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1. Introduction    

In this chapter, a hybrid ACOR-based artificial neural network is investigated and applied to 
solve a Direction of Arrival (DoA) estimation problem. This approach is compared with 
Radial Basis Function Neural Network (RBFNN) that has been used broadly in the literature 
for DoA estimation.  
The Ant Colony Optimization is a stochastic optimization technique that has attracted much 
attention towards numerous optimization problems during the past decade. ACO is a subset 
of swarm intelligence methods in which the collective intelligence emerges in decentralized 
and self-organized systems with simple individuals.  
Social insects are distributed systems that carry out complex tasks, having individuals with 
very simple and rudimentary cognitive abilities. In many cases, these tasks exceed the 
capabilities of a single individual. In fact, social insects are self-organized systems and some 
simple principles and processes such as stigmergy can explain their social behaviour.  
Stigmergy is an indirect communication among individuals, in which different entities 
communicate by modifying the environment.  
Ants possess very limited visual and vocal perceptive abilities and some types are totally 
blind. Hence, the only efficient communication channel in these species is various types of 
chemicals, which are called pheromones. One specific type of pheromone is the trail 
pheromone that is deposited for instance while searching for food and the other ants smell 
the pheromone and tend to follow the paths with high pheromone concentration. Therefore, 
by indirect communication via pheromone and the simple rule of following the higher 
density of pheromone, one complex colony-level behaviour is emerged which is finding the 
short paths to the food. This behaviour is quite above the capabilities of each ant. In fact this 
collective capability emerges out of microscopic simple processes of pheromone laying and 
pheromone following. 
Ant colony optimization is an algorithm, which models foraging behaviour of ants to solve 
optimization problems and it has inspired many researchers to provide solutions to various 
combinatorial optimization problems such as travelling salesman problem (Dorigo et al., 
1996), routing problem (Schoonderwoerd et al., 1997) and many other NP-hard problems in 
which the values for discrete variables are found to optimize an objective function. In fact 
ACO, models ant agents walking on a graph that implies typical discrete problems or 
structures. Since ACO was originally proposed for discrete optimization problems, its 
application to continuous domain was not straightforward. Among various adaptations of 
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ACO algorithm for continuous optimization problems, the approach of Socha tries to avoid 
conceptual changes to principles of ACO by introducing ACOR algorithm (Socha, 2004; 
Socha & Blum, 2007; Socha & Dorigo, 2008). Socha’s approach to adapt ACO to continuous 
domain is utilized in this work to optimize the numerical weights of a Multi-Layer 
Perceptron (MLP) network for interpolation of the nonlinear relation of antenna array 
outputs and Angle of Arrival (AoA). In other words, ACOR is used to minimize Mean 
Square Error (MSE) of the output layer of the neural network by adjusting continuous 
variables of weights during training phase.  
Direction of arrival estimation has turned out to be a substantial part of many applications 
like channel characterization, car tracking (Danneville et al., 2005), source localization in 
radar and sonar (Godara, 2002), receiver algorithm design and co-channel interference 
reduction (Christodoulou, 2001). Spectral-based algorithmic solutions like Multiple Signal 
Classification (MUSIC) and parametric methods such as Maximum Likelihood (ML) have 
been the major methods to tackle DoA problem for a long period. The foremost drawback of 
these techniques is that they are computationally expensive and do not perform quite 
efficiently in real time operation. Artificial neural networks have been also utilized to 
estimate DoA, often using RBF networks due to its acceptable estimation error, capability of 
inexpensive implementation and fast performance (Zooghby et al., 2000; Titus et al., 1994). 
In this chapter, after a general introduction to ant colony optimization, ACOR adaptation to 
continuous domain is explained. ACOR has been applied to train a classifier neural network 
(Socha & Blum, 2007) and in this work, its application to an interpolator neural network is 
investigated. The possibilities to enhance the performance of ACOR are studied as well.  

2. Ant Colony Optimization 

2.1 Combinatorial Optimization 
Combinatorial optimization (CO) problem P = (S,f ) is an optimization problem in which 
f:S→R+ is an objective function that assigns a positive value, called cost to each solution s 
∈ S in the finite search space S which encompasses feasible solutions. The goal of this kind 
of problem is to find a solution in the search space with the lowest cost (Papadimitriou & 
Steiglitz, 1982). The search space in combinatorial problems includes variables Xi, i=1, …, n 
in discrete domains, therefore combinatorial problems are in fact discrete optimization 
problems. CO problems are arisen in industry and in applied sciences such as statistics, 
physics and chemistry. Some instances in industry are manufacturing and distribution, 
telecommunication network design and routing, airline crew scheduling, etc. Meanwhile 
this field is connected to various areas of mathematics such as algebra, analysis and 
continuous optimization, geometry, numerical analysis, topology, graph theory and 
enumerative combinations (Lee, 2004). Therefore, due to the wide range of important 
applications of CO problems, various algorithms and methods have been developed to 
attack them.  

2.1 ACO algorithm 

ACO is an algorithm which finds an approximate optimal solution in a reduced amount of 
time for NP-hard problems and it was introduced by Dorigo and colleagues (Dorrigo et al., 
1991 and 1996) in the early 1990’s. ACO simulates the foraging behavior of ants, which 
communicate using pheromone trails and manage to find the shortest path from their nest to 
feeding source. The significant features of this model are positive feedback, distributed 
computation and incremental construction of solutions. 
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Double bridge experiment was a practice designed by Deneubourg and colleagues 
(Deneubourg et al., 1990) in which the ability of real ant colonies in finding shorter paths to 
food was investigated. In this experiment a bridge with two branches li (i=1, 2) was used to 
connect a nest of real ants to a food source. In the first phase of the experiment equal 
branches were used and the behavior of ants regarding choosing branches was studied. The 
observations showed that at the beginning, ants had random choices but after a while they 
were converged to one of the branches. In fact at the start of the experiment, there was no 
pheromone on the bridge so the ants chose different branches randomly, but after awhile 
due to random fluctuations more pheromone was accumulated in one of the branches and 
after a short time all other ants converged to that branch. This positive feedback process is 
one of the main characteristics of the foraging ant behavior and consequently ACO 
algorithm. In the second phase of the experiment, branches with different lengths were used 
and it was observed that in most of the trials ants were converged to the shorter branch. In 
fact again at the start, ants chose branches randomly but the ants that opted the short branch 
reached the food sooner and also started their return to the nest sooner than the ants which 
selected the long branch. In this way, more pheromone was accumulated in the shorter path 
and consequently biased decision of the other ants in its favor. It is noteworthy that in the 
second phase of the experiment, the effect of the random fluctuations was overcame by the 
difference in the path length and the ants converged to the shorter path.  
This experiment showed optimization capability of ant colonies and inspired researchers to 

design artificial ants and exploit the same principles utilized by ants to solve combinatorial 

optimization problems. Double bridge is modeled by a graph, passing the nodes constructs 

the solution and finally the length of the chosen path can be considered as the cost. By 

considering a static, connected graph and the described mechanism to solve a combinatorial 

optimization problem, the ants may generate loops while solution construction and this will 

prevent them from finding the short paths between source and destination. By extending the 

capabilities of artificial ants like a limited form of memory, getting trapped in the loops can 

be avoided. Besides if each arc in the graph has a cost, artificial ants can not deposit 

pheromone before reaching to the destination because first they need to construct the 

solution and then evaluate the solution according to the objective function.  

In one of the double bridge experiments, ants were faced with one long branch for 30 

minutes and then one short bridge was added. In this experiment ants were trapped in the 

suboptimal path, because once they were converged to the long branch and it was difficult 

for them to reinforce the pheromone concentration in the shorter path. In fact the 

evaporation rate of pheromone was too slow and ants couldn’t forget the converged 

solution, or in other words the lifetime of pheromone was comparable to the duration of 

trial. Therefore enhanced evaporation mechanism is utilized in artificial ants to avoid being 

trapped in suboptimal solutions. In fact evaporation can favor exploration of more possible 

solutions and paths. Therefore to tackle the inefficiencies of real ant colonies, the capabilities 

of artificial ants are extended in a way that the main principles of real ants are not violated. 

The major differences of real ants and the algorithm of ACO are as follows: 

• Ants deposit pheromone while they move but artificial ants just leave pheromone on 
their path back to the nest which is called backward path pheromone update. 

• Real ants do not evaluate the quality of their solution explicitly. It means naturally 
shorter paths are traversed earlier and consequently pheromone is accumulated more 
quickly in the shorter paths. In this way without any need of explicit calculation, the 
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quality of solution is evaluated. In contrast, the artificial ants calculate the objective 
function and perform pheromone update with respect to the quality of constructed 
solution. 

• Artificial ants hold a memory and store the partial paths they have traversed as well as 
the costs of the paths. Therefore they can avoid loops and also evaluate the solution 
according to the objective function. 

• After pheromone update, a portion of the accumulated pheromone is evaporated to 
enhance exploration. 

Considering above extensions, ant colony optimization algorithms encompasses following 
basic steps: 

• Probabilistic solution construction in forward mode is biased by pheromone 
concentration, without pheromone updating. 

• Deterministic backward path pheromone update is done with loop elimination. 

• Evaluation of the constructed solution and pheromone update is carried out based on 
the quality of solution. Note that this behavior is also visited in some types of real ants 
that deposit higher densities of pheromone when they return from a rich food source. 

• Evaporation mechanism is used to enable the artificial ants to forget the suboptimal 
solutions that they have found at the early stages of the search. 

4. Continuous ACO 

Ant colony optimization was initially developed for combinatorial optimization problems 

and due to the concept and structure of the algorithm, it was difficult to apply it to 

continuous optimization problems. 

Some methods have been developed to apply ACO to continuous optimization problems 

but some basic principles of ACO have been deviated in these methods. Generic principles 

behind ACO can be categorized in following key characteristics: 

• Data source is distributed. 

• Incremental construction of solutions is performed by a population of individuals. 

• No direct communication is present among ants and stigmergy is utilized as the 
indirect communication. 

ACO is a constructive algorithm in which solutions are constructed incrementally. It means 

ants add solution components in each step until a complete solution is developed. Contrary 

to various proposed methods to adapt ACO to tackle continuous optimization problems, 

Socha (Socha, 2004) proposed an extension of ACO to continuous domain called ACOR 

without any change in basic characteristics of original ACO method. ACOR algorithm is 

described in this section. 

In ACO algorithm for combinatorial problems, probabilistic decision is made among 

different choices for certain solution component and the probability is calculated according 

to the amount of pheromone in available choices. In combinatorial optimization problems, 

available choices are discrete; therefore, each probabilistic decision is made according to a 

discrete probability distribution. In case of continuous ACO, solution components may 

assume any real value in a defined range. Therefore, in ACOR it is proposed to use 

Probability Density Function (PDF) instead of discrete probability distribution and PDF is 

sampled by ants to model pheromone effect in probabilistic selection of solution 

components. In regular ACO, while pheromone update, ants add a certain amount of 
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pheromone to each solution component with respect to the quality of solution and in this 

way, each possible value of solution components gets a pheromone value which reflects the 

search experience of the ants. In case of combinatorial optimization problems, this is 

possible since the set of possible values for solution components is finite. In case of 

continuous optimization problem, the set of possible values is not finite and to store the 

search experience of the algorithm, a limited number of recent found solutions are stored in 

an explicit memory called solution archive (Socha & Dorigo, 2008).  
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where n is the number of variables or solution components, k is the number of solutions that 
are stored in the archive and sij is the i-th solution component of j-th solution. It is 
noteworthy that in ACO for combinatorial optimization problems, the whole history of 
search is stored but in ACOR the limited number of solutions k represent the history of 
search. For instance if k=30 it means in each stage of the algorithm the solutions of 30 ants 
are utilized to make probabilistic solutions. Each row in the solution archive corresponds to 
a found solution, and by calculation of the objective function, the quality of each solution is 
measured. In fact, guidance towards better solutions and promising areas of search space in 
ACOR is accomplished by formation of wj, which is associated with solution j and is attained 
with respect to the value of objective function. 
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4.1 Pheromone initialization 

Initialization of solution archive is performed in a way that a uniform distribution over the 
search domain (a,b) is generated. This is accomplished by defining k normal distributions 
with uniformly distributed means. 
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4.2 Solution construction 

In solution construction phase of ACOR, each ant chooses probabilistically one of the 
solutions in the archive according to its corresponding weight. 
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After the j-th solution is selected, an ant starts constructing the solution incrementally and 
assigning value to each solution component i = 1, …, n separately. Starting with the first 
variable, the ant generates a random number by sampling a Gaussian function centered by 
the value of first variable of the chosen solution s1j and assigns the sampled value to the first 
variable of the solution under construction. Same process is performed for each solution 
component until the whole solution is constructed. In the above process the Gaussian 
function is utilized to sample the neighborhood of sij (Socha, 2004). 
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where μ  is the mean of the normal distribution and equals the value of sij for i-th variable of 

j-th solution. In this way, the value of sij has the highest probability of being chosen while 
sampling. σ  is the standard deviation of normal distribution. 

After each solution construction, pheromone update is performed to modify the probability 
distributions and to provide guidance for ants to discover better solutions in the next 
iterations. Pheromone update is carried out in two forms of positive update and negative 
update. 

4.3 Positive update 

In positive update, the solutions with good quality are stored in the solution archive to bias 
the probabilistic decision of ants in favor of promising areas of the search space. 
After solution construction phase, the performance of solutions is measured using objective 
function and the weight of each solution is determined. Then a number of high performing 
solutions are added to the solution archive: 

 k k nos← +  (6) 

nos is the number of solutions added to solution archive. After positive update, the size of 
stored solutions is increased to k+nos.  

4.4 Negative update 

In ACO algorithms, negative update is performed to forget the old solutions, avoid being 
stuck in local optimum solutions and in general enhance exploration. Pheromone 
evaporation is the traditional method to perform negative update in ACO for combinatorial 
optimization problems. In ACOR, there are different ways to accomplish negative update 
(Socha, 2004).  

• One of the methods for negative update in ACOR is removing some old or low 
performing solutions from solution archive. To keep the size of solution archive 
constant, same number of solutions that were added in positive update phase can be 
removed. 

 k k nos← −  (7) 
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• Another method for negative update is similar to pheromone evaporation in generic 
ACO. In case of ACOR the vector of weight is evaporated: 

 (1 ).i i
j jw wρ← −  (8) 

• Last method utilizes normal distribution property to implement negative update. In this 
method after each iteration, standard deviation of normal distributions are increased: 

 .i i
j jσ γ σ←  (9) 

where γ is the rate of dissolving. By increasing the standard deviation of normal 

distributions, the random numbers generated based on normal PDFs will be more spread 
and it implies the decrease of impact of old solutions. This type of negative update is called 
dissolving. 
Depending to various applications, different methods for negative update may be used. In 
our application, all methods of negative update are combined. 

5. Direction of arrival estimation 

Rapid development of high-speed data services and increasing demand for coverage and 
capacity in new wireless systems has caused a substantial need for more effective solutions. 
For instance in cellular communications, frequency reuse is utilized to fulfill capacity 
requirements. In these networks, increasing the capacity is possible by allowing closer co-
frequency cells that on the other hand will increase the risk of interference. Therefore, 
interference cancelation gives us the freedom of using additional frequency reuse. The most 
effective way of interference reduction is to make use of direction of arrival estimation to 
locate the users and then exploit an adaptive array antenna to steer its main lobe toward the 
subscribers of interest and nulls toward the co-frequency cells. On the other hand, as mobile 
satellite communication systems and global positioning systems (GPS) grow, smart 
antennas can enhance the performance of those systems. Therefore, direction estimation is a 
major concern of any spatial division multiple access (SDMA) system. Besides, due to 
various applications of DoA in car tracking, channel characterization and source 
localization, it has received substantial attention for several decades. Neural network is one 
of the methods that has been used to model DoA estimators and it has shown an efficient 
performance. Neural networks approach for handling computational task of DoA estimation 
has following advantages: 

• Fast execution, which facilitates real-time operation 

• Acceptable estimation error 

• Possibility of inexpensive manufacturing 
Radial basis function neural network has been presented as a successful candidate among 
various neural structures (Christodoulou, 2001; zooghby et al., 2000). In this chapter ACOR 
method is used to train a feed forward neural network and it is compared to RBFNN 
method. The improvements in estimation error are discussed. 

5.1 DoA problem formulation 

In this section, the DoA is formulated and the training set of neural network that is applied 
to the input layer is attained.  
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For DoA estimation, the phase shift between the received signals in different array elements 
can be used to find the direction of signals. 

 

2 sin( )d
jjw t jkc de e e

π θ
λ

−− −= =  (10) 

where d is the element spacing of the antenna array and λ is the wavelength of incoming 

waves. Consider a linear array antenna with M elements exposed to K (K<M) narrowband 

plane waves impinging on the antenna from directions { }1 2 ... Kθ θ θ . Using wave 

propagation relations and complex signal notation, the received signal of the i-th array 

element can be shown as 
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sm(t) is the signal of m-th wave, ni(t) is the noise signal which i-th element receives and  

 0 sin( )m m

w d
k

c
θ=  (12) 

where w0 is the center frequency and c is the speed of light. We can convert the summation 
to vector notation and then express the output of the array in matrix form (Christodoulou, 
2001). 

 ( ) ( ) ( )X t AS t N t= +  (13) 

where X(t), S(t), A and N(t) are defined as follows 

 1 2( ) [ ( ) ( ) ... ( )]TMX t x t x t x t=  (14) 

 1 2( ) [ ( ) ( ) ... ( )]TMN t n t n t n t=  (15) 

 1 2( ) [ ( ) ( ) ... ( )]TKS t s t s t s t=  (16) 

 1[ ( ) ... ( ) ... ( )]m KA a a aθ θ θ=  (17) 

 2 ( 1)( ) [1 ... ]m m mjk j k j M k T
ma e e eθ − − − −=  (18) 

Assuming noise signals as statistically independent white noise with zero mean and 
independent of S(t), we can form the spatial correlation matrix R which is used to provide 
the input data for neural network (Christodoulou, 2001). 

 { ( ) ( )} { ( ) ( )} { ( ) ( )}H H H HR E X T X t AE S t S t A E N t N t= = +  (19) 

where H represents the conjugate transpose. The antenna array receives signals in different 
directions and forms the matrix X(t) which is the output of array elements. According to the 
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fact that receiver noise is the dominating noise source, n(t) is assumed to be white and 
Gaussian distributed: 

 2{ ( )} 0 , { ( ) ( )} , { ( ) ( )} 0H T
tsE n t E n t n s I E n t n sσ δ= = =  (20) 

The signal is also assumed to be Gaussian distributed.  

 { ( )} 0 , { ( ) ( )} , { ( ) ( )} 0H T
tsE s t E s t s s P E s t s sδ= = =  (21) 

{ ( ) ( )}HE S t S t  can be considered as a diagonal matrix P for uncorrelated signals. Note that A 

has M×K dimension and P is a K×K matrix, consequently R is an M×M matrix. Hence, the 
spatial correlation matrix is presented as: 
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{ ( ) ( )}

{ ( ) ( )} { ( ) ( )}

H

H H H

H

R E X T X t

AE S t S t A E N t N t

APA Iσ
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= +

= +

 (22) 

By exploiting the symmetry in R, either the upper or the lower triangular of the matrix is 

required (Christodoulou, 2001). As a result, the input data of neural network is decreased. 

Notice that R contains complex values and regular neural networks do not support complex 

values. Hence, the real and imaginary parts in the correlation matrix should be separated and 

all presented in a vector, termed b (Christodoulou, 2001; zooghby et al., 2000; Movahedipour et 

al., 2006). Matrix b with scaled values is applied to the neural network as a training set and 

known directions are considered as target values. Therefore, by considering just one triangular 

part of the matrix and real and image separation, b will include M (M+1) elements 

(Christodoulou, 2001). Normalized b is applied to the input layer of neural network. 

6. ACOR-based neural network for DoA estimation 

In the simulations, two S=2 uncorrelated signals impinge on array antenna with five M=5 

elements. These assumptions are made based on the literature to facilitate the comparison 

(Titus et al., 1994; Zooghby, 1997). 

The neural network contains five neurons in its hidden layer. Array elements receive two 

uncorrelated narrow band signals in training mode with angular separations of 15o and 20o 

with the assumption that DoA is uniformly distributed from -90o to +90o. Therefore the first 

source is set at θ = -90o and the second source at θ = -75o (15o separation). Next, we set the 

first source at -89o and the second source at -74o and so on until the interval -90o to 90o is 

covered. Same method is used for 20o angular separation. For validation phase, separation 

angles of 15o, 16o, 17o, 18o, 19o and 20o are used to investigate the generalization capability of 

the neural network. All of the results are compared with RBF, which has been found as a 

substantially powerful solution to DoA estimation problem (Zooghby, 1997). 

6.1 Application of ACOR to train feed forward neural network 

In this work, ACOR is utilized to train a feed forward neural network, therefore numerical 
weights of neuron connections represent the solution components of the optimization 
problem and minimizing the MSE of output neurons is the performance criterion or 
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objective function. Search domain is (-1, 1), i.e. solution components may assume any real 
value in this range.  
The solution archive and its correspondent normal distributions are implemented in a three 
dimensional matrix. 

 

Fig. 1. The mixture 3×k×n matrix to store k solutions with their corresponding normal 
distributions. 

Figure 1 demonstrates the mixture matrix and the way solutions and their corresponding 

normal distributions are stored. Mixture is a 3×k×n matrix in which the first row, represents 

the weight i
js

w  assigned to each variable of solutions. The second row holds the mean of the 

normal distribution which equals the value xi of i-th variable of j-th solution sij. The standard 

deviations of solutions are stored in the third row. In this way, for each variable of each 

solution, three values of i
jw , i

jμ and i
jσ are assigned and ants can find probabilistic solutions 

referring to the mixture matrix. In fact, pheromone maintenance is performed by updating 

this matrix. In the simulations positive and negative update are carried out so that k is 

constant. n is the number of variables that is the number of weights of the neural network in 

this application. 
In positive update phase, weights of the solutions stored in solution archive are calculated 
according to the MSE of the output layer. In this work, two approaches are utilized to 
calculate the weight of probability distributions. In the first attempt wj is assigned in inverse 
relation to MSE as the objective function and it is termed MSE-function method.  

 1,...,j
j

t
w j K

MSE
= =  (23) 

where t is a constant.  
The second approach is sorting the solutions according to their performance and assigning 
them a “rank” value. Then the weight of each solution is calculated according to below Rank-
function (Socha & Blum, 2007). 
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where q is a parameter and r represents the rank of corresponding solution. The mean of the 
above Gaussian function is set to 1, therefore the best solution with r=1 has the highest 
value.  
The mean μ of normal PDFs are equal to the solution component values. The standard 

deviation of normal PDFs is calculated as 

 1.. 1..max( ) min( )
max ,

i i
i m m

j

x x

c
σ ε

⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (25) 

where c represents the iteration and m is the number of ants. Standard deviation is inversely 
proportional to the iteration number and it implies that solutions found in the first iterations 
are less useful than the outputs of the final iterations. Note that less standard deviation leads 
to the higher probability for selection of values around xi. In this work, following equation 
for standard deviation is proposed to enhance the performance of algorithm. 

 1.. 1..max( ) min( )
max ,

. .

i i
i m m

j
j

x x

u w c
σ ε

⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (26) 

where u is a parameter and standard deviation of each normal PDF is inversely proportional 
to its weight, therefore superior solutions with higher weights, lead to smaller standard 
deviations and higher probability of selection. Low rank and larger standard deviation is 
almost equivalent to uniform distribution and it results in decreasing the effect of bad 
solutions. The performance of proposed equation is evaluated in section 7.3. 

6.2 Parameter setting for weight assignment 

As shown in the equations (6) and (7), nos is the number of solutions used to update solution 

archive which is equivalent to pheromone update in regular ACO. After each iteration, all 

ants are sorted with respect to their solution quality and then the normal distribution 

correspondent to the nos best solutions are added to the mixture matrix. As shown in figure 

1, the first row of the mixture matrix is the weight of each distribution and it is attained by 

MSE-function or Rank-function using equations (23) or (24). Rank-function is a normal 

distribution with qk as the standard deviation. Considering nos=10 and K=40, we need to 

calculate Rank-function for r=1, …, 10. r=10 gives the weight w10 to the solution of 10th ant. 

Depending on the value of qK as the σ of the Rank-function, the weight of last ants may get 

values quite close to zero. To avoid assignment of weights close to zero to the last solutions 

of the sorted ants, we can determine a limit C for the last r=nos solution and find its 

correspondent standard deviation: 

 

2

2

( 1)

2
1

2

nos

e Cσ

σ π

− −

=  (27) 

 1 2( ( ) ( ) 0.9189)nos Ln C Lnσ σ= + − + +  (28) 

Assuming C=0.01, K=40 and nos=10, the standard deviation and consequently q is achieved 

( 4.254qKσ = = , 0.1063q = ). By calculating q using above relation, no solution of nos ants 
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will get a weight under the limit C, and in fact, one parameter is reduced in parameter 
setting of the algorithm. 

7. Simulation results 

In the literature, RBFNN method is utilized for DoA problem and its performance in terms 
of its feasibility to handle real time computation is investigated (Titus et al., 1994; Zooghby 
et al., 1997i; Kuwahara & Matsumoto, 2005). In this section, result of applying ACOR-based 
neural network to DoA problem is presented and estimation errors are compared with 
RBFNN method. Besides possible ways to enhance the performance of ACOR are 
investigated. The achieved results using Rank-function and MSE-function are compared to 
RBFNN method in figure 2. The separation angles of 3o to 7o are used and the generalization 
capability of the neural network is verified with 4o, 5o and 6o separation angles that were not 
part of the training set. 
 

 

Fig. 2. The neural network is trained with 3o and 7o separation angles and its generalization 
capability is verified in 4o, 5o, 6o separation angles. Rank-function and MSE-function based 
weight assignments are compared as well. 

Figure 3 demonstrates MSE for one more set of separation angles of 15o to 20o and it 
indicates that Rank-function method attains 3.12 to 5.9 times less MSE in comparison with 
RBFNN. Therefore, in DoA applications that high resolution is needed, ACOR can be 
utilized to achieve lower and more uniform estimation errors. 
As it is shown in figures 2 and 3, Rank-function approach for pheromone update generates 
better solutions but it takes three times longer than MSE-function approach to converge. This 
is reasonable because ranking function normalizes weight assignments for achieved MSE 
and this leads to uniform effect of performance in different stages of the simulation. Hence, 
stagnation is avoided and consequently search time is extended (Movahedipour et al., 2008). 
The ACOR parameters used in above simulations are presented in table 1.  
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To study the behaviour of ACOR algorithm, we investigated the role of various parameters 
on the performance of ACOR and presented the results in the following sections. 
 

Parameter Description Value 

k Number of solutions in mixture matrix 15 

nos 
Number of solutions used for pheromone 
update 

8 

m Number of ants 85 
ρ  Evaporation rate 0.2 
γ  Dissolving rate 1.1 

q Ranking function parameter 0.2 

Table 1. ACOR Parameters  

 

Fig. 3. The neural network is trained with 15o to 20o separation angles and its generalization 
capability is verified in 16o, 17o, 18o and 19o separation angles.  

7.1 Number of solutions (k, nos, q) 

We ran ACOR using parameter settings of k ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}. We repeated 
the execution three times for each parameter setting, selected the best performing one for 
each k, and presented them in figure 4. nos was set to k/3 and k/2, q was achieved using 
equation (28) and all other choices were left the same. The parameter k represents the stored 
history of the algorithm and it guides ants to the promising areas of the search space. The 
algorithm does not show acceptable performance for k=10 because in this configuration very 
few number of found solutions are stored in the solution archive and consequently the 
experience of other ants cannot be utilized in a proper way to generate better solutions (see 
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figure 4). On the other hand assigning values larger than 40, increases simulation time and 
decreases the quality of found solutions because a big solution archive keeps a larger 
amount of solutions with less quality. The numbers from one to nine and letters from a to i, 
indicate various parameter settings presented in table 2. 
 

 

Fig. 4. ACOR is executed for k ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}, nos={k/3, k/2} and q is 
achieved according to equation (28). 

 

 k nos q 

a 10 3 0.07 
b 15 5 0.1 
c 20 7 0.13 
d 25 8 0.13 
e 30 10 0.14 
f 35 12 0.16 
g 40 13 0.16 
h 45 15 0.17 
i 50 17 0.19 
1 10 5 0.16 
2 15 8 0.21 
3 20 10 0.21 
4 25 13 0.25 
5 30 15 0.26 
6 35 18 0.3 
7 40 20 0.3 
8 45 23 0.37 
9 50 25 0.44 

Table 2. ACOR parameter settings for different k, nos and q. Other parameters are m=30, 
ρ =0.2 and γ =1.1. 
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7.2 Number of ants (m) 

The results presented in figure 5 are based on the parameter settings of m ∈ {20, 35, 40, 50, 
60, 70, 80, 90, 100} leaving all other parameters the same. Increasing the number of ants 
improves the final solution but the computation time increases as well. We ran three times 
the ACOR algorithm for each m, chose the best execution and plotted in figure 5.  
 

 

Fig. 5. ACOR is executed for different numbers of ants. The other parameters are left same. 
(k=15, nos=8, ρ =0.2, γ  =1.1, q=0.21) 

7.3 Standard deviation 
In this section, two methods of standard deviation assignment to PDFs are evaluated (see 
equations 25 and 26). The ACOR algorithm was executed ten times for each method. The 
results illustrated in figure 6, indicate that the proposed equation (26) can decrease the 
found minimum for 29% but the convergence happens later and the computation time 
increases. The parameter u is set to 1 and 2 and the experiments suggest ACOR is converged 
earlier if u is set to a large value and this results in lower quality solutions. Therefore, the 
parameter u can be used to compromise computation time with solution quality. 

7.4 Exploration and exploitation 
The experimental results summarized in previous sections, indicate ACOR usually suffers 
from lack of simultaneous exploitation and exploration strategies. For instance, when the 
number of ants m is set to high values in comparison with k, exploitation is accomplished 
since the solution archive is fed with high quality solutions but the lack of enough 
exploration in this strategy results in fast convergence and suboptimal solutions. On the 
other hand, when k, ρ  and γ   are set to high values, exploration is achieved but the 
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Fig. 6a. Different methods for standard deviation calculation are investigated. “Regular std” 
denotes equation (25) and “Ranked std” refers to equation (26). The other parameters are left 
same. (k=15, nos=8, ρ =0.2, γ  =1.1, q=0.21) 

 

 

Fig. 6b. The convergence behaviour of algorithm in figure 6a is magnified.     
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algorithm suffers from lack of exploitation to take advantage of explored areas and 
construct high quality solutions. Starting the algorithm with dominant exploration strategy, 
provides a substantial information about the search space and then if it enters exploitation 
phase, this information will guide the ants to promising areas of search space and better 
solutions. Hence, it is proposed to implement two phases of exploration and exploitation in 
ACOR and apply two different sets of parameter settings to implement each phase. This 
approach was experimented and best solutions were achieved among all different 
parameter settings with slight increased computation time (see figures 7a and 7b). 
Different parameter sets used in this experiment are summarized in Table 3.  
 

 k nos m ρ  γ  q 

Exploration set 30 10 35 0.25 1.15 0.2 

Exploitation set 15 8 85 0.2 1.1 0.2 

Exploration-Exploitation (Phase I) 30 10 35 0.25 1.15 0.2 

Exploration-Exploitation (Phase II) 15 8 85 0.2 1.1 0.2 

Table 3. The “Exploration”, “Exploitation” and “Exploration-Exploitation” configuration. 

 

 

Fig. 7a. Two different parameter sets are defined for exploration and exploitation phases 
and three configurations of these parameter sets are tested. ACOR with “Exploration”, 
Exploitation” and “Exploration-Exploitation” parameters are executed for 10 times and the 
best run of each configuration is presented for comparison. In “Exploration-Exploitation”, 
first ACOR is executed with “Exploration” parameter set and then after 400 iterations, 
algorithm enters a new phase and uses “Exploitation” parameter set.  
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Fig. 7b. The convergence behaviour of algorithm in figure 7a is magnified.     

In the exploration set, k is set to a higher value with comparison to exploitation set, so that 
the algorithm keeps a larger amount of information about the history of search. However, m 
is set to smaller value and nos is almost one third of m, implying that the most solutions 
found by ants are stored in the solution archive. In the exploitation phase, nos=0.09m and 
that points out just a small number of very high performing solutions (8 out of 85) are stored 
in the solution archive. In this way, high-quality solution archive guides the ants to explore 
more deeply, the areas that were found to be promising in the exploration phase.  
We ran ACOR algorithm with “Exploration”, Exploitation” and “Exploration-Exploitation” 
parameters for 10 times and the result of each execution is summarized in Table 4. 
 

 MSE of the converged solution in each execution 

Exploration 0.1085 0.0953 0.1088 0.1084 0.1308 0.0836 0.1062 0.1107 0.4797 0.0960 

Exploitation 0.0636 0.0691 0.0578 0.0628 0.0573 0.0665 0.0777 0.0599 0.0534 0.0603 

Exploration-
Exploitation 

0.0362 0.0629 0.0516 0.0524 0.0515 0.0549 0.0511 0.0526 0.0657 0.0641 

Table 4. MSE per execution for each configuration 

The bold numbers in Table 4 are related to the executions with lowest MSE and their 
computation time are summarized in Table 5. The complete iterations of these executions 
are illustrated in figure 7a and 7b. This approach resulted in the lowest MSE of 0.0362 that 
was the best-found solution in all of our experiments with various parameter settings. 
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 Min Time 

Exploration 0.0836 3.76 

Exploitation 0.0534 4.52 

Exploration-
Exploitation 

0.0362 6.88 

Table 5. Minimum MSE and the computation time for best executions of each configuration 

8. Conclusion 

The application of ACOR algorithm to train an interpolator feed-forward neural network 
and perform DoA estimation have been studied in this chapter. The ACOR based neural 
network has been used to model DoA estimation and it demonstrated superior performance 
in comparison with RBFNN as the known approach for DoA problem.  
Various parameter settings in ACOR were investigated and the behaviour of algorithm was 
discussed accordingly. The possibilities to enhance ACOR behaviour were examined. 
Standard deviation calculation in positive update phase is proposed to be inversely 
proportional to the rank function. In addition, it was investigated how the algorithm 
performance is improved by guiding the algorithm through exploration and exploitation 
phases by different parameter sets during execution. 
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