϕ ϕ ϕ ϕ ϕ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (79) 

see (Postelnicu, 2009b), where
2

rg Kh RT
Ra

E

ρ β
μκ

= ⋅  is the Rayleigh number. The boundary 

conditions in the final model are 

 0ψ = , on both  y = 0 and  y = 1  (80a) 

 exp
1

A
y

θ θϕ
εθ

∂ ⎛ ⎞= − ⎜ ⎟∂ +⎝ ⎠
, exp

1
B

y

ϕ θϕ
εθ

∂ ⎛ ⎞= ⎜ ⎟∂ +⎝ ⎠
, on y = 0 (80b) 

 0θ = , 1ϕ = , on y = 1 (80c) 

where  

( ) ( )2
0 0 / / rA Qk C h k E RT= ⋅ , 0 /B k h D=  

are dimensionless parameters, while /rRT Eε =  is the activation energy parameter. 
The basic state is motionless ub = vb = ψb = 0 and is characterized by the linear temperature 
and concentrations profiles 

b ay bθ = + , b cy dϕ = + , 

where the constants a, b, c, and d are obtained by enforcing the boundary conditions (80). 
The following transcendental equation is obtained for a 

 ( )exp 0
1

a
a A Ba

aε
⎛ ⎞+ + − =⎜ ⎟−⎝ ⎠

 (81) 

where three parameters are involved: A, B and ┝. For b, c and d see (Postelnicu , 2009b). 
For the stability analysis, one expresses 

 ψ = Ψ , b ay bθ θ= + Θ = + + Θ , b cy dϕ ϕ= + Φ = + + Φ  (82) 

where ψ, k and l are perturbed quantities, 1Ψ << , 1Θ <<  and 1Φ << , and looking for 

the solutions in the form 

 ( )sinte f y kxλΨ = , ( )coste g y kxλΘ = , ( )coste h y kxλΦ =  (83) 

the linearised stability problem is governed by the equations 

 2'' 0f k f kRg− + =  (84a) 

 ( )2'' 0g k g akfλ− + + =  (84b) 

 ( )2'' 0h k h ckfλ− + + =  (84c) 
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 ( )0 0f = , ( ) ( )' 0 0g Ah= − , ( ) ( )' 0 0h Bh=  (85a) 

 ( )1 0f = , ( )1 0g = , ( )1 0h =  (85b) 

The eigenvalue problem formulated in (84)-(85) must be solved for the Rayleigh number. It 

can be shown that the principle of exchange of stability holds, so we can take λ = 0 in the 

previous equations. We mention that a problem where the frequency (λ in our case) is real, 

so that the marginal stability occurs when λ = 0, is said to obey the principle of exchange of 

stability. Since there are no analytical solutions of this eigenvalue problem, it will be solved 

numerically, by minimizing the Rayleigh number over the wave number. The 

corresponding values of the wavenumber and Rayleigh number are termed critical.  

In Fig. 21 there is depicted the variation of the critical wave number with B, for A = 0.5 and  

ε = 0.5. It is seen that, at given Lewis number, the critical wave-number increases with B, 

while increase of the Lewis number leads to an increase of kc. Critical Rayleigh number vs B 

is shown in Fig. 22, when A = 0.5 and ε = 0.5. The critical Rayleigh number increases with B, 

almost linearly for small Lewis number. On the other hand, we remark the usual increase of 

Rc with Le, a value near 240 being reached by the critical Rayleigh number for B = 1, when 

Le = 100. 

 
 
 
 
 
 

 
 
 
 
 

Fig. 21. Variation of the critical wave number with B, for A = 0.5 and ┝ = 0.5 
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Fig. 22. Critical Rayleigh number vs B, when A = 0.5 and ┝ = 0.5 
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