
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

13

Ant Colony Optimization for
Coherent Synthesis of

Computer System

Mieczysław Drabowski
Cracow University of Technology

Poland

1. Introduction

The goal of high-level synthesis of computer systems is to find an optimum solution

satisfying the requirements and constraints enforced by the given specification of the

system. The following criteria of optimality are usually considered: costs of system

implementation, its operating speed, power consumption and dependability. A specification

describing a computer system may be provided as a set of interactive tasks (processes,

functions).

The partition of the functions between hardware and software is the basic problem of

synthesis. Such partition is significant, because every computer system must be realized as

result of hardware implementation for its certain tasks. In the synthesis methods so far, the

software and hardware parts were developed separately and then connected in process the

co-called co-synthesis, which increased the costs and decreased the quality and reliability of

the final product. The resources distribution is to specify, what hardware and software are

in system and to allocate theirs to specific tasks, before designing execution details.

The problems of tasks scheduling are one of the most significant issues occurring at the

procedure synthesis of operating systems responsible for controlling the distribution of

tasks and resources in computer systems.

The objective of this research is to present the concept of coherent approach to the problem

of system synthesis, i.e. a combined solution to task scheduling and resource partition

problems. The model and approach are new and original proposals allowing synergic

design of hardware and software for performing operations of the computer system. This is

approach, which we called a par-synthesis (coherent co-synthesis). This research shows the

results selected of computational experiments for different instances of system par-synthesis

problems proving the correctness of the coherent synthesis concept and shows the methods

solving these problems. Due to the fact that synthesis problems and their optimizations are

NP-complete we suggest meta-heuristic approach: Ant Colony Optimization.

Coherent co-synthesis of computer systems, as well as synergic design methodology their

structures and scheduling procedures may have practical application in developing the tools

for automatic aided for rapid prototyping of such systems.

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

180

2. General model and synthesis of computer system

2.1 The classical process of computer system synthesis

The classical process co-synthesis (D’Ambrioso & Hu, 1994) – hardware and software – for
computer system consists of the following stages (Fig. 2.1):

S y s te m s p e c if ic a tio n

R e s o u rc e p a r titio n T a s k s ch e d u lin g

A llo c a tio n o f ta s k a n d res o u rce

R e s u ltin g s y s te m

Fig. 2.1. The process co-synthesis

1. Specification of the designed system in terms functional and behavioural –
requirements and constraints analysis. The system description in a high-level language,
abstracting from the physical implementation.

2. Resource partition – architecture development.
3. Task scheduling – system control development.
4. Allocation the system functions to the architecture elements – generating the system

modular architecture, control adaptation and the whole system integration.
The system being constructed consists of hardware elements and software components
performed by selected hardware modules (Gajski, 1997) . The system is specified by a set of
requirements to be met. In general, each requirement may be satisfied by hardware elements
or software components executed by universal processors and memories. Obviously, at this
stage of design, one must take into account appropriate system constraints and criteria of
optimal system operation. Accordingly, the key issue in the synthesis is efficient partitioning
of system resources due to their hardware and software implementation, providing
fulfilment of all requirements and the minimum implementation cost (Sgroi et al., 2000).
Such partitioning methodology (Gupta & De Micheli, 1993) may accept, as a starting point,
assignment of the hardware implementation to all system functions and further
optimization of project costs, search for possibilities of replacing certain tasks realized by
hardware with their software equivalents. Other methods (De Micheli, 1994) of the
resources partitioning start with an exclusive software implementation and further search
for implementation of certain tasks by hardware. In both approaches the objective is
optimization of the implementation cost of the same tasks, i.e. in particular minimization of
the execution time by specialized hardware (Axelson, 1997). Obviously the requirements
and constraints, especially those regarding time and power consumption, have decisive
influence upon selection of necessary hardware components.

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

181

The measure for an efficient implementation of a computer system is the degree of its
modules utilization, minimized idle-time of its elements and maximized parallel operation
of its elements (Schulz et al., 1998).
A non-optimum system contains redundant modules or modules that are excessively

efficient in comparison to the needs defined by the tasks what, consequently, increases the

system cost. In high-level synthesis, the optimization of the designed system costs, speed

and power consumption is usually an iterative process, requiring both changes in the

architecture and task scheduling (Steinhausen, 1993). That is, why an optimum system may

be created as a compromise between the system control algorithm and its hardware

organization.

2.2 The general model for the problem of system synthesis

System synthesis is a multi-criteria optimization problem. The starting point for

constructing our approach to the issues of hardware and software synthesis is the

deterministic theory of task scheduling (Błażewicz et al., 2007). The theory may serve as a

methodological basis for multiprocessor systems synthesis.

Accordingly, decomposition of the general task scheduling model is suggested, adequate to

the problems of computer system synthesis. From the control point of view such a model

should take into account the tasks, which may be either preemptable or nonpreemptable

Coffman, 1976). These characteristics are defined according to the scheduling theory. Tasks

are preemptable when each task can be interrupted and restarted later without incurring

additional costs. In such a case the schedules are called to be preemptive. Otherwise, tasks

are nonpreemptable and schedules nonpreemptive .

Preemptability of tasks in our approach cannot be a feature of the searched schedule – as in

the task scheduling model so far. The schedule contains all assigned tasks with individual

attributes: preemptive, nonpreemptive. From the point of view of the system synthesis, the

implementation of certain tasks from the given set must be nonpreemptible, for the other

may be preemptible (what, in turn, influences significantly selection of an appropriate

scheduling algorithm) (Węglarz, 1999). Moreover, we wish to specify the model of task

scheduling in a way suitable for finding optimum control methods (in terms of certain

criteria) as well as optimum assignment of tasks to universal and specialised hardware

components. Accordingly, we shall discuss the system of type the complex of resources and

operations (Błażewicz et al., 2000):

 ∑ = { R, T, C } (1)

Where:
R – is the set of resources (hardware and software),
T – is the set of the system’s tasks (operations),
C – is the set of optimization criteria for the system’s behaviour and structure.
Resources. We assume that processor set P = {P1, P2,…, Pm} consists of m elements and
additional resources A = { A1, A2,…, Ap} consist of p elements.
Tasks. We consider a set of n tasks to be processed with a set of resources. The set of tasks

consists of n elements T = {T1, T2,…, Tn}. A feasible schedule is optimal, if its length is

minimal and it is implemented using minimum resource cost.

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

182

Each task is defined by a set of parameters: resource requirements, execution time, ready
time and deadline, attribute - preemptable or nonpreemptable. The tasks set may contain
defined precedence constraints represented by a digraph with nodes representing tasks, and
directed edges representing precedence constraints. If there is at least one precedence
constraint in a task set, we shall refer it to as a set of dependent tasks; otherwise they are a
set of independent tasks.
Optimality criteria. As for the optimality criteria for the system being designed, we shall
assume its minimum cost, maximum operating speed and minimum power consumption.
The proposed model may be used for defining various synthesis problems for optimum
computer systems.
The model of a system in our approach, (Drabowski et al., 2002) typical for the theory of task
scheduling, consists of a set of requirements (operations, tasks) and existing relationships
between them (related to their order, required resources, time, readiness and completion
deadlines, preemptability/nonpreemptability, priority etc.). The synthesis procedure
contains the following phases: identification of hardware and software resources for task
implementation, defining the processing time, defining the conflict-free task schedule and
defining the level of resource co-sharing and the degree of concurrency in task performance
(Drabowski, 2008).
The synthesis has to perform the task partitioning into hardware and software resources.
After performing the partition, the system shall be implemented partially by specialized
hardware in the form of integrated circuits (readily available on the resources pools or
designed in accordance to the suggested characteristics) (Harel, 1987). Software modules of
the system are generated with the use of software engineering tools. Appropriate processors
shall be taken from the resource pool. Synthesis of a system may also provide a system
control, create an interface and provide synchronization and communication between the
tasks implemented by software and hardware.
The system synthesis, i.e. defining system functions, identifying resources, defining control
should be implemented in synergy and be subject to multi-criteria optimization and
verification during implementation.

2.3 The coherent process of system synthesis

Modeling the joint search for the optimum task schedule and resource partition of the
designed system into hardware and software parts is fully justified. Simultaneous
consideration of these problems may be useful in implementing optimum solutions, e.g. the
cheapest hardware structures. Synergic approach enables also performing of all assigned
tasks with the minimum schedule length. With such approach, the optimum task
distribution is possible on the universal and specialized hardware and defining resources
with maximum efficiency.
We propose the following schematic diagram of a coherent process of systems synthesis
(Drabowski & Czajkowski, 2005), (Fig. 2.2).
The suggested coherent synthesis consists of the following steps:
1. specification of requirements for the system to be designed and its interactions with the

environment,
2. specification of tasks, including evaluation of task executive parameters using available

resources (e.g. execution times),
3. assuming the initial values of resource set and task scheduling – initial resource set and

task schedule should be admissible, i.e. should satisfy all requirements in a non-
optimum way,

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

183

4. task scheduling and resource partitioning,
5. evaluating the operating speed and system cost, multi-criteria optimization,
6. the evaluation should be followed by a modification of the resource set, a new system

partitioning into hardware and software parts (step 4).
Iterative calculations are executed till satisfactory design results are obtained – i.e. optimal
(or sub-optimal) system structure and schedule. The designed system should be fast, cheap
and small of power consumption.

3. Ant Colony and Branch & Bound methods in coherent synthesis of
computer systems

The synthesis based on two algorithms behaving in totally different ways lets you not only
find the (sub-)optimal solution, but also verify this solution by algorithm searching through
all possible solutions.
Presented algorithms let us find the solution, but at the same time they let us evaluate the
algorithms themselves. This way we can tell which of the algorithms is faster in finding
better and better solutions, which algorithm is more tolerant to modifications of system
parameters, and also which of them enables fast adaptation to new parameters, while the
system changes dynamically.
If we assume that solution is changing dynamically, it would be a big obstacle for greedy
algorithms, because modification of single parameter (giving eventually better parameters)
forces another verification of the full set of solutions.
In our approach, the obtained solutions are considered allowing for the following
parameters:

• size and cost of operational memory,

• size and cost of mass storage,

• number of processors and the cost of computing power,

• the time needed for scheduling the tasks.
To evaluate obtained solution, we use the method of weighted average: evaluated are all
parameters considered during the analysis with appropriate weights; if the final grade of the
new solution is better than the grade of the previous one, the new solution is being saved.

3.1 Adaptation of ACO to solve the problems of synthesis

The Ant Colony Optimization (ACO) algorithm is a heuristics using the idea of agents (here:

ants) imitating their real behavior (Blum, 2005). Basing on specific information (distance,

amount of pheromone on the paths, etc.) ants evaluate the quality of paths and choose

between them with some random probability (the better path quality, the higher probability

it represents). Having walked the whole path from the source to destination, ants learn from

each other by leaving a layer of pheromone on the path. Its amount depends on the quality

of solution chosen by agent: the better solution, the bigger amount of pheromone is being

left. The pheromone is then “vapouring” to enable the change of path chosen by ants and let

them ignore the worse (more distant from targets) paths, which they were walking earlier

(Fig. 3.1).

The result of such algorithm functioning is not only finding the solution. Very often it is the
trace, which led us to this solution. It lets us analyze not only a single solution, but also
permutations generating different solutions, but for our problems basing on the same

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

184

environm ent

S p e c i f i c a t i o n

system

R e s o u r c e s

d a t a b a s e

S e t o f t a s k s

(r e q u i r e m e n t s a n d c o n s t r a in t s)

I n i t i a l s e t s r e s o u r c e s

estim ation

of param eters

S y s t e m o p e r a t i o n a n a l y s i s

tim e-optim al,

cost-optim al

R e s o u r c e s s e t

m o d i f i c a t i o n s

T a s k

s c h e d u l i n g

T a s k a n d r e s o u r c e a l l o c a t i o n

S y s t e m p e r f o r m a n c e a n a l y s is

R e s o u r c e

p a r t i t i o n

R e s u l t i n g s y s t e m

Fig. 2.2. The coherent process of computer system synthesis

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

185

Fig. 3.1. The idea of algorithm – overcoming the obstacle by ants

division (i.e. tasks are scheduled in different order, although they are still allocated to the
same processors). This kind of approach is used for solving the problems of synthesis, where
not only the division of tasks is important, but also their sequence (Montgomery et al., 2006).
To adapt the ACO algorithm to synthesis problems, the following parameters have been
defined:

• Number of agents (ants) in the colony,

• Vapouring factor of pheromone (from the range (0; 1)).
The process of choosing these parameters is important and should consider that:

• For too big number of agents, the individual cycle of algorithm can last quite long, and
the values saved in the table (“levels of pheromone”) as a result of addition will
determine relatively weak solutions.

• On the other hand, when the number of agents is too small, most of paths will not be
covered and as a result, the best solution can long be uncovered.

The situation is similar for the vapouring factor:

• Too small value will cause that ants will quickly “forget” good solutions and as a result
it can quickly come to so called stagnation (the algorithm will stop at one solution,
which doesn’t have to be the best one).

• Too big value of this factor will make ants don’t stop analyze “weak” solutions;
furthermore, the new solutions may not be pushed, if time, which has passed since the
last solution found will be long enough (it is the values of pheromone saved in the table
will be too big).

The ACO algorithm defines two more parameters, which let you balance between:

• ǂ – the amount of pheromone on the path, and

• ǃ - “quality” of the next step.
These parameters are chosen for specific task. This way, for parameters:

• ǂ > ǃ there is bigger influence on the choice of path, which is more often exploited,

• ǂ < ǃ there is bigger influence on the choice of path, which offers better solution,

• ǂ = ǃ there is balanced dependency between quality of the path and degree of its
exploitation,

• ǂ = 0 there is a heuristics based only on the quality of passage between consecutive
points (ignorance of the level of pheromone on the path),

• ǃ = 0 there is a heuristics based only on the amount of pheromone (it is the factor of
path attendance),

• ǂ = ǃ = 0 we’ll get the algorithm making division evenly and independently of the
amount of pheromone or the quality of solution.

Having given the set of neighborhood N of the given point i, amount of pheromone on the
path τ and the quality of passage from point i to point j as an element of the table η you can
present the probability of passage from point i to j as:

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

186

[] []
when

[] []

0 else

ij ij

ij ij

k
l

k
i

k
ij

l N

j N

p
∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑
α β

α β
τ η
τ η (3.1)

Formula 3.1. Evaluation of the quality of the next step in the ACO algorithm

In the approach presented here, the ACO algorithm uses agents to find three pieces of

information:

• the best / the most beneficial division of tasks between processors,

• the best sequence of tasks,

• searching for the best possible solution for the given distribution.

Agents (ants) are searching for the solutions which are the collection resulting from the first

two targets (they give the unique solution as a result). After scheduling, agents fill in two

tables:

• two-dimensional table representing allocation of task to the given processor,

• one-dimensional table representing the sequence of running the tasks.

The job of agent involves (Fig. 3.2):

• collecting information (from the tables of allocation) concerning allocation of tasks to

resources and running the tasks

• drawing the next available task with the probability specified in the table of task

running sequence

• drawing resources (processor) with the probability specified in the table of allocation

the tasks to resources

• is it the last task?

To evaluate the quality of allocation the task to processor, the following method is being

used (Fig. 3.3):

• evaluation of current (incomplete) scheduling

• allocation of task to the next of available resources

• evaluation of the sequence obtained

• release the task

• was it the last of available resources?

The calculative complexity of single agent is polynomial and depends on the number of

tasks, resources and times of tasks beginning.

After initiating the tables (of allocation and sequence) for each agent, the algorithm starts the

above cycle, after which the evaluation of solutions takes place. Having completed the

particular number of cycles, the parameters are being updated and algorithm continues

working (Fig. 3.4):

• initiation of tables of tasks running sequence and allocation of tasks to resources

• completing the cycle of analysis for each agent

• evaluation of the best solution found in current cycle

• for each agent – basing on the best solution – updating the tables of tasks running

sequence and allocation of tasks to resources

• is it the last cycle?

• Optimization/customization of system parameters.

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

187

3.2 Customization of B&B to synthesis problems solving

Branch & Bound (B & B) algorithm is a greedy algorithm browsing the set of solutions and
“pruning” these branches, which give worse solutions than the best solution already found
(Mitten, 1970). This kind of approach often significantly reduces the number of solutions,
which must be considered. However in the worst case scenario, “pruning” the branches is
impossible and as a result, the B & B algorithm analyzes the complete search-tree.
Both forms (DFS and BFS) of B & B algorithm were used for synthesis. It let us comprehend
the problem of analysis of three different kinds of optimization (cost, power, time) without
discrediting any of the problems.
B&B algorithm investigates the problem by:

• choice of the task,

• definition of initial time to which you can schedule the task,

• choice of processor on which the task will be allocated.
Because allocating the chosen task in the first available time unit or on the first available
processor is not always the best idea, all available time units and processors are being
considered. As a result, calculative complexity of algorithm changes exponentially when
new tasks are added or polynomial after addition of new processors. Although B&B
algorithm operation process is relatively simple, the number of solutions, which must be
examined, is huge.

Example

In scheduling of ten independent tasks on 4 different processors and on 2 additional

resources is the full tree which included more than 1018 potential solutions!

3.3 Calculative experiments

Because one algorithm creates unlimited cycle and the other one takes a very long time to
finish in many cases, the results given in the tables’ present state of the system after not
more than given time limit of analysis (Drabowski, 2007). Depending on the solution
criterion, there were used both forms of B&B – DFS and BFS – for the algorithm to be able to
find a good solution in time. Each solution given by Ant Colony algorithm will be graded on
the basis of solutions found by Branch & Bound algorithm.
Formula for the assessment of obtained solution is following:

 &

1

1
100%

criterions
B B

ACOcriterion=

result
assessment ASS =

criterions result
= ⋅ ⋅ ∑ (3.2)

Formula 3.2. Assessment of solutions

The final grade is influenced only by these parameters, which were being optimized by

algorithms: cost, power and time of scheduling (Drabowski, 2009).

The assessment of proposed system includes all three parameters (scheduling time, cost and

power consumed by the system):

• the assessment higher than 100% means that ACO algorithm has found better solution
than B&B,

• the assessment equal 100% means that both algorithms have found equally good
solutions,

• the assessment less than 100% means that B&B algorithm has found better solution.

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

188

Fig. 3.2. Agent operation scheme

Drawing the next available task with the
probability specified in the table of task

running sequence

Drawing resources with the probability
specified in the table of allocation the tasks

to resources

Task scheduling

Is it the last task?

End

N

T

Collecting information:
allocation of tasks to resources and running

the tasks

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

189

Fig. 3.3. The principle of path evaluation

3.3.1 Verification of tasks schedule

Task schedule proposed by ACO and B&B algorithms was verified on the basis of the

following examples.

For the simplicity of tasks descriptions, the (n: i, j) scheme was adopted, where n – name of

the task, i – constant time (independent of the speed of processor), j – time dependent on

the speed of processor.

Evaluation of the sequence obtained

Release the task

Was it the last of available
resources?

End

N

T

Evaluation of current (incomplete)
scheduling

Allocation of task to the next of available
resources

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

190

Fig. 3.4. The principle of ACO algorithm operation

Example 1

Parameters of the problem:

• 5 tasks.

• 2 identical, universal processors.

• Additional resources (memory, storage): without of constraints.

• Parameters of tasks:

Evaluation of the best solution found in
current cycle

For each agent – basing on the best solution –
updating the tables of tasks running sequence and

allocation of tasks to resources

Is it the last cycle?

Optimization./customiza
tion of system
parameters.

N

T

Initiation of tables of tasks running sequence
and allocation of tasks to resources

Completing the cycle of analysis for each
agent

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

191

Tasks Time memory storage

Task1 1 2 1

Task2 1 2 1

Task3 2 1 1

Task4 1 1 1

Task5 1 2 1

• Relations between tasks are shown on the figure:

Scheduling obtained by both algorithms is identical.

• Total time of scheduling: 3 units,

• Use of resources: 2 units.
The algorithms have found solutions immediately after their activation. Obtained
scheduling is presented on the figure (Fig. 3.5):

Fig. 3.5. Schedules - results of operations of algorithms

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

192

Example 2

Parameters of the problem:

• 12 identical tasks UET (time equal 1); Unit Execution Tasks.

• 2 identical, universal processors.

• Relations between tasks are shown on the figure:

Scheduling obtained by both algorithms is identical: 6 total time of scheduling.
The algorithms have found solutions immediately after their activation. Obtained
scheduling is presented on the figure (Fig. 3.6):

Fig. 3.6. Schedules - results of operations of algorithms

Example 3

Example from link STG (Standard Graph Set: task 000 with packet RNC50),
[<http://www.kasahara.elec.waseda.ac.jp/schedule/index.html>].
Parameters of the problem:

• 50 dependent tasks about difference parameters.

• 2 identical, universal processors.

• Additional resources (memory, storage): without of constraints.

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

193

The algorithms have found solutions 15 minutes after their activation. Scheduling obtained

by both algorithms is identical: schedule length: 131 units (optimum by STG, too).

Scheduling obtained by both algorithms is identical: 131 total time of scheduling, are

presented on the figure (Fig. 3.7):

Fig. 3.7. Schedules - results of operations of algorithms

3.3.2 Verification of resources partition

Resources partition proposed by ACO and B & B algorithms were verified on the basis of
the following examples.

Example 1

Parameters of the problem:

• 5 tasks.

• 2 identical, universal processors.

• Additional resources: 3 units of memory, 3 units’ storage.

• Parameters of tasks:

Tasks Time Memory Storage

Task1 1 2 1

Task2 3 2 1

Task3 2 1 1

Task4 1 1 1

Task5 1 2 1

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

194

• Relations between tasks are shown on the figure:

The algorithms have found solutions immediately after their activation.
Scheduling obtained by both algorithms is identical: 5 total time of scheduling.
Obtained scheduling is presented on the figure (Fig. 3.8):

Fig. 3.8. Schedules - results of operations of algorithms

Example 2

Parameters of the problem:

• 10 tasks.

• 2 identical, universal processors.

• Additional resources: 3 units of memory, 3 units of storage.

• Parameters of tasks:

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

195

Tasks Time constants Memory Storage

Task1 1 2 1

Task2 3 2 1

Task3 2 1 1

Task4 1 1 1

Task5 1 2 1

Task6 1 2 3

Task7 3 2 2

Task8 2 1 1

Task9 1 3 1

Task10 1 1 1

• Relations between tasks are shown on the figure:

The algorithms have found solutions immediately after their activation.
Scheduling obtained by both algorithms is identical: 10 total time of scheduling.
Obtained scheduling is presented on the figure (Fig 3.9):

Fig. 3.9. Schedules - results of operations of algorithms

Example 3

Parameters of the problem:

• 10 tasks.

• 2 identical, universal processors.

• Additional resources: 3 units memory, 3 units storage.

• Parameters of tasks:

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

196

Tasks Time constants Memory Storage

Task1 1 2 1

Task2 3 2 1

Task3 2 1 1

Task4 1 1 1

Task5 1 2 1

Task6 1 2 3

Task7 3 2 2

Task8 2 1 1

Task9 1 3 1

Task10 1 1 1

• Relations between tasks are shown on the figure:

The algorithms have found solutions immediately after their activation.
Scheduling obtained by both algorithms is identical: 10 total time of scheduling
Obtained scheduling is presented on the figure (Fig. 3.10):

Fig. 3.10. Schedules - results of operations of algorithms

3.3.3 Comparison of coherent and non-coherent synthesis

Coherent synthesis is based on recurring division and scheduling tasks, in order to define
the best set of hardware and scheduling for the system. As a result, the systems proposed by
coherent synthesis may be better than the ones obtained as a result of incoherent synthesis
(which makes division at the beginning of synthesis process) not only in relation to

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

197

optimized parameters, but also in general (eventually, the system can enable much faster
tasks completion at the same or even lower energy consumption, etc.). The results obtained
by coherent and incoherent synthesis will be presented on the basis of the following
examples.

Example 1

• 25 independent tasks with different completion times.

• 3 identical processors.

• Criterion of optimization: power.
The time of algorithm operation until finding the solution, length of scheduling, cost and

power consumption of the system as well as the quality of solution obtained as a result of

coherent synthesis are presented in the table (Tab. 3.1).

Coherent Non-coherent
Algorithm

Time Length Cost Power Time Length Cost Power

ASS
(%)

ACO 45.0 42.0 7.00 691.5 12.0 32.0 8.00 692.7 100.2

B&B 45.0 69.0 6.00 690.0 12.0 63.0 8.00 702.0 101.7

Table 3.1. Results of coherent and non-coherent synthesis – Example 1

Systems obtained as a result of coherent synthesis consume less energy and are cheaper. In

the case of B&B algorithm, system obtained as a result of coherent synthesis is generally

better than the one obtained by incoherent synthesis (assessment = 108.8%).

Example 2

• 25 independent tasks with different completion times.

• 3 identical processors.

• Criterion of optimization: cost.
The time of algorithm operation until finding the solution, length of scheduling, cost and

power consumption of the system as well as the quality of solution obtained as a result of

coherent synthesis are presented in the table (Tab. 3.2).

Coherent Non-coherent
Algorithm

Time Length Cost Power Time Length Cost Power

ASS
(%)

ACO 2.0 45.0 7.00 692.1 3.0 38.0 8.00 694.5 114.3

B&B 2.0 69 6.00 690.0 3.0 65 8.00 702.6 133.3

Table 3.2. Results of coherent and non-coherent synthesis – Example 2

Similarly how in previous case, systems for coherent synthesis are clearly cheaper and

quicker.

Example 3

• 25 identical, independent tasks.

• 5 identical processors.

• Criterion of optimization: cost.

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

198

The time of algorithm operation until finding the solution, length of scheduling, cost and

power consumption of the system as well as the quality of solution obtained as a result of

coherent synthesis are presented in the table (Tab. 3.3).

Coherent Non-coherent
Algorithm

Time Length Cost Power Time Length Cost Power
ASS (%)

ACO 12.5 28.0 4.00 500.6 4.5 20.0 8.00 505.0 200.0

B&B 12.5 50.0 2.00 500.0 4.5 50.0 6.00 520.0 300.0

Table 3.3. Results of coherent and non-coherent synthesis – Example 3

In presented examples is visible the considerable superiority of coherent synthesis with non-

coherent. Except improvement of the costs, the power consumption improved also. The

larger number of processors was eliminated as well as the demand lowered of memory and

storage too. In result of the assessment of system for algorithm the ACO is equal 124.1 %

and for algorithm B & B is equal 168.0 %.

Example 4

• 25 identical, independent tasks.

• 5 identical processors.

• Criterion of optimization: power consumption.
The time of algorithm operation until finding the solution, length of scheduling, cost and

power consumption of the system as well as the quality of solution obtained as a result of

coherent synthesis are presented in the table (Tab. 3.4).

Coherent Non-coherent
Algorithm

Time Length Cost Power Time Length Cost Power

ASS
(%)

ACO 8.5 10.0 10.00 500.0 29.5 10.0 10.00 500.0 100.0

B&B 8.5 50.0 2.00 500.0 29.5 44.0 7.00 517.0 103.4

Table 3.4. Results of coherent and non-coherent synthesis – Example 4

Systems for coherent synthesis are clearly cheaper and quicker. The difference is visible in

case of algorithm B&B: the assessment of solution for coherent synthesis is higher though

the assessment of proposed solutions in both cases is considerably worse than in case of

solutions proposed by algorithm the ACO (206.7 %).

Example 5

• 25 identical, independent tasks.

• 5 unrelated processors.

• Criterion of optimization: power consumption.
The time of algorithm operation until finding the solution, length of scheduling, cost and

power consumption of the system as well as the quality of solution obtained as a result of

coherent synthesis are presented in the table (Tab. 3.5).

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

199

Coherent Non-coherent
Algorithm

Time Length Cost Power Time Length Cost Power

ASS
(%)

ACO 87.5 50.0 2.00 500.0 14.0 48.0 7.00 539.0 107.8

B&B 87.5 50.0 2.00 500.0 14.0 50.0 6.00 520.0 104.0

Table 3.5. Results of coherent and non-coherent synthesis – Example 5

Algorithm ACO for coherent synthesis finds good solution, better than solution for non-
coherent. We have again the superiority of coherent synthesis. Solutions for non - coherent
synthesis are weak, assessment 75% for ACO as well as 76% for B & B.

3.3.4 Optimization of scheduling length and cost

Optimizing two aspects of system is much more difficult for the algorithms than minimizing a
single parameter. As a condition of the choice we can take the assessment of obtained solution.
The set of resources used for the optimization of the time and cost of system

• Memory (max. 100, cost 1mpower/unit).

• Storage (max. 100, cost 1spower[/unit).

• Processors, cost 1ppower/unit.

Type Speed
Power consumption

(action)
Power consumption

(idle)

Processor 1 1 100 10

Processor 2 2 120 12

Processor 3 4 150 15

Processor 4 8 200 20

ASIC 1 1 80 8

ASIC 2 2 110 11

ASIC 3 4 150 15

ASIC 4 8 180 18

Time, which has passed until solution was found and the parameters of the target system
are presented in the table (Tab. 3.6).

Ant Colony Branch & Bound Number
of tasks Time Length Cost Power Time Length Cost Power

ASS (%)

20 59.0 10.0 15.00 4007 ≥ 59.0 6.0 30.50 4173 131.7

25 60.0 9.0 20.50 5054 ≥ 60.0 7.9 30.51 5281 118.3

30 12.5 11.3 19.00 6057 ≥ 12.5 10 30.51 6394 124.5

35 16.0 12.5 19.00 7004 ≥ 16.0 11.3 30.51 7448 125.4

40 15.5 15.0 19.00 8010 ≥ 15.5 13.5 30.51 8568 125.3

45 42.5 16.5 19.00 9011 ≥ 42.5 15 30.51 9654 125.7

50 26.5 18.0 19.00 10024 ≥ 26.5 16.5 30.51 10693 126.1

55 34.5 20.0 19.00 11009 ≥ 34.5 18 30.51 11772 125.3

60 44.0 21.4 19.00 12003 ≥ 44.0 20 30.51 12872 127.0

Table 3.6. The results of schedule length of tasks and cost optimization

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

200

In the multi-objective optimization it is clear that ACO algorithm exceeds the greedy
algorithm B & B in relation to the quality of solutions: solutions proposed by ACO algorithm
are better than the ones proposed by B & B algorithm even by 31.7%. Interesting are the
graphs presenting solutions, which were found by ACO algorithm before the final result
was obtained (Chart 3.1). As a result of such operation of algorithm, the quality (comparing
to the first solution found) was changing as follows (Chart 3.2).
Apart from better quality of the solution it proposed by ACO algorithm, we should notice
that the total quality of the system is also very high (Chart 3.3).

Chart 3.1. The change of cost and scheduling length in time

3.3.5 Optimization of power consumption and cost

The set of resources used for the optimization of the time and cost of system

• Memory (max. 100, cost 1 mpower/unit).

• Storage (max. 100, cost 1 spower/unit).

Chart 3.2. Improvement of the assessment of consecutive solutions in time function

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

201

Chart 3.3. The assessment of proposed solutions and systems in relation to the number of
tasks

• Processors, cost 1 ppower/unit.

Type Speed Power consumption (action) Power consumption (idle)

Processor 1 1 100 10

Processor 2 2 120 12

Processor 3 4 150 15

Processor 4 8 200 20

ASIC 1 1 80 8

ASIC 2 2 110 11

ASIC 3 4 150 15

ASIC 4 8 180 18

Time, which has passed until solution was found and the parameters of the target system
are presented in the table (Tab. 3.7).

Ant Colony Branch & Bound Number
of tasks Time Length Cost Power Time Length Cost Power

ASS (%)

10 0.5 20.0 2.00 2000 ≥ 0.5 20.0 2.00 2000 100.0

15 3.5 30.0 2.00 3000 ≥ 3.5 30.0 2.00 3000 100.0

20 4.5 18.0 5.00 3780 ≥ 4.5 40.0 2.00 4000 72.9

25 10.0 22.0 5.00 4732 ≥ 10.0 50.0 2.00 5000 72.8

30 12.5 27.0 5.00 5670 ≥ 12.5 60.0 2.00 6000 72.9

35 12.0 20.0 10.00 6677 ≥ 12.0 70.0 2.00 7000 62.4

40 27.0 28.0 10.00 7869 ≥ 27.0 80.0 2.00 8000 60.8

45 16.5 33.0 10.00 8835 ≥ 16.5 90.0 2.00 9000 60.9

50 57.5 32.0 10.00 9673 ≥ 57.5 100.0 2.00 10000 61.7

55 43.5 38.0 10.00 10766 ≥ 43.5 110.0 2.00 11000 61.1

60 55.5 37.5 11.50 11822 ≥ 55.5 120.0 2.00 12000 59.4

Table 3.7. The results of power consumption and system cost optimization

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

202

This example illustrates that ACO algorithm isn’t better than greedy algorithms for all kinds
of problems. The reason of such weak results is a very difficult choice for the algorithm
between power and cost. To illustrate the problem we will try to analyze the scheduling of
three first tasks (Drabowski, 2007). Even scheduling the first task causes some kind of
dilemma: you can do this cheaper, but the scheduling will be longer and at the same time
more power consuming, or you can do this at the higher cost, but with less power
consumption (on the faster processor, the task will be completed sooner). If the algorithm
chooses the second processor – the choice of slower processor in the next step will turn out
more expensive as well as more demanding, while staying with the faster one will let us
keep the same cost and limit the power (comparing to the slower processor). Also
scheduling time will reduce significantly (what was presented in the table above)
(Drabowski & Wantuch, 2006). The final quality of the system is then difficult to determine
during the whole cycle – it is possible to determine only when you know the total
scheduling length (and thus the power consumed by system, in other words – after the end
of the whole cycle).

Chart 3.4.The assessment of solution and the systems proposed in relation to the number of
tasks

When the number of tasks grows, the quality of solution decreases more and more, but you
cannot say the same about the quality of system; the ACO algorithm shows, that at the
higher expenditure you can obtain solution which is economical and fast at the same time
(Drabowski, 2009). The graphs illustrating the quality of solution and system are presented
on the chart (Chart 3.4).

4. Conclusions

We may say, basing on the above research, that the ACO algorithm is better suitable for both
one- and multi-objective analyses of optimization of computer systems. Furthermore, the
use of coherent analysis significantly improved the quality of obtained solutions. In the case
of multi-objective synthesis, heuristic algorithm gave comparable results for optimized
parameters and at the same time, the final grade of the systems it proposed was much
better. The computational experiments prove the superiority of coherent synthesis over the
incoherent synthesis and heuristic algorithms over the greedy ones.

www.intechopen.com

Ant Colony Optimization for Coherent Synthesis of Computer System

203

Solutions of this method are better both, for their cost, as and of time of executing the tasks
and of optimization of multi-criterions.

5. References

D’Ambrioso J., Hu X., (1994), Configuration Level Hardware/Software Partitioning for Real-Time
Systems, Proc. of the Int. Workshop on Hardware/Software Codesign, Vol. 14, 34-
41.

Gajski D., (1997), Principles of Digital Design, Prentice Hall, Upper Saddle River, NJ.
Sgroi M., Lavagno L., Sangiovanni-Vincentelli A., (2000), Formal Models for Embedded System

Design, IEEE Design&Test of Computers, Vol. 17, No. 2, 14-27.
Gupta R.K., De Micheli G., (1993), Hardware-Software Co-synthesis for Digital Systems, IEEE

Design&Test of Computers, Vol. 10, No. 3, 29-41.
De Micheli G., (1994), Computer-Aided hardware-Software Codesign, IEEE Micro, Vol. 14, No. 4,

pp. 10-24.
Axelson J., (1997), Architecture Synthesis and Partitioning of Real-Time Systems: A Comparison of

Three Heuristic Search Strategies, Proc. of the Int. Workshop on Hardware/Software
Codesign, 161-165.

Schulz S., Rozenbilt J.W., Mrva M., Buchenrieder K., (1998), Model-Based Codesign, IEEE
Computer, Vol. 31, No. 8, 60-67.

Steinhausen U., (1993), System Synthesis Using Hardware/Software Codesign, Proc. of the Int.
Workshop on Hardware-Software Co-Design.

Błażewicz J., Ecker K., Pesch E., Schmidt G., Węglarz J., (2007), Handbook on Scheduling, From
Theory to Applications, Springer-Verlag Berlin Heidelberg.

Coffman E. G., Jr., (1976), Computer and Job-shop scheduling theory, John Wiley&Sons, Inc.
New York.

Węglarz J., (1999), Project Scheduling – Recent Models, Algorithms and Applications, Kluwer
Academic Publ.

Błażewicz J., Ecker K., Plateau B., Trystram D., (2000), Handbook on Parallel and Distributed
Processing, Spinger-Verlag, Berlin – Heidelberg.

Drabowski M., M., Rola M, Roślicki A., (2002), Algorithm in control of allocation tasks and
resources in frameworks, 2rd International Congress of Intelligent Building
Systems, INBus2002, Kraków, 45-52.

Drabowski M., (2008), Par-synthesis of multiprocessors parallel systems, International Journal of
Computer Science and Network Security, Vol. 8, No. 10, 90-96.

Harel D., (1987), Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, Vol. 8, No. 3, 231-274.

Drabowski M., Czajkowski K., (2005), Task scheduling in coherent, co-synthesis of computer
system, Advanced Computer Systems – Computer Information Systems and
Industrial Management Application (ACS-CISIM 2005), in. Image Analysis,
Computer Graphics, Security Systems and Artificial Intelligence Applications, vol.
1, 53-60.

Blum C., (2005), Beam-ACO – Hybridizing ant colony optimization with bean search: An
application to open shop schedling, Comput. Oper. Res. 32, 1565-1591.

Montgomery J., Fayad C., Petrovic S., (2006), Solution representation for job shop scheduling
problems in ant colony optimization, LNCS 4150, 484-491.

www.intechopen.com

 Ant Colony Optimization - Methods and Applications

204

Mitten L.G., (1970), Branch-and-bound methods: general formulation and properties, Oper.
Res. 18, 24-34.

Drabowski M., (2007), Coherent synthesis of heterogeneous system – an ant colony optimization
approach, Studia Informatica, vol. 2/9, 9-18.

Drabowski M., (2009), Ant Colony and Neural method for scheduling of complex of operations and
resources frameworks – comparative remarks, in: Proceedings of the IASTED
International Conference on Computational Intelligence, Honolulu, USA, ACTA
Press, Anaheim, USA, 91-97.

Drabowski M., (2007), An Ant Colony Optimization to scheduling tasks on a grid, Polish Journal
of Environmental Studies, vol. 16, No. 5B, 16-21.

Drabowski M., Wantuch E., (2006), Coherent Concurrent Task Scheduling and Resource
Assignment in Dependable Computer Systems Design, International Journal of
Reliability, Quality and Safety Engineering, vol. 13, no. 1. World Scientific
Publishing, 15-24.

Drabowski M., (2009), High-level synthesis of self-testing parallel multiprocessors computer
systems, in: Proceedings of the IASTED International Conference on Computational
Intelligence, Honolulu, USA, ACTA Press, Anaheim, USA, 127-133.

www.intechopen.com

Ant Colony Optimization - Methods and Applications

Edited by Avi Ostfeld

ISBN 978-953-307-157-2

Hard cover, 342 pages

Publisher InTech

Published online 04, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Ants communicate information by leaving pheromone tracks. A moving ant leaves, in varying quantities, some

pheromone on the ground to mark its way. While an isolated ant moves essentially at random, an ant

encountering a previously laid trail is able to detect it and decide with high probability to follow it, thus

reinforcing the track with its own pheromone. The collective behavior that emerges is thus a positive feedback:

where the more the ants following a track, the more attractive that track becomes for being followed; thus the

probability with which an ant chooses a path increases with the number of ants that previously chose the same

path. This elementary ant's behavior inspired the development of ant colony optimization by Marco Dorigo in

1992, constructing a meta-heuristic stochastic combinatorial computational methodology belonging to a family

of related meta-heuristic methods such as simulated annealing, Tabu search and genetic algorithms. This

book covers in twenty chapters state of the art methods and applications of utilizing ant colony optimization

algorithms. New methods and theory such as multi colony ant algorithm based upon a new pheromone

arithmetic crossover and a repulsive operator, new findings on ant colony convergence, and a diversity of

engineering and science applications from transportation, water resources, electrical and computer science

disciplines are presented.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mieczyslaw Drabowski (2011). Ant Colony Optimization for Coherent Synthesis of Computer System, Ant

Colony Optimization - Methods and Applications, Avi Ostfeld (Ed.), ISBN: 978-953-307-157-2, InTech,

Available from: http://www.intechopen.com/books/ant-colony-optimization-methods-and-applications/ant-

colony-optimization-for-coherent-synthesis-of-computer-system

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

