
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



19 

Ant Colony Optimization for 
Multiobjective Buffers Sizing Problems 

Hicham Chehade, Lionel Amodeo and Farouk Yalaoui 
Université de Technologie de Troyes, Institut Charles Delaunay, 

Laboratoire d’Optimisation des Systèmes Industriels 
France 

1. Introduction     

The optimization of production lines relies on many parameters such as the equipment 
selection, the buffers sizing, the line balancing or others. This is done in order to get high 
performed lines with the lowest costs so that line manufacturers remain competitive in the 
markets. 
In this work, we are interested in the buffers sizing problem on assembly lines (figure 1). It 
is widely studied in the literature. However, few works are focused on solving 
multiobjective buffers sizing problems. Indeed, despite the large number of papers in the 
literature dealing with the buffers sizing problem, one can feel the lack in the works dealing 
with the multiobjective problems. In fact, we may notice that almost the total number of 
papers dealing with the buffers sizing problem takes in consideration one criterion at once 
(Altiparmak et al., 2002), (D’Souza & Khator, 1997), (Hamada et al., 2006). Some other works 
take in consideration more than one criterion but they use weighted sums in the fitness 
function (Abdul-Kader, 2006), (Dolgui et al., 2002). In 2007 and later in 2009, Chehade et al. 
have applied the multiobjective optimization using multiobjective ant colony optimization 
algorithms (Chehade et al., 2007), (Chehade et al., 2009). 
 
 

 
 

Fig. 1. An example of an assembly line with 8 machines (Mi) and 7 intermediate buffers 

The lack of studies dealing with multiobjective buffers sizing problems is probably due to 
the complexity of the problem (Harris & Powell, 1999) and the difficulty to develop the 
suitable tool to optimize it efficiently. However, dealing with a single objective may lead to 
sidestep the problem (Collette & Siarry, 2002). Moreover, a multiobjective optimization 
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allows some freedom degrees that do not appear in the single objective optimization. Based 
on that, we have decided to continue studying this problem with its multiobjective type. The 
performances evaluations of the different configurations are done using the ARENA 
simulation software. Indeed, analytical methods seem to be inappropriate to solve hard and 
complex computational problems (Han & Park, 2002). 
In this work, and similarly to our previous works, the problem consists of sizing the buffers 
of different stations in an assembly line taking in consideration that the size of each buffer is 
bounded by a lower and an upper value. Two objectives are taken in consideration: the 
maximization of the throughput rate and the minimization of the buffers total size. Our 
contribution in this work is to present two new multiobjective resolution methods for the 
studied problem. These two methods are first a multiobjective ant colony algorithm with a 
guided local search and then a Lorenz multiobjective ant colony algorithm.  
In the literature and among the methods applied to solve the buffers sizing problems, the 
most efficient ones are metaheuristics for their ability to solve complex operations research 
problems. Indeed, the stochastic nature of these methods allows affording the combinatorial 
explosion in the number of possible solutions (Dréo et al., 2003). Genetic algorithms belong 
for example to metaheuristics which can be applied to solve buffers sizing problems (Dolgui 
et al., 2002), (Hamada et al., 2006). Simulated Annealing is another method applied in many 
works (Spinellis et al., 2000), (Papadopoulos & Vidalis, 2001). The literature presents also 
other methods such as neural networks (Altiparmak et al., 2002) or Tabu search (Lutz et al., 
1998). 
In this work, the different resolution methods are therefore based on ant colony 
optimization. The first one, initially presented in a previous work (Chehade et al., 2009) is a 
multiobjective ant colony optimization algorithm (MOACS). Ant colony optimization 
algorithms have been, until a recent period, applied on single objective problems. Initially 
developed to solve the travelling salesman problem (Dorigo & Gambardella, 1997), they 
have been later applied efficiently in different other fields such as scheduling or line 
balancing. Recently, we have noticed the development of the first algorithms based on ant 
colony optimization to solve multiobjective optimization problems (Benlian & Zhiquan, 
2007), (Pellegrini et al., 2007). 
Afterthat, a guided local search is coupled to the MOACS algorithm (MOACS-GLS) in order 
to enhance the performances of the latter. Indeed, the guided local search is used to avoid 
the occurrence of local optimum solutions. Voudouris and Tsang (Voudouris & Tsang, 1996) 
were the first to introduce a general optimization technique suitable for a wide range of 
combinatorial optimization problems which is the guided local search. This metaheuristic is 
used to guide the search out of a local optimum and it was successfully applied to many 
practical problems such as frequency applications (Voudouris & Tsang, 1996), vehicle 
routing problems (Kilby et al., 1999) and the quadratic assignment problem (Hani et al., 
2007). 
The last algorithm is a multiobjective ant colony algorithm but using the Lorenz dominance 
(L-MOACS). The Lorenz dominance relationship, as shown below, allows retaining the 
solutions which better fit the objectives of the problem. This is done by providing a better 
domination area by rejecting the solutions founded on the extreme sides of the Pareto front. 
The Lorenz dominance relationship also called equitable dominance relationship was 
defined in 1999 (Kostreva & Ogryczak, 1999) and extended in 2004 (Kostreva et al., 2004). 
This relationship, which is considered as equitable and rational, has been applied efficiently 
in many works (Perny et al., 2004), (Dugardin et al., 2009a), (Dugardin et al., 2009b). 

www.intechopen.com



Ant Colony Optimization for Multiobjective Buffers Sizing Problems   

 

305 

The remainder of this work is organized as follows. The problem description is in section 2. 
Section 3 presents the resolution methods. Computational experiments are presented in 
section 4 and we finish by a conclusion and perspectives in section 5. 

2. Problem description 

In this work, we are interested in sizing the buffers of assembly lines. The structures of the 
lines are formed by unreliable machines with exponential distribution and finite buffers. 
The lines have N machines and N-1 intermediate buffers taking in consideration that each 
two workstations are separated by one buffer. The goal of our study is therefore to identify 
the best size for each intermediate buffer taking in consideration the characteristics of the 
machines. We assume here that the size of each buffer is bounded by a lower (l) and an 
upper value (u). 
The objectives of this problem are as follows. For the first objective, we aim to maximize the 
throughput rate of the lines. As for the second objective, we look at minimizing the total size 
of the buffers. Therefore, the optimal configurations of the multiobjective problem are the 
lines configurations that give the highest throughput rates with the lowest buffers sizes. 
The mathematical formulation of this multiobjective buffers sizing problem can be stated as 
follows. The objective function Z to be optimized (see (1)) depends on the two studied 
objectives: the maximization of the throughput rate E (see (2)) and the minimization of the 
total size of the buffers in the line (see (3)). The decision variable is Yij (size i of buffer j). 

 ( 1, 2)Z O O=  (1) 

 1 : ( )O Maximize E  (2) 

 
1

1 1

2 : ( . )
N B

ij ij
j i

O Minimize Y b
−

= =
∑∑  (3) 

Subject to: 

 ( )ijE f Y=  (4) 

 ; 1,... ; 1,..., 1B B B
lj ij ujE E E i B j N≤ ≤ ∀ = ∀ = −  (5) 

 
1
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.
N B

ij ij
j i

Y b S
−

= =
≤∑∑  (6) 

 
1

1; 1,..., 1
B

ij
i

Y j N
=

= ∀ = −∑  (7) 

 { }0,1 ; 1,..., ; 1,..., 1ijY i B j N∈ ∀ = ∀ = −  (8) 

Notation: 
N: the number of machines in the line. 
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N-1: the number of intermediate buffers in the line. 
B: the number of the possible sizes of a buffer. 
Smax: the total available space for the buffers of the line. 
Yij: a binary variable equals 1 if buffer size i is assigned to buffer j and 0 otherwise. 
bij: the size i of buffer j. 
E: the throughput rate of the line 

B
ijE : the throughput rate of a buffer j while having a size i. 

B
ljE : the lower bound for the throughput rate of a buffer j. 

B
ujE : the upper bound for the throughput rate of a buffer j. 

Constraint (4) indicates that the throughput rate E of the line is a function of the sizes of the 
buffers. Constraint (5) shows that the size of each buffer is bounded by a lower (l) and an 
upper value (u). Constraint (6) means that the total space of the buffers must not exceed the 
total available space for the buffers of the line. Constraint (7) imposes that a unique size 
must be assigned to each buffer. Constraint (8) defines the binary decision variables. 
For the performances evaluations of the different tested configurations, we have used the 
discrete event simulation through the ARENA simulation software. 

3. Resolution methods 

In this section, we discuss the resolution methods that we have developed for our 
multiobjective problem. First, we present the multiobjective ant colony optimization algorithm 
(MOACS) and then we present the Lorenz dominance relationship. Finally, we present the 
overall algorithm that we call L-MOACS (Lorenz Multiobjective Ant Colony Algorithm). 

3.1 Multiobjective Ant Colony Algorithm 

In this section, we present the multiobjective ant colony system algorithm (MOACS) that we 
have applied in this work. It is based on the general structure of a classical ant colony 
optimization algorithm by being based on four main steps: the solutions encoding, the ants 
tours construction, the local pheromone updates and the global pheromone updates. The only 
difference is related to the number of the pheromone matrices. In fact, knowing that the multi 
objective optimization takes in consideration different criterion simultaneously, we consider 
that the total number of pheromone matrices should be equal to the number of objectives to be 
optimized. Therefore, we have in this work two pheromone matrices. 

Solutions encoding 

This encoding is presented in figure 2 where we consider that we have N stations and N-1 
intermediate buffers. A lower (lj) and an upper (uj) value bound the capacity of each buffer j.  
 

 

Fig. 2. Solutions encoding 
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Tours construction 

First, each ant is deposited randomly on a starting point which represents the size that has 
to be assigned to the first buffer. After that, an ant k chooses to move from a point r to 
another point s based on (9). 

 
, , 0

( ) 1

*

arg max . .
k

O
o

o r u r u
u J r o

w if q q

s

S otherwise

α
βτ η

∈ =

⎧ ⎧ ⎫⎡ ⎤⎪ ⎪⎪ ≤⎨ ⎬⎢ ⎥⎪ ⎣ ⎦⎪ ⎪= ⎩ ⎭⎨
⎪
⎪
⎩

∑
 (9) 

Where: 
O : the number of the considered objectives. 

τ ,
o
r s : the quantity of pheromone between the points r and s based on objective o. 

wo : the coefficient of importance granted to each objective (we consider that w1 = w2 = 0.5). 

q : is a random number generated between 0 and 1.  

q0 : is a parameter (0 ≤ q0 ≤ 1) which determines the relative importance of exploitation 

against exploration.  

S* : is a random variable chosen based on a probability given by (10). 

ηr,s : is a static value used as a heuristic of innate desirability to choose s starting from r and 

is also called the ant visibility to choose a point starting from another point.  

ǂ and ǃ are used to determine the relative importance of pheromones versus the visibility.  

Jk(r) : is the set of points not yet visited by ant k. 
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*
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k
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w
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⎧ ⎡ ⎤ ⎡ ⎤⎪ ⎣ ⎦⎢ ⎥⎣ ⎦ ∈⎪= ⎨ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎢ ⎥⎪ ⎣ ⎦
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∑

∑ ∑  (10) 

Local pheromone updates 

The local pheromone update is applied once all ants have finished their tours. It is 

computed based on (11) where τ0 is the initial quantity of pheromone. 

 , , 0(1 ). .o o
r s r sτ ρ τ ρ τ= − +  (11) 

Global pheromone updates 

The global pheromone update is realized according to (12) while being based on the non 

dominated solutions obtained at each generation. 

 , , ,(1 ). .o o o
r s r s r sτ ρ τ ρ τ= − + Δ  (12) 

Δτ ,
o
r s  consists on supporting the non dominated solutions found so far. It is computed based 

on (13) and (14) where Cgb and Egb represent, respectively, the lowest total size of buffers and 

the highest throughput rate found so far by ants. 
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,

( ) , min
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gb
r s

C if r s non do ated solutions

otherwise
τ

−⎧ ∈ − −⎪Δ = ⎨
⎪⎩

 (13) 

 2
,

, min

0

gb

r s

E if r s non do ated solutions

otherwise
τ

∈ − −⎧⎪Δ = ⎨
⎪⎩

 (14) 

3.2 Guided local search 
In order to adapt the guided local search and to couple it with the MOACS algorithm, a local 
search procedure based on the neighborhood search is first applied. This local search is 
applied on the first optimal front obtained after the ants tours and before discarding the non 
feasible solutions. Afterthat, we will now be able to check if the space constraint is satisfied 
or not. 
In fact, if the total space of the buffers according to a given solution in the optimal front is 
higher than the allowed one (Smax), then we try to minimize it by decreasing the capacity of 
each buffer by one. This is done on all the buffers. Note that as we are limited by a lower 
and an upper bound for buffers, we are not able, all the times, to apply this procedure. For 
example, we may not be able to decrease the size of a given buffer (if its size is equal to the 
lower value l). 
In the other side, if the total covered space is smaller than the allowed one, we try to look for 
a neighborhood solution which can decrease the total size of the buffers and increase the 
throughput rate. We increase then at each time the size of the buffers by one.  
At the end of the local search, we take in consideration the non dominated solutions 
according to the Pareto dominance rule. As using only the local search may lead to local 
optimum cases and not necessarily to global ones, we have seen that the best way to 
overcome this lack is by applying the guided local search metaheuristic as explained below. 
The purpose of making a local search procedure getting out of a local optimum is satisfied 
by adapting the guided local search metaheuristic to our problem. That is based on using 
augmented objective functions by adding penalties to the initial objective functions. 
Therefore, we associate features to the objective functions taking in consideration that those 
features are in the local optimum. The features are selected based on the type of the problem 
to be optimized. However, each feature fi must have the following components: 
- An indicator function Ii(s) indicating whether the feature is present in the current 

solution s (Ii(s) = 1) or not (Ii(s) = 0). 
- A cost function ci(s) giving the cost of having fi in s. 
- A penalty factor pi (initially set to 0) to penalize the occurrence of fi in local optimum. 
We are using here one feature (f1) in our case as we have one element which is the buffers 
sizing. Based on the local search procedure, the indicator function I1 of feature f1 is equal to 1 
if we are able to modify the size of a given buffer and 0 otherwise (if the size of the buffer is 
equal to the lower l or the upper u value). The occurrence of a local optimum allows the 
manipulation of the augmented cost function by applying a penalty modification procedure. 
The penalty parameters pi are incremented by one for all features f1 that maximize an 
expression called utility as shown in (15) where c1(s) is computed according to (16) and c2(s) 
according to (17). 

 1 1 1 1( , ) ( ). ( ) /(1 )util s f I s c s p= +  (15) 
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1

1
1 1

( ) .
N B

ij ij
j i

c s Y b
−

= =
= ∑∑  (16) 

 2( ) 1 /c s E=  (17) 

The augmented cost function is present in (18) for the space objective and in equation (19) 
for the throughput rate objective. It is used to make the local optimum more costly than 
other solutions in the surrounding search space in order to avoid it. 

 1 1 1 1 1( ) ( ) . ( ).h s c s I s pλ= +  (18) 

 2 2 2 1 1( ) ( ) . ( ).h s c s I s pλ= +  (19) 

Where ǌ is a parameter for controlling the constraints strength with respect to the solution 
objective. ǌ1 is computed based on the total space of the buffers of the line and the different 
possibilities of the sizes of the buffers as shown in (20) where B is the number of possible 
sizes for each buffer. ǌ2 is computed as illustrated in (21). 

 
1

1
1 1

( . ) /(2. )
N B

ij ij
j i

Y b Bλ
−

= =
= ∑∑  (20) 

 2 (1 / ) /(2. )E Bλ =  (21) 

To resume the adaptation of the guided local search metaheuristic to our problem, starting 
from the set of the non dominated solutions obtained by the MOACS algorithm, a local 
search procedure is applied to find local minima with respect to the augmented cost 
function. If those minima have objective functions (not augmented) better (smaller for the 
space objective and greater for the throughput objective) than the best objective functions 
ever found, they are saved as non dominated solutions. Finally, the configurations having 
the maximum utilities would have their penalties increased. The process is repeated until a 
stopping criterion. At this step, we are able to identify the feasible non dominated solutions. 

3.3 Multiobjective Ant Colony algorithm with a Guided Local Search 
The structure of the multiobjective ant colony algorithm with the guided local search 
(MOACS-GLS) is presented by algorithm 1. 

Algorithm 1: MOACS-GLS algorithm 

Step 1: Parameters initialization 
Step 2: For the k ants 

Compute the desirability factors associated with each objective, so as to select the 
successive nodes according to the visibility factor and the pheromone trails 

  Apply a local update of the pheromone trails 
  Apply the guided local search procedures 

Apply a global update of the pheromone trails while being based on the non 
dominated solutions 

              End For  

Step 3: Iterate from Step 2 until a stopping criterion 
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3.4 The Lorenz dominance relationship 
The Lorenz dominance relationship restricts the Lorenz searching space to a subset of the 
Pareto searching space. Thus, the Lorenz dominance increases the speed of the algorithm by 
focusing on the promising solution set 0. It provides then a larger domination area to each 
solution which implies the rejection of the solutions that are at the furthest end of a Pareto 
front. 
Indeed, let us take in consideration, for example, two criterion f1 and f2 to be minimized. 
Figure 2 describes the Pareto dominance area of a solution X. With the Pareto dominance, 
the solution X dominates any other solution X’ that has either f1(X’) or f2(X’) higher than f1(X) 
or f2(X). However, for the same point X, the Lorenz dominance area is shown in figure 3. It is 
clear that the Lorenz dominance area is larger than the Pareto dominance area. 
 

 

Fig. 2. Pareto dominance area (Dugardin et al. 2009a) 

 

 

Fig. 3. Lorenz dominance area (Dugardin et al. 2009a) 
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Using the Lorenz dominance, denoted by L≺ , we can consider that X is Lorenz-optimal if, 

and only if, no solution X’ exists so that f(X’) L≺ f(X). Given a vector y(y1, y2) with two 

components, the corresponding Lorenz generalized vector is yL(max(y1, y2), y1+y2). For more 

details about the Lorenz dominance relationship and its different characteristics and 

principles, reader is referred to the work of Dugardin et al. (Dugardin et al., 2009a) where a 

deep explanation about the Lorenz dominance is presented. 

3.5 Lorenz Multiobjective Ant Colony algorithm 

As mentioned before, the Lorenz Multiobjective Ant Colony algorithm (L-MOACS) is based 
on a multiobjective ant colony system algorithm using the Lorenz dominance relationship. 
Therefore, once all ants have constructed their tours and that local pheromone updates are 
applied, we identify the non dominated solutions based on the Lorenz dominance. The set 
of the Lorenz non dominated solutions, on which we should be based to globally update the 
pheromone matrices, constitute the optimal front of the problem. The overall L-MOACS 
algorithm is shown in algorithm 2. 

Algorithm 2: L-MOACS algorithm 

Step 1: Initialization of parameters 
Step 2: For all ants: 
  - Assign sizes to buffers 
  - Local pheromone updates 

- Identification of the non dominated solutions based on the Lorenz dominance 
  - Global pheromone updates  
Step 3: Return to step 2 until a stopping criterion is satisfied 

3.6 Comparison criteria 
In this section, we describe the methods used to compare two optimal fronts (F1 and F2) 
obtained by the different algorithms (MOACS, MOACS-GLS and L-MOACS) in order to get 
an idea and to evaluate the performances of the solutions of each algorithm. Three 
comparison criteria are used: the number of solutions Ni in an optimal front i, the distance 
proposed by Riise Ǎ (Riise, 2002), the Zitlzler measure Ci (Zitzler & Thiele, 1999). 
The distance of Riise, Ǎ, is computed as the sum of the distances dx between a solution x 

belonging to front F1 and its orthogonal projection on front F2 (
1

N

x
x

dμ
=

=∑ ). Ǎ is negative if F1 

is under F2 and positive otherwise. As the value of Ǎ depends on the number of solutions Ni 
in each front, a normalized value (Ǎ* = Ǎ / Ni) is generally taken in consideration. 
The Zitzler measure C1 represents the percentage of solutions in F1 dominated by at least 
one solution in F2. Taking in consideration that the measure is not symmetric, it is advised 
to compute C2 as well. In conclusion, a front F1 is better than another front F2 if C1 is smaller 
than C2. 

4. Computational experiments 

Computational experiments are realized on assembly lines with finite buffers and where the 
machines time between failures, the times to repair and the processing times are 
exponentially distributed.  
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In order to compare the three algorithms, MOACS, MOACS-GLS and L-MOACS, several 
tests have been first realized so that we can set efficiently the different parameters of the 
algorithms. Final values are determined as a compromise between the quality of the final 
solutions and the convergence time needed. Those final values are as follows: k = 20, ρ = 0.7, 
q0 = 0.7, ǂ = 0.7, ǃ = 0.3, τ0 = 2. The stopping criterion for the ant colony algorithms is a given 
number of generations and is fixed at 100. The stopping criterion for the guided local search 
is a number of iterations which is fixed at 50. 
Once the parameters values have been set, we apply the three algorithms on different 
instances. Two assembly lines are tested. The first is a non balanced assembly line where the 
machines have different processing times (Ti). This is the first problem P1. The second 
concerns a balanced assembly line where the different machines have the same processing 
time (Ti).  This is then the second problem P2. 
For the input data of the machines characteristics, we have adopted those used by Nahas et 
al. (Nahas et al., 2006). Those characteristics are the processing times (Ti), the mean times to 
repair (MTTR) and the mean times to failure (MTTF). The values of these parameters are 
presented in tables 1 and 2. 
 

Machine MTTR MTTF Ti 

1 450 820 40 

2 760 5700 34 

3 460 870 39 

4 270 830 38 

5 270 970 37 

6 650 1900 40 

7 320 1100 43 

8 480 910 39 

9 340 1050 41 

Table 1. Input data for problem P1 (Nahas et al., 2006) 

 

Machine MTTR MTTF Ti 

1 7 20 1 

2 7 30 1 

3 5 22 1 

4 10 22 1 

5 9 25 1 

6 14 40 1 

7 5 23 1 

8 8 30 1 

9 10 45 1 

Table 2. Input data for problem P2 (Nahas et al., 2006) 

Each buffer may have a size that is bounded between the lower value (l) which is equal to 1 
and the upper value (u) which is equal to 20. Three different assembly line structures are 
tested for the two problems. Each structure is different from the other one by the number of 
machines N and thus the number of buffers N-1. N is equal to 3, 7 and 9 for the first (S1), 
second (S2) and third (S3) structures respectively. 
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We have realized three comparisons. The first one is between the MOACS-GLS and the 
MOACS algorithms and is presented in table 3. Table 4 shows the second comparison which 
is between the L-MOACS and the MOACS algorithms. The last comparison is between the 
L-MOACS and the MOACS-GLS algorithms and it is presented in table 5. 
The results of the generated instances for the comparison between the MOACS-GLS and the 
MOACS algorithms are compared in table 3. It shows a comparison between the best fronts 
with the non dominated solutions obtained for each algorithm. N1 stands for the number of 
solutions in the optimal front obtained by the MOACS-GLS algorithm and N2 for the 
MOACS algorithm. The distance of Riise is presented under the Ǎ* column. C1 and C2 stand 
for the Zitzler measure. C1 is a measure for front F1 of the MOACS-GLS algorithm and C2 for 
that of front F2 of the MOACS algorithm. 
The comparisons are done on all of the 6 different tests realized for the two problems. To 
better explain table 3 for the reader, let us take the first line as an example. It shows a 
comparison between the two algorithms (MOACS-GLS and MOACS) applied on problem 
P1 and on an assembly line with 3 machines and 2 buffers (structure S1). The number of non 
dominated solutions (N1) in the MOACS-GLS best front is 15 and is equal to that of the 
MOACS Pareto front. The negative value of the Ǎ* column (-0.01) shows that F1 is under F2. 
Columns 6 and 7 show that 6.67% of solutions in the MOACS-GLS best front are dominated 
by at least one solution in the MOACS front while 13.33% of solutions in the MOACS front 
are dominated by at least one solution in the MOACS-GLS front. The same logic is followed 
to read the comparison parameters in the rest of the table. 
 

 N1 N2 Ǎ* C1 C2 

S1 15 15 -0.01 6.67 13.33 

S2 16 16 -0.02 6.25 18.75 
 

P1 
S3 17 16 -0.03 5.88 37.50 

S1 16 16 -0.04 6.25 43.75 

S2 19 18 -0.05 0.00 44.44 
 

P2 
S3 19 18 -0.06 0.00 50.00 

Mean 17 16.5 -0.03 4.175 34.62 

Table 3. Comparison between MOACS-GLS (F1) and MOACS (F2) algorithms 

Based on all the tested configurations, we may conclude that on the majority of the 
generated instances, the MOACS-GLS performs more efficiently than the MOACS 
algorithm. Indeed, we have noticed that as the size of the problem increases, the advantages 
of the MOACS-GLS algorithm get more obvious. In general, the mean value of the number 
of non dominated solutions for the MOACS-GLS is 17 against 16.5 for the MOACS. The 
mean value of the Riise distances is -0.03 which means that the optimal front of the MOACS-
GLS (F1) is under that of the MOACS algorithm (F2). That means that we are maximizing 
the throughput rate of the line and at the same time minimizing the total size of the buffers 
when we apply the MOACS-GLS algorithm compared to the application of the MOACS 
algorithm. Finally, there is a general mean of 4.175% of solutions in the F1 fronts that are 
dominated by at least one solution from the F2 fronts against 34.62% of the F2 solutions that 
are dominated by at least one solution from the F1 fronts. 
Once the first comparison is done, we have realized the second one between the L-MOACS 
algorithm based on the Lorenz dominance relationship and the MOACS algorithm using the 
Pareto dominance relationship. Table 4 shows the comparison between fronts F1 (L-
MOACS) and F2 (MOACS). The same interpretation used to analyze table 3 is applied for 
table 4 with the three comparison criteria: N1 and N2, Ǎ*, C1 and C2.  
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The first criterion which is the number of non dominated solutions shows that there are less 
non dominated solutions in the L-MOACS optimal front (N1) than in the MOACS optimal 
front (N2). On all the tested structures, the mean number of solutions with the Lorenz 
dominance is equal to 13.5 against 16.5 with the Pareto dominance. This is due to the fact 
that, with the Lorenz dominance, we can get fewer solutions compared to the Pareto 
dominance. The second criterion (Ǎ*) shows the clear advantage of the L-MOACS algorithm 
compared to the MOACS algorithm. The value of Ǎ* is always negative for all the tested 
instances which means that the optimal front of the L-MOACS algorithm fits better the two 
objectives of the problem (maximization of the throughput rate and minimization of the 
total size of the buffers). The same conclusion may be deduced based on the third criterion 
when one can notice that the mean percentage of solutions in the L-MOACS front that are 
dominated by at least one solution in the MOACS front (3.86%) is largely smaller than that 
of the MOACS front (43.84%).  
 

 N1 N2 Ǎ* C1 C2 

S1 13 15 -0.03 7.69 20.00 

S2 12 16 -0.03 8.33 31.25 
 

P1 
S3 13 16 -0.05 0.00 56.25 

S1 14 16 -0.04 7.14 50.00 

S2 14 18 -0.07 0.00 44.44 
 

P2 
S3 15 18 -0.08 0.00 61.11 

Mean 13.5 16.5 -0.05 3.86 43.84 

Table 4. Comparison between L-MOACS (F1) and MOACS (F2) algorithms 

The third comparison is between the L-MOACS algorithm and the MOACS-GLS algorithms. 
Table 4 presents first the number of non dominated solutions N1 and N2 in fronts F1 (for the 
L-MOACS) and F2 (for the MOACS-GLS) respectively. As in the comparison between L-
MOACS and MOACS, the number of non dominated solutions with the Lorenz dominance 
relationship is fewer than that with the Pareto dominance relationship. For the two other 
criteria, we may notice a small advantage for the L-MOACS algorithm compared to the 
MOACS-GLS algorithm. Indeed, taking in consideration the Riise distance, the two 
algorithms have the same performances for 2 instances over 6 tested ones. In general, the 
mean value of Ǎ* is only equal to -0.01. That small advantage may be confirmed while being 
based on the Zitzler measure. Here also, for two tested instances the two algorithms have 
the same performances. For the four other instances, the mean percentage of L-MOACS 
solutions that are dominated by at least one MOACS-GLS solution (C1) is equal to 2.67% 
against 5.63% for C2. 
 

 N1 N2 Ǎ* C1 C2 

S1 13 15 -0.00 0.00 0.00 

S2 12 16 +0.01 8.33 6.25 
 

P1 
S3 13 17 -0.02 7.69 11.76 

S1 14 16 -0.00 0.00 0.00 

S2 14 19 -0.01 0.00 0.00 
 

P2 
S3 15 19 -0.03 0.00 15.79 

Mean 13.5 17 -0.01 2.67 5.63 

Table 5. Comparison between L-MOACS (F1) and MOACS-GLS (F2) algorithms 
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In conclusion, and taking in consideration the three comparisons between the three applied 
algorithms, we may deduce that while applying the Pareto dominance relationship, hybrid 
algorithms perform better than classic ones. That was obvious while comparing the classical 
multiobjective ant colony algorithm (MOACS) and the hybrid algorithm which is a 
multiobjective ant colony algorithm with a guided local search (MOACS-GLS). In addition 
to that, we may notice the advantages of the Lorenz dominance relationship over the Pareto 
dominance relationship. For the comparison between L-MOACS and MOACS and that 
between L-MOACS and MOACS-GLS, the Lorenz dominance relationship presents more 
advantages compared with the Pareto dominance. 

5. Conclusion 

In this paper, we have studied a multiobjective buffers sizing problem using ant colony 
optimization. The two objectives of our study are the maximization of the throughput rate 
and the minimization of the total size of the buffers. To solve the problem, three 
multiobjective metaheuristics have been developed: a multiobjective ant colony 
optimization algorithm, a multiobjective ant colony algorithm with a guided local search 
and a Lorenz multiobjective ant colony optimization algorithm. Computational experiments 
have been realized on different assembly lines configurations and we have compared our 
three methods to each others. We have noticed that the L-MOACS performances are better 
than those of the MOACS and slightly better than those of the MOACS-GLS algorithm. 
Regarding the perspectives of this work, other methods based on the Pareto or the Lorenz 
dominance may be tested such as genetic algorithms or particle swarm optimization 
algorithms. Other hybridization techniques may also be tested in order to see the impact on 
the achieved solutions. Finally, exact methods may be developed to compare the optimal 
solutions with those of the applied metaheuristics. 
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